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less adapted. We derived from the generalized coefficient 
of determination (CD) theory different criteria to optimize 
CS sampling and to assess the reliability associated to 
predictions in structured populations. These criteria were 
evaluated on two nested association mapping (NAM) popu-
lations and two highly diverse panels of maize. They were 
efficient to sample optimized CS in most situations. They 
could also estimate at least partly the reliability associated 
to predictions between NAM families, but they could not 
estimate differences in the reliability associated to the pre-
dictions of NAM families using the highly diverse panels 
as calibration sets. We illustrated that the CD criteria could 
be adapted to various prediction scenarios including inter 
and intra-family predictions, resulting in higher prediction 
accuracies.

Introduction

Classical plant breeding programs rely on the phenotyp-
ing of progenies in field trial networks to identify superior 
individuals. The number of individuals which can be evalu-
ated is limited by high phenotyping costs and time needed 
to perform relevant field evaluation. This reduced number 
of selection candidates is a major limit to genetic progress. 
Genomic selection (GS) allows predicting the performance 
of unphenotyped individuals, which makes it possible to 
increase the size of the candidate set (Meuwissen et al. 
2001). GS prediction equations are calibrated using pheno-
types and genotypes of the reference individuals compos-
ing the calibration set. The equations can then be used to 
predict the genomic estimated breeding values (GEBV) of 
selection candidates, as long as their genotype is available. 
As genotyping tools such as SNP-arrays are now available 
and affordable for many species, GS is becoming a reference 
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tool for breeders, and greatly complements marker assisted 
selection tools based on QTL detection.

The optimal use of GS in plant breeding depends on the 
species and is influenced by many factors (length of the 
selection cycle, importance of genotype x environment inter-
actions, selection based on hybrids or on inbred lines, tech-
nical tools available…). There are nevertheless two com-
mon major opportunities brought by GS in breeding: (i) the 
screening of highly diverse material in pre-breeding steps 
(Crossa et al. 2016; Yu et al. 2016), and (ii) the prediction 
of performance of selection candidates in the breeding pro-
grams. In (i) and (ii), the phenotyping costs saved by GS can 
be spend for a more intense phenotyping of the calibration 
set: phenotyping for traits difficult to measure, phenotyping 
in more environments, or phenotyping of crosses with more 
testers (in the case of hybrid breeding).

It has been shown, that the efficiency of GS is affected by 
various factors linked to the predicted trait [genetic archi-
tecture, heritability (Heffner et al. 2009; Hayes et al. 2009; 
Jannink 2010)], to the population under study [linkage dis-
equilibrium (Heffner et al. 2010; Albrecht et al. 2011), struc-
ture and relatedness (Wientjes et al. 2013; Albrecht et al. 
2014; Lehermeier et al. 2014)], to the statistical model used 
(Heslot et al. 2012), to the genotypic information available 
(Chen and Sullivan 2003; Poland and Rife 2012), and to 
the calibration set (Habier et al. 2010; Albrecht et al. 2011; 
Pszczola et al. 2012). Among these, the composition of the 
calibration set highly influences prediction accuracy, and 
thus genetic progress. It was shown for instance that predic-
tion accuracy increases with the level of relatedness between 
the calibration set and the test set (Habier et al. 2010; Albre-
cht et al. 2011; Pszczola et al. 2012).

Different criteria (prediction error variance PEV, or the 
coefficient of determination) are available to estimate the 
expected accuracy of G-BLUP, one reference GS model, 
for given calibration and test sets. He et al. (2016) used the 
expected PEV of individual predictions in a commercial 
wheat program and showed its efficiency to identify indi-
viduals outside the calibration space and, therefore, poorly 
predicted. The interest lies very often in the estimation of 
contrasts between individuals, for instance the identification 
of superior segregating individuals compared to the family 
mean or compared to checks. The precision of any contrast 
of genetic values can be estimated with the generalized 
coefficient of determination (further noted CD), defined as 
the squared correlation between the true and the predicted 
contrast of genetic values (Laloë 1993). The CD is the 
expected reliability of the contrast. This criterion was first 
introduced in the context of GS by Maenhout et al. (2010) 
to select optimal subsets of phenotypic data and by Rincent 
et al. (2012) to optimize the composition of the calibration 
set using genotyping data only. The information brought by 
the CD can be very useful to breeders at different steps of 

the selection program. The CD can first be used to sample 
an optimal calibration set to be phenotyped (Rincent et al. 
2012). Once the calibration set has been sampled, a second 
potential use of the CD is to evaluate a priori the reliability 
of the predictions. It is indeed clear that the selections oper-
ated by breeders in the context of GS should be made by 
considering both performance predictions and the reliability 
of these predictions. This is similar to classical breeding, 
in which breeders select individuals by considering both 
adjusted means and the accuracies of the trials.

Rincent et al. (2012) derived from the CD a criterion 
to maximize prediction accuracy in highly diverse panels 
(CDmean). CDmean was successfully tested in different spe-
cies such as maize, palm trees, wheat and peas in popula-
tions of various levels of relatedness (Rincent et al. 2012; 
Rutkoski et al. 2015; Cros et al. 2015; Tayeh et al. 2015). 
Isidro et al. (2015) showed that CDmean performed less 
efficiently in structured populations including subspecies, 
or when trait architecture potentially involved major effect 
genes. Note, however, that the genotypic information of the 
test set was not taken into account in this latter study, which 
might partly explain the poor efficiency of the CDmean 
that was observed. It is nevertheless true that the CDmean 
proposed by Rincent et al. (2012) doesn’t take into account 
strong population structures. Another criterion is there-
fore needed to optimize calibration set in materials in such 
situations, which are common in plant breeding programs. 
Indeed, when panels of inbred lines or previously existing 
biparental populations are used to predict performances of 
individuals from new biparental populations, population 
structure differs in the calibration set and the prediction set. 
More work needs to be done to evaluate in this case the effi-
ciency of criteria based on CD to predict in advance the effi-
ciency of GS and to optimize the calibration set according to 
the breeding population targeted. We propose and evaluate 
in this study a new criterion (CDpop), also derived from the 
generalized CD, but based on contrasts adapted to structured 
material. The Dent and Flint nested association mapping 
(NAM) populations presented in Bauer et al. (2013), and 
Lehermeier et al. (2014) is an excellent material to evaluate 
the efficiency of CDpop, because it is clearly structured in 
biparental families and presents variability in both within 
and between family relatedness. CDpop was tested for the 
two objectives presented above: (i) predict the efficiency of 
a given calibration set to predict a given family, and (ii) opti-
mize the composition of the calibration set to predict a given 
population. In (i) the breeder wants to evaluate how much he 
should trust his predictions, and in (ii) the breeder wants to 
sample an optimal calibration set prior to phenotyping. The 
efficiency of CDpop for (i) and (ii) was also evaluated when 
highly diverse panels such as those presented in Rincent 
et al. (2012) and Rincent et al. (2014a) are used to predict 
NAM families.



Theor Appl Genet 

1 3

Materials and methods

Plant material and phenotypic analysis

Diversity panels

The two Dent and Flint panels of the “CornFed” program 
(CF-Dent and CF-Flint) were developed to analyze diver-
sity and linkage disequilibrium in two heterotic groups of 
main interest for maize hybrid breeding in Northern Europe 
(Rincent et al. 2012, 2014a, b). Both panels are composed 
of 300 inbred lines aiming at best representing the diver-
sity of these heterotic groups and different generations of 
genetic materials. These include the first commercially used 
inbred lines created from open pollinated varieties (OPVs), 
and more recent inbred lines developed by public institutes 
or, in the case of the CF-Dent panel, private companies. For 
phenotypic evaluation, the inbred lines of a given panel were 
crossed with a tester of the other pool (Dent inbred lines 
crossed to UH007, and Flint inbred lines crossed to F353). 
All hybrids were evaluated for male flowering time (anthe-
sis date, AD, in days after sowing), plant height (PH, cm), 
and dry matter yield (DMY, Mg/ha). Two separate experi-
ments were conducted for the Dent and Flint hybrids, with 
five locations for each panel in 2010, and six (CF-Dent) and 
five (CF-Flint) locations in 2011. In this study we used the 
least-square means of the hybrids as computed by Rincent 
et al. (2014b).

NAM populations

The two NAM designs are described by Bauer et  al. 
(2013). In short, the Dent and Flint populations were, 
respectively, composed of 10 and 11 doubled haploid 
(DH) families, derived from the cross of, respectively, 
10 and 11 diverse founder inbred lines with a common 
central inbred line: F353 for the Dent and UH007 for the 
Flint. F353 and UH007 represent European inbred lines 
created by public institutes in their respective heterotic 
groups. The parental inbred lines were chosen to cover 
the diversity available within the two heterotic groups 
with a combination of ancestral and more recent material. 
All parental inbred lines are included in the CF-Dent or 
CF-Flint panels. From each cross, doubled haploid (DH) 
lines were generated, resulting in 919 lines for the Dent 
and 1009 for the Flint (Bauer et al. 2013). For phenotypic 
evaluation, the segregating DH lines of a given heterotic 
group were crossed with the central inbred line of the other 
heterotic group (corresponding to the same testers used for 
the CF-Dent and CF-Flint panels). A total of 841 hybrids 
were produced for the Dent heterotic group and 811 for 
the Flint heterotic group (Lehermeier et al. 2014). The 

number of Dent DH lines for which testcrossed progenies 
were phenotyped per family was 84 on average and varied 
between 53 and 104, depending on the family. For the 
Flint heterotic group, the number of DH lines per family 
that were phenotyped for testcross values ranged from 17 
to 133 with an average of 73. Hybrids were evaluated in 
2011 in four (Dent) and six (Flint) European locations 
for the same traits than the CF-Dent and CF-Flint panels. 
Field trial design is described in Lehermeier et al. (2014). 
In their study individual field plot measures were analyzed 
to compute for each hybrid the adjusted means over the 
different trials. We used the same adjusted means in the 
present study. The Flint DH family resulting from the cross 
of EP44 and UH007 was not used due to small population 
size.

Genotypic data and relatedness

Genotypic data

The 1894 NAM DH lines (corresponding to the 10 Dent 
and 10 Flint families), the 22 parental inbred lines and 
the two diversity panels were genotyped with the Illumina 
MaizeSNP50 BeadChip containing 56,110 SNPs (Ganal 
et al. 2011). For the diversity panels we used the data fil-
tered and imputed as in Rincent et al. (2014a, b). For the 
NAM populations, markers with a call frequency <0.9, a 
GenTrain Score <0.7, or >10% missing values were dis-
carded as described by Lehermeier et al. (2014).

We only considered PANZEA SNP in our study to 
avoid ascertainment bias in kinship estimation (Ganal 
et al. 2011). Among these markers, we only kept those 
which passed the quality filters in both the NAM popu-
lations and the diversity panels and which had a minor 
allele frequency (MAF) above 0.01 in the diversity panels, 
which resulted in 27,169 markers in the Dent NAM fami-
lies and in the CF-Dent panel, and 26,920 markers in the 
Flint NAM families and in the CF-Flint panel. In the NAM 
families missing values were imputed as the mean allelic 
frequency in the corresponding NAM family.

Individuals without phenotypes, or with >10% miss-
ing values were discarded. As a result, the NAM popula-
tions comprised 841 and 794 lines in the Dent and Flint 
NAM populations. The diversity panels were composed 
of 281 and 275 individuals for CF-Dent and CF-Flint pan-
els, respectively. Genotypic data of each heterotic group 
(Dent and Flint) were organized as G matrices with N rows 
and L columns, N and L being the number of genotypes 
and of SNP loci, respectively. Genotype of individual i at 
marker l  (Gi,l) was coded as 1, 0.5, or 0 for homozygote 
for an arbitrarily chosen allele, heterozygote, and the other 
homozygote, respectively.
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Kinship estimation

Kinship within and between NAM families and panel for 
each heterotic group (Dent and Flint) was estimated using the 
PANZEA SNP following VanRaden (2008):

with D =
∑L

l=1
pl ×

�
1 − pl

�
, pl being the allelic frequency 

of the reference allele in the corresponding diversity panel, 
L the number of markers.

Genome‑based prediction model and generalized 
coefficient of determination

Genome‑based prediction model

The genomic predictions were based on the G-BLUP model, 
using the following mixed model:

where y is a vector of phenotypes consisting of adjusted 
means, β is a vector of fixed effects (in our case only the 
intercept), u is a vector of random genetic values, e is the 
vector of residuals. X and Z are design matrices.

u was assumed to follow a Gaussian distribution: 
u ∼ N

(
0⃗,K𝜎2

g

)
, where K is the genomic relationship matrix 

estimated as above, and �2
g
 is the additive genetic variance. The 

residuals e are assumed to follow a Gaussian distribution: 
e ∼ N

(
0⃗, I𝜎2

e

)
, where I is the identity matrix. The prediction 

of u is obtained by solving Henderson’s equations (Henderson 
1984):

where � =
�2
e

�2
g

 is the ratio between the residual and the addi-

tive variances. In practice � can be set using an estimation 
of the heritability of the trait or the restricted maximum like-
lihood (REML) estimates of �2

g
 and �2

e
 using the phenotypic 

data of the calibration set.

Generalized coefficient of determination (CD)

Before collecting phenotypes it is possible to estimate the 
prediction reliability of different contrasts using the general-
ized CD (Laloë 1993). It is defined as the squared correla-
tion between the true and the predicted contrast of genetic 
values. It is equivalent to the expected reliability of the 
contrast:

Ki,j =

L∑
l=1

(
Gi,l − pl

)(
Gj,l − pl

)
D

,

y = X� + Zu + e,

[
X′X X�Z

Z�X Z�Z + 𝜆K−1

][
�̂

û

]
=

[
X�y

Z�y

]
,

where c is a contrast, i.e., 1�c = 0. M is an orthogonal 
projector on the subspace spanned by the columns of X: 
M = I − X

(
X�X

)−
X� and 

(
X�X

)− is a generalized inverse of 
X’X (Laloë 1993). The CD takes values between 0 and 1, a 
CD close to 0 meaning that the prediction of the contrast is 
not reliable, whereas CD close to 1 meaning that the predic-
tion is highly reliable, i.e., the predicted and the true genetic 
values are expected to be strongly correlated. The CD is 
related to the prediction error variance (PEV) of the contrast 
as expressed in Laloë 1993:

PEV(c) = diag

[
c�(Z�MZ+�K−1)

−1
c

c�c

]
�2
e
. Criteria related to 

PEV were also evaluated to optimize calibration set sam-
pling (Rincent et al. 2012; Akdemir et al. 2015). Note that 
Akdemir et al. (2015) considered individual PEV and not 
PEV of contrasts between individuals.

Depending on the objective, one can consider differ-
ent contrasts c. In this study we are interested mostly 
in making predictions within each NAM family (using 
phenotypes collected in the panels, or in the other NAM 
families). As a consequence we considered the contrasts 
between each predicted individual and the mean of the 
family it belongs to. If the predicted NAM family i is 
composed of Ni individuals, we combined the Ni contrasts 
in a contrast matrix Ti: each column of Ti is a contrast 
between an individual of the NAM family i and the mean 
of this NAM family i. Dimensions of Ti are: total number 
of individuals in the G-BLUP model (size of the calibra-
tion set + size of the predicted NAM family) x number of 
individuals in the predicted NAM family i.

We estimated the expected prediction accuracy in the 
NAM family i by: CDpopi =

1

Ni

∑�
CD

�
Ti

��1∕2, where Ti is 

the contrast matrix of NAM family i, CD
(
Ti

)
 is the vector 

of the Ni CDs, corresponding to the Ni contrasts. We con-
sidered the average over the Ni individuals of the square root 
of the CDs to build the criterion CDpopi, to make it consist-
ent with prediction accuracy (defined as the square root of 
the reliability, or equivalently as the correlation between true 
and predicted genetic values).

Using CD to estimate prediction reliability 
in structured populations

When breeders have collected phenotypes to run GS, they 
are interested in estimating the prediction reliability they 

CD(c) = diag

⎡
⎢⎢⎢⎣

c�
�
K − �

�
Z′MZ + �K−1

�−1�
c

c�Kc

⎤
⎥⎥⎥⎦
,
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can expect in different target populations. The CD is the 
expected reliability of predictions, and so is a good can-
didate criterion to help breeders evaluate their prediction 
accuracies.

We tested the efficiency of the CD (CDpop) to predict GS 
accuracy in different scenarios:

– S1: one NAM family is predicted using another NAM 
family (scenario noted CwC in Lehermeier et al. 2014, 
for cross-with-cross predictions)

– S2: one NAM family is predicted using all other NAM 
families (scenario noted LOCO in Lehermerier et al. 
2014, for leave-one-cross-out)

– S3: one NAM family is predicted by the panel of the 
same heterotic group. For S3 we also considered the 
case when the objective is to predict jointly all the NAM 
families as if it was an unstructured population (the CD 
criterion in this case was adapted and further referred to 
as CDallNAM).

For each situation we compared CDpop and the observed 
prediction accuracy estimated as the correlation between the 
predictions and the phenotypes divided by the square root 
of the heritability of the predicted family (estimated at the 
experimental design level, as presented in Lehermeier et al. 
2014). The comparison was made on accuracies rather than 
reliabilities to keep track of possible negative correlations 
which would have generated positive reliabilities. In these 
three scenarios, we assumed that the phenotypes of the cali-
bration set are available when CDpop is computed, we there-
fore used for BLUP predictions and CDpop computations a 
� value specific to each trait and each calibration set using 
the heritabilities (h2) of the calibration set: � = 1

/
h2 − 1, as 

computed by Lehermeier et al. (2014) for the NAM families 
and Rincent et al. (2014a, b) for the panels.

Using generalized CD to optimize calibration set 
in structured populations

As generalized CD can be computed before collecting phe-
notypes, it can be used to define optimal calibration set 
before field experimentation, provided genotypes are avail-
able. We tested if the generalized CD used with adapted 
contrasts (CDpop) is efficient to define optimal calibration 
set to conduct GS in structured material such as NAM popu-
lations. For this, we used CDpop to sample calibration sets 
of variable sizes (from 10 to 500 depending on the scenario) 
considering different optimization targets (OT):

– OT1: one NAM family is predicted using calibration sets 
of size 10, 50, 150, 300 or 500 sampled among the other 
NAM families

– OT2: one NAM family is predicted using calibration sets 
of size 10, 25, 50, 100 or 200 sampled from the panel 
of the corresponding heterotic group (CF-Dent for Dent 
NAM, and CF-Flint for the Flint NAM)

– OT3: all NAM families are predicted using calibration 
sets of size 50, 150, 300 or 500 sampled from all NAM 
families

– OT4: all NAM families are predicted using calibration 
sets of size 10, 25, 50, 100 or 200 sampled from the 
panel of the corresponding heterotic group (CF-Dent 
for Dent NAM, and CF-Flint for the Flint NAM)

In scenarios OT1 and OT2, the calibration set sampled 
to maximize CDpop was compared to calibration sets 
that were sampled randomly, or maximizing the average 
relatedness between calibration set and the predicted set 
(Crit_Kin). Crit_Kin was defined as the average of the 
relatedness coefficients between each individual in the 
calibration set and each predicted individual.

Additional sampling strategies were tested for scenario 
OT3: (1) stratified sampling without taking family sizes 
into account (Crit_Strat, i.e., a same number of individu-
als was sampled randomly in each family), (2) stratified 
sampling taking family sizes into account (Crit_Strat_size, 
the contribution of each family to the calibration set is 
weighted by its size), (3) the average of the CDpop of the 
ten NAM families (CDpop_mean), and (4) CDallNAM 
which is the average of the square root of the CD of the 
contrasts between each individual and the mean of all 
NAM individuals (the structure is not taken into account). 
For OT4 (calibration with a panel) we considered the same 
strategies of sampling as for OT3 except the Crit_Strat and 
Crit_Strat_size strategies, that do not make sense since the 
panels are not structured in clear subpopulations. This was 
done 20 times for each calibration set size. We then com-
pared the observed prediction accuracies obtained with the 
different calibration sets. In OT3 and OT4, we computed 
the prediction accuracies within each NAM family and in 
the whole NAM population as if it was an unstructured 
population. In these four optimization situations (OT1, 
OT2, OT3 and OT4) we considered that phenotypes are 
not available when CDpop (or CDpop_mean) is computed 
and therefore set � to an arbitrary value of 1, correspond-
ing to an intermediate heritability of 0.5. The maximal size 
of the calibration sets considered here (200–500 depend-
ing on the scenario) were constrained by the size of the 
dataset.

To sample calibration sets maximizing CDpop, CDall-
NAM or CDpop_mean, we used a simple exchange algo-
rithm as in Rincent et al. (2012). At each step the random 
exchange of one individual between the calibration set 
and the set of individuals excluded from the calibration 
set was accepted if the criterion was improved, and was 
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rejected otherwise. More complex algorithms did not give 
significantly better results and needed more iterations to 
converge. They were therefore not retained for further 
investigations. All scripts were written in R 2.14.0, the 
script to compute and optimize CDpop is available as sup-
plementary information.

Genetic properties of optimized calibration sets

To understand how the individuals selected to be part of 
the calibration set relate to the other individuals we used a 
network visualization of the genomic relationship matrix. 
We represented the individuals in a network, in which 2 
individuals are linked when their relationship coefficient 
(Kij) is higher than a given threshold (0.2 for OT1 and OT3, 
0.4 for OT2 and OT4), unlinked otherwise (Rozenfeld et al. 
2008; Thomas et al. 2012). For this, the genomic relation-
ship matrix was transformed in a matrix of Boolean indicat-
ing if the coefficients were above the threshold or not. The 
networks were drawn with a Fruchterman and Reingold’s 
force-directed placement algorithm (Fruchterman and Rein-
gold 1991) with the package “network” in R 2.14.0.

Results

Using CD to estimate prediction reliability 
in multiparental populations

Highly variable observed accuracies were obtained in the 
S1 scenario (one NAM family predicted by each of the 
other NAM families) (Tables S1–S6). Average accuracies 
for the Dent and Flint NAM were of 0.40 and 0.31 for AD, 
0.22 and 0.28 for DMY, 0.37 and 0.25 for PH, respectively. 
Depending on the trait and on the families observed, accura-
cies ranged from −0.55 to 0.82 in the Dent NAM and from 
−0.36 to 0.87 in the Flint NAM. The direction of prediction 
also influenced accuracy, for example, for AD the accuracy 
was of 0.52 when UH250 family predicted B73 family and 
of 0.24 when B73 family predicted UH250 family. These 
results are consistent with those presented in Lehermeier 
et al. (2014) (taking into account the fact that correlations 
were not divided by square root of heritability in their study).

In this S1 scenario, expected accuracy (CDpop) was also 
variable between families and traits (Tables 1, S7–S11). For 
example, in the Dent NAM families for AD, it ranged from 
0.24 (UH304 family predicted by EC169 family) to 0.71 
(D06 family predicted by D09 family), with an average value 
of 0.37.

The correlation between the expected accuracy (CDpop) 
and the observed accuracy was variable between traits and 
NAM populations (Fig. 1; Tables S12–S13). In both NAM 
populations, this correlation was higher for DMY (0.50 Ta
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and 0.57 in the Dent and Flint NAM, respectively), than 
for AD (0.44 and 0.42) and PH (0.42 and 0.38). The aver-
aged regression line of expected versus observed accuracies 
was close to the diagonal for both populations and all traits, 
except for DMY in the Dent NAM and AD in the Flint NAM 
(dotted line on Fig. 1). The correlation between observed 
and expected accuracy was variable between families. For 
example, for AD in the Flint NAM, correlation between 
CDpop and observed accuracy ranged from −0.03 (UH009) 
to 0.72 (F2). However, this correlation was positive for most 
families.

In the S2 scenario, in which nine of the ten families are 
used to predict the last one, observed accuracies (Table 2) 
were on average higher for AD (0.64 in the Dent population, 
and 0.61 in the Flint population), than for PH (0.60 and 0.55) 
and DMY (0.51 and 0.56). The accuracies were variable 
between crosses and traits. They ranged from −0.06 (DMY) 
to 0.85 (AD) in the Dent population (Table 2), and from 
0.25 (PH) to 0.88 (AD) in the Flint population (Table 2). 
Expected accuracies (CDpop) overestimated the observed 
accuracies in 70 and 60% of the cases in the Dent and Flint 
families, respectively (Table  2). Correlations between 

Fig. 1  Expected (CDpop) and observed accuracies for scenario S1 
(one NAM family is predicted by another NAM family) for the Dent 
(a) and the Flint (b) families, for AD (A1 and B1), DMY (A2 and 
B2) and PH (A3 and B3). The regression of observed again expected 

accuracy is represented by a line for each predicted family. The bold 
black line is the diagonal, and the dotted bold black line is the aver-
age of the 10 regressions
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expected and observed accuracies were variable between 
traits and NAM populations. It varied between 0.23 (AD) 
and 0.59 (PH) for the Dent NAM, and between 0.29 (DMY) 
and 0.61 (AD) for the Flint NAM.

In the S3 scenario when each of the 10 NAM families is 
predicted by the panel of the same heterotic group, observed 
accuracies varied according to the trait and the NAM family 
considered (Tables S14–S15). For the two heterotic groups, 
observed accuracies were higher for AD. When considering 
the NAM families as a single population, prediction accu-
racies based on the corresponding panel were medium to 
high and varied between 0.43 and 0.72. However, predic-
tion accuracies within family were much lower on average 
over the ten families (between 0.06 for DMY in the Dent 
population and 0.41 for AD and PH in the Flint population) 
and varied a lot from one family to the other (for example, 
from −0.23 to 0.34 for DMY in the Dent population). Within 
family accuracies were particularly low for the Dent heter-
otic group. Expected accuracy predicted by CD criteria were 
low (Tables S14–S15) and much lower than those reported 
in scenarios S1 and S2, when calibrations are based on 
NAM families. Expected accuracies usually overestimated 
observed accuracies when considering as test set either all 
NAM families (CDallNAM) or individual NAM families 
(CDpop). Correlations between observed and expected accu-
racies were small and varied between 0.12 for DMY in the 
Flint population and 0.45 for PH in the Dent population. 
They were close to zero or even negative when considering 
only within NAM family accuracies (the correlation varied 
between −0.32 for PH in the Flint population and 0.17 for 
PH in the Dent population). So CDpop appears inefficient to 
predict differences in within family accuracies when calibra-
tions are based on panels, beyond the fact that there were all 
expected to be small.

Using generalized CD to optimize calibration set 
in structured populations

In the OT1 optimization, there was as expected a clear trend 
for the observed prediction accuracy to increase with the 
calibration set size for all traits in both populations (Fig. 2) 
except family UH304 for DMY (Fig. S1). For this family, 
accuracies for DMY were close to zero or even negative 
for all calibration set sizes and all sampling approaches. 
The particular behavior of this family was pointed out in 
Lehermeier et al. (2014, 2015). The accuracies obtained for 
the different families were highly variable, with families 
accurately predicted (for example, family D06 for AD in 
the Dent population), or poorly predicted even for calibration 
sets composed of 500 individuals (for example, EC169 for 
AD in the Dent population).

On average over the ten families in both Dent and Flint 
NAM populations, the calibration set optimized with CDpop 

always performed better than Crit_Kin and the random sam-
ples. Calibration set sampled with Crit_Kin was similar to or 
worse than random sampling. The ranking of the sampling 
approaches varied between predicted families, with CDpop 
doing as good as or better than random sampling for at least 
7 of the 10 families in the Dent population, and 9 of the 10 
families in the Flint population.

The PCoA and network visualizations of the NAM pop-
ulation (Dent population in Fig. 3) illustrate the different 
trends of the sampling algorithms for scenario OT1. Crit_
Kin tended to sample individuals related to the predicted 
family and also related to each other. The individuals sam-
pled by CDpop were also related with the predicted family, 
but relatedness was lower within the calibration set, allowing 
more distant individuals to be sampled (Fig. 3).

In the OT2 scenario in which individuals from the panel 
are sampled to best predict a given NAM family, the accu-
racies of prediction increased with the calibration set size 
especially when calibration sets are sampled at random 
(Fig. 4) but prediction accuracies remained low whatever 
the calibration set size considered. On average over the ten 
NAM families, optimization of the calibration set either 
using CDpop or Crit_Kin improved the accuracy of pre-
diction compared to using random samples of the panel 
as calibration set in almost all cases. However, contrary 
to what was observed in the optimizations OT1, CDpop 
did not outperform Crit_Kin,. This is consistent with both 
methods sampling almost the same individuals in the panel 
(differences between selected calibration samples were only 
noticeable for very small calibration set sizes, Fig. 5). Pre-
diction accuracies with calibration sets optimized either with 
Crit_Kin or CDpop were almost stable for calibration set 
sizes over 50 individuals, especially in the Dent group.

In the OT3 optimizations, in which NAM individuals 
are sampled in all NAM families to predict all families, all 
sampling strategies resulted in similar trends. The average 
over the 10 families of observed accuracy increased with 
calibration set size (Figs. 6, S2). Within family prediction 
accuracies were higher in OT3 than in OT2, where individu-
als in calibration were not sampled in the predicted family. 
Observed accuracies were lower for within family predic-
tions than for the global prediction of the whole population. 
Random sampling resulted most of the time in the worst 
predictions. The best calibration set was always sampled 
using a criterion derived from CD (CDallNAM or CDpop_
mean). As expected, CDpop_mean tended to produce better 
predictions within families, whereas CDallNAM was more 
efficient for global predictions (simultaneously in all families 
as if it was a single unstructured population). Crit_Strat also 
increased accuracy in comparison to random sampling, but 
Crit_Strat_size performed similarly to random sampling.

In the OT4 optimizations (Figs.  7, S3), when the 
objective is to predict jointly all NAM families using 
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panels, we observed that all optimization methods out-
performed the “random” selection strategy. Prediction 
accuracies were higher when the objective was to predict 
values of the NAM population as a whole rather than to 
predict within family performances. Differences between 

optimization strategies were small. When the objective 
was to predict jointly all NAM families, optimization 
based on CDallNAM gave on average slightly better 
predictions than optimizations based on CDpop_mean. 
When the objective was to predict values within each of 

Fig. 2  Observed accuracy (scenario OT1) obtained with the differ-
ent calibration sets, for the different traits (A1 and B1: AD, A2 and 
B2: DMY, A3 and B3: PH) in the two NAM populations (a Dent, b 
Flint). The accuracies were averaged over the 10 families. In OT1 the 

calibration set is sampled among nine families to predict one NAM 
family. The intervals indicated for the random samples correspond to 
an interval of two standard deviations (computed as the average of the 
standard deviations of the 10 families)
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the NAM families, CDpop_mean gave on average slightly 
better predictions.

Discussion

CD criteria could partly explain prediction reliability 
in multiparental populations

In traditional plant breeding programs, candidates are often 
evaluated in the same trial network and the accuracy of the 
estimation of their genetic merit based on performances is 
generally identical. On the contrary, in animal breeding, the 
accuracy of the breeding value predictions can vary a lot 
from one individual to the other, taking values close to 0 
to values close to 1 (depending on the number of relatives 
that have been phenotyped). In this case, selection is based 
on the predicted breeding value of candidates but also on 
the accuracy of these predictions. Considering prediction 
accuracy at the level of individuals is especially important 
in genomic selection of both animals and plants, since pre-
dictions can be made for any genotyped individual, and the 
reliability of the predictions can vary a lot depending on the 
relatedness between the candidates and the individuals used 
for calibration. The criterion used to estimate the accuracy 
depends on the selection objective. For instance in plants, 
selected populations are structured in biparental populations. 
The main objective of the breeders is often to identify the 
best individuals within each biparental population. We there-
fore evaluated different criteria to estimate prediction accu-
racy in such types of structured populations. In particular 

we adapted the CDmean criterion (Rincent et al. 2012) to 
these situations by considering the contrast between each 
individual of the predicted family and the average of its fam-
ily (CDpop).

In the S1 and S2 prediction scenarios (S1: one NAM fam-
ily predicted by another NAM family, or S2: by all the other 
NAM families), the expected accuracy of the predictions 
estimated with CDpop was variable between traits and fami-
lies (Tables 1, S7–S11). In the S1 scenario, CDpop tended 
to be (as expected, and in accordance with the observed 
accuracies) higher for larger calibration families (D06, D09, 
F618 for the Dent, F03802 and F283 for the Flint), and when 
calibration and predicted family are highly related (for exam-
ple, D06 and D09 for the Dent, UH006 and UH009 for the 
Flint). The size of the calibration set and its relatedness to 
the predicted set are known to be key parameters influencing 
observed prediction accuracy (Habier et al. 2010; Albrecht 
et al. 2011; Pszczola et al. 2012). In the S1 scenario, CDpop 
was able to partly predict the variation of observed predic-
tion accuracies, with correlations between expected (CDpop) 
and observed accuracy averaged over the ten families rang-
ing from 0.42 to 0.57 (Tables S12–S13). These levels of 
correlations are encouraging when considering the average 
over the ten families. But correlations between expected and 
observed accuracies were highly variable from one target 
family to another (Fig. 1; Tables S12–S13) and sometimes 
negative. This means that the efficiency of CDpop to esti-
mate the levels of prediction accuracies highly depends on 
the families considered. In the S2 scenario, CDpop could 
also partly explain the variability of the prediction accura-
cies (average correlations between 0.23 and 0.61, Table 2). 

Fig. 3  Principal coordinates analysis and network representation of 
the Dent NAM design. The calibration sets of size 100 obtained by 
maximizing CDpop or Crit_Kin are represented by green triangles 

and orange squares, respectively. The family to predict is represented 
by red dots (color figure online)



 Theor Appl Genet

1 3

But again these correlations were quite variable between 
traits and the two NAM populations, and CDpop often over-
estimated the observed accuracies. This means that CDpop 
is helpful to identify which families can be efficiently or 
poorly predicted, but is not very precise to evaluate the abso-
lute level of accuracies.

In the case where panels were used to predict NAM 
families (S3 scenario), we observed small accuracies of 
prediction for all individual NAM families and a higher 
one when considering the NAM families as a single popu-
lation (Tables S14–S15). The higher prediction accuracies 
obtained when considering globally the NAM populations 

Fig. 4  Observed accuracy 
(scenario OT2) obtained with 
the different calibration sets, 
for the different traits (A1 and 
B1: AD, A2 and B2: DMY, A3 
and B3: PH) in the two NAM 
populations (a Dent, b Flint). 
The accuracies were averaged 
over the 10 families. In OT2 
the calibration set is sampled 
from the highly diverse panels 
to predict one NAM family. The 
intervals indicated for the ran-
dom samples correspond to an 
interval of two standard devia-
tions (computed as the average 
of the standard deviations of the 
10 families)



Theor Appl Genet 

1 3

rather than within family predictions illustrate (i) the good 
ability of GS models to predict the average performance of 
a biparental family when the parental inbred lines and/or 
close relatives are included in the calibration set (as it is 
the case here) and (ii) that it is more difficult to predict the 
value of individuals within families (i.e., the variation due 

to mendelian sampling). The CD criterion was efficient 
to predict that within family accuracies (CDpop) would 
be lower than global accuracy (CDallNAM). In the S3 
scenario, the observed accuracies were variable from one 
NAM family to the other as in S2 but this variation was not 
correlated with the variation of the CDpop criterion. This 

Fig. 5  Sampling of calibration sets from the dent panel to predict 
one dent NAM family. The calibration sets of size 10 (a) and 50 
(b) obtained by maximizing CDpop or Crit_Kin are represented by 
green triangles and orange squares, respectively. The family to pre-
dict is represented by red dots. The other NAM families and the lines 

included in the panel are represented by gray and white dots, respec-
tively. The network connects lines that have a kinship >0.4. Only few 
lines from the panel are connected to each NAM family (color figure 
online)

Fig. 6  Observed accuracies obtained in scenario OT3 for PH in the 
Flint population for calibration set sizes of 50, 150, 300 and 500 indi-
viduals. In OT3 the calibration set is sampled among all families to 

predict all families simultaneously. Accuracies are then computed 
for intra-family predictions (a, average over the 10 families) and for 
global predictions as if it was an unstructured population (b)



 Theor Appl Genet

1 3

means that for situations with low prediction accuracies 
(between 0.06 and 0.41) it was not possible to predict the 
differences of accuracies between families.

One thing that probably limits the adequacy between 
expected and observed accuracy in scenarios S1, S2 and 
S3, is that the � values were estimated with the phenotypes 
of the calibration set (which are the only phenotypes avail-
able to breeders). If the size of the calibration set is reduced, 
� will be poorly estimated and as a result CDpop could 
strongly over- or underestimate the observed accuracy. The 
other important point is that the true � values could poten-
tially be different in the calibration set and in the predicted 
family (especially in the S3 scenario when calibration is 
done in a panel and validation is done in a NAM family). 
We also have to consider that the observed accuracies were 
computed using estimates of heritability which can also be 
poorly estimated, particularly in the families of small size. 
In that case observed accuracy can deviate from the true 
(but inaccessible) accuracy, leading to artificial inadequacy 
between expected and observed accuracies. One other limit 
to the use of CD criteria in structured populations is that 
different QTL may segregate in the different populations. In 
these situations the relatedness matrix may poorly reflect the 
genetic covariance between individuals of different families, 
resulting in poor estimates of expected accuracy. This may 
explain the low correlation between observed and expected 
accuracy obtained when predicting UH304 and Mo17 (for 
DMY) families in scenario S1 (Table S12). Mo17 gives a 
poor performing hybrid when crossed to the Flint tester used 
to evaluate the Dent NAM population. This suggests that 

compared to other Dent parental inbred lines it may share 
more unfavorable alleles with the Flint. Recently Lehermeier 
et al. (2015) tested different GS models taking into account 
family structure in the Dent NAM population, including 
models assuming marker effects specific of each family. 
They did not find any advantage for most of the families 
except the UH304 families, which corroborates the hypoth-
esis of specific QTL effects. Note also that this population 
results from the cross between the two closest parents (as 
illustrated by its central position in Fig. S4).

Calibration sets can be optimized to make predictions 
in structured populations

The CDmean criterion (Rincent et al. 2012) has proven effi-
cient in sampling optimal calibration sets in highly diverse 
populations (Cros et al. 2015; Tayeh et al. 2015). We tested 
here the efficiency of CDpop for optimizing the composi-
tion of the calibration set in the context of highly structured 
populations. This criterion takes into account the structura-
tion in subpopulations by considering adapted contrasts. In 
scenarios OT1 and OT2, when looking at prediction accu-
racies averaged over the ten NAM families, CDpop always 
resulted (for all traits and all calibration set sizes) in higher 
accuracies than random sampling (Figs. 2, 4). For exam-
ple, for PH in the Flint NAM with calibration sets of 50 
individuals in scenario OT1, the average accuracy obtained 
with calibration sets sampled with CDpop was 0.43, and 
only 0.27 for random samples (Fig. 2). It was also superior 
to the sampling based on kinship (Crit_Kin) for scenario 

Fig. 7  Observed accuracies obtained in scenario OT4 for PH in the 
Flint population. In OT4 the calibration set is sampled in the highly 
diverse panel to predict all NAM families simultaneously. Accura-
cies are then computed for intra-family predictions (a) and for global 

predictions as if it was an unstructured population (b). The intervals 
indicated for the random samples correspond to an interval of two 
standard deviations (computed as the average of the standard devia-
tions of the 10 families for graph A)



Theor Appl Genet 

1 3

OT1 and similar for scenario OT2. The different sampling 
strategies performed similarly for the largest calibration 
set size (500) in scenario OT1, probably because in this 
situation the overlap between the calibration sets was very 
important (as revealed by the small variability of accura-
cies obtained with the random samples). The accuracies 
obtained for individual families were quite variable, but 
CDpop outperformed random sampling on average over 
the families in all the situations considered. In scenario 
OT1, accuracies obtained with calibration sets maximizing 
relatedness with the predicted family performed poorly, and 
most of the time did worse than random sampling. This may 
be because the individuals composing these calibration sets 
could have important levels of relatedness between them 
(Fig. 3). This trend was not observed in optimizations OT2 
(Fig. 4), when calibration sets were selected in a panel, 
probably because the panels are composed of individuals 
chosen to be as unrelated to each other as possible. In this 
situation, CDpop and Crit_Kin sampled almost the same 
individuals (Fig. 5). It is interesting to note that, in this 
situation, the observed accuracies of prediction were only 
poorly improved by adding individuals to the calibration 
set (in some cases they even decreased). This suggests that 
once the NAM parental inbred lines and the few inbred lines 
related to them are included in the calibration set, there is 
little interest in adding to the calibration set less related 
individuals (see Fig. 5 for the position of selected individu-
als in the relatedness network).

In the OT3 and OT4 scenarios, we predicted the ten NAM 
families simultaneously by sampling individuals from the 
NAM families (OT3) or from the panel of the corresponding 
heterotic group (OT4), and we considered two accuracies: 
the global accuracy (as if the NAM population was homo-
geneous without any structure in subpopulations), and the 
average of the ten within family accuracies. We used two 
different criteria to maximize these two accuracies. CDall-
NAM was used with the objective of maximizing the global 
accuracy (as it was developed in the context of unstructured 
panels), and another criterion (CDpop_mean, which is the 
average of CDpop over the ten families) was used with the 
objective of maximizing the average of the ten within family 
accuracies. These two criteria derived from the CD theory 
consistently lead to the most efficient calibration sets for all 
traits in both NAM populations (Figs. 6, 7, S2, S3). CDall-
NAM was often the best sampling strategy to reach high 
global accuracy, whereas CDpop_mean was more efficient 
to reach high within family accuracies. This confirms the 
fact that it is essential to consider appropriate contrasts when 
computing criteria related to CD. This proves that different 
criteria derived from the CD theory can be defined to reach 
different objectives. But it also means that depending on 
the objective, the optimal calibration set can potentially be 
different.

How to increase the efficiency of CD criterion 
to estimate prediction accuracies and optimize 
calibration sets?

One key message of this study is that depending on the 
objective, one has to consider different contrasts to pre-
dict accuracies with criteria derived from CD. Once an 
appropriate criterion has been chosen, it can be used effi-
ciently to optimize calibration set(s) adapted to the targeted 
populations.

The size of the calibration sets considered in our optimi-
zation process (<500) are moderate in comparison to the 
datasets that are used by breeders. Considering different 
selection cycles simultaneously can indeed result in accu-
mulating information on thousands of individuals. It has 
been shown that building across cycle calibration sets could 
significantly increase prediction accuracy when the cycles 
are connected by common ancestors (Auinger et al. 2016). 
In this case both genotypic and phenotypic information is 
available to build the calibration set, and sampling criterion 
taking jointly both information into account (Rabier et al. 
2016) would be helpful. For the calibration set sizes con-
sidered in the present study (constrained to a maximum of 
500 because of the size of the dataset) we could sample the 
CD calibration sets within few seconds to few minutes, so 
computational time was not an issue. For high number of 
individuals (thousands to tens of thousands) the sampling 
of the CD calibration set may be too long. In that case faster 
sampling algorithms and other optimization criteria such as 
those proposed by Akdemir et al. (2015) or Bustos-Korts 
et al. (2016) might help reduce computational time. To our 
knowledge, however, these approaches are not adapted to 
optimize the accuracy of prediction of specific contrasts as 
done in this study. It would be therefore interesting to extend 
these approaches to the prediction of contrasts. Another pos-
sibility to reduce computational time would be to initialize 
the exchange algorithm with a relevant calibration set, for 
example, by maximizing relatedness between the calibration 
set and the test set.

Our results also revealed that criteria based on CD of 
appropriate contrasts were able to partly predict the accura-
cies obtained in different scenarios. However, we still need 
to increase the consistency between expected and observed 
accuracy to help breeders select candidates with known 
accuracies, especially when the calibration set and the pre-
dicted set are genetically distant or have different levels of 
structuration.

The criteria derived from CD all rely on the G-BLUP 
theory, and thus share its advantages and drawbacks. One 
consequence is that they are adapted to highly polygenic 
traits but would probably perform poorly for traits affected 
by few majors QTLs. This may explain why the correlation 
between expected and observed accuracy was low for AD 
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in the Dent NAM population, because this trait is influ-
enced by major QTLs (Giraud et al. 2014). In these situ-
ations other strategies have to be developed, for example, 
by considering major genes as fixed effect in the prediction 
model (Bernardo 2014) or by adapting the kinship estima-
tion using the available knowledge on the genetic archi-
tecture (Rabier et al. 2016). As shown in other studies, the 
quality of the kinship estimate is indeed a very important 
element in genomic selection (and in association map-
ping) to make reliable predictions, and here to estimate 
CD criteria. Recently, Wientjes et al. (2015) proposed to 
modify the kinship estimates to account for differences 
in allelic frequencies between the calibration set and the 
family to predict and to explicitly take into account popu-
lation structure when evaluating the expected efficiency 
of genomic predictions. This certainly deserves further 
investigation.

Another limit of the CD is that it always increases when 
individuals are added to the calibration set. This seems 
logical because adding new phenotypes also means add-
ing additional information, but it is contradictory to our 
results and many observed situations in which prediction 
accuracies remained stable or even decreased when geneti-
cally distant individuals were added to the calibration set 
(Riedelsheimer et al. 2013; Lorenz and Smith 2015). This 
contradiction between theory and practice may again be 
explained by how kinship is estimated. Other kinship 
estimators using shrinkage (Müller et al. 2015) or ker-
nels (Heslot and Jannink 2015) may be useful in this con-
text. Lehermeier et al. (2015) adapted prediction models 
to take into account genetic heterogeneity in structured 
populations and found a benefit of using them in some 
highly structured populations. Estimating CD of suitable 
contrasts with these models and evaluating their ability 
to predict observed accuracies deserve further research.
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