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We address the Steiner tree problem with revenues, budget and hop constraints (STPRBH), which is a generalization of the well-known Steiner tree problem. Given a connected undirected graph, a root node, edge costs and delays, nodes revenues, as well as a preset budget and hop, the STPRBH seeks to …nd a subtree that includes the root node, satis…es bound constraints on the total edge cost as well as the number of edges between any node and the root node, while maximizing the sum of the total node revenues. We focus on investigating polynomial-sized formulations. First, we propose an enhanced formulation based on the Miller-Tucker-Zemlin subtour constraints. Next, we investigate a nonlinear MIP formulation that is linearized using the Reformulation-Linearization Technique (RLT). We present the results of a comprehensive computational study of the proposed formulations. These result provide evidence that benchmark instances with up to 500 nodes can be e¤ectively solved using the proposed RLT-based formulation.

Introduction

Network design problems constitute an important class of combinatorial optimization problems arising in a wide variety of real-life situations. In particular, there has been an ever-increasing interest in the investigation of models and solution strategies for the Steiner Tree Problem (STP) which is de…ned formally as follows : Given a connected, undirected graph G = (V; E), where V is the node set and E is the edge set, with nonnegative weight c e associated with each edge e 2 E: The node set V is partitioned into two subsets S and T . The STP seeks a minimum-weight subtree of G that spans the subset T of terminal nodes, optionally using the subset T of Steiner nodes. The STP has numerous relevant applications arising in the design of …ber-optic, local access networks, cable television, to quote just a few. In this paper, we investigate an important variant of the STP that is referred to as the Steiner Tree Problem with Revenues, Budget and Hop constraints (STPRBH).Formally, the STPRBH is de…ned as follows.

Let G = (V; E) be an undirected graph with a vertex set V = f0; ::::; ng where vertex 0 is the root vertex and an edge set E. Each vertex i, i 2 V = V nf0g has an associated revenue p i 0 and each edge e; e 2 E has an associated cost c e 0, a preset budget Q and a hop h which presented the maximum number of edges between any vertex and the root vertex in any feasible solution. A feasible STPRBH solution is a tree T (S) = (S; E(S)) that spans a node subset S V such that: (i ) 0 2 S, (ii )

P e2E(S)
c e Q, and (iii) Hop constraints are respected. These constraints enforce that the path connecting the root vertex to any vertex j, i 2 V ; should not include more than h arcs, where h is a preset parameter. The STPRBH requires …nding a feasible tree that maximizes the sum of the nodes revenues covered by the tree.

To the best of our knowledge, the Steiner Tree problem with Revenue, Budget and Hop constraints (STPRBH) has been addressed in the paper of Costa et al. [START_REF] Costa | Fast heuristics for the Steiner tree problem with revenues, budget and hop constraints[END_REF], where the authors described three heuristics to resolve this problem. They use a greedy approach improved by a destroy-and-repair method and a tabu search algorithm. In 2009, Costa et al. [START_REF] Costa | Models and branch-andcut algorithms for the Steiner tree problem with revenues, budget and hop constraints[END_REF] have presented also four mathematical fomulations for the STPRBH, and have proposed several branchand-cut based procedures. Recently, Snill [START_REF] Snill | Branch-and-Price for the Steiner Tree Problem with Revenues,Budget and Hop Constraints, Thesis for Engineering Degree in[END_REF] presented several MIP formulations with an exponential number of variables. In order to solve the STPRBH to optimality, he developed branch-and-price approaches. Also, he presented the results of an empirical comparison of the branch-and-price approaches and exact methods based on branch-and-cut.

In this paper, we propose new compact formulations for the STPRBH (that is having a polynomial number of variables and constraints), and we present the results of an extensive computational study that provides evidence that these formulations can be e¤ectively solved using a general-purpose MIP solver.

The remainder of this paper is organized as follows In Section 2, we begin by presenting two variants of Miller, Tucker, and Zemlin-based formulations. In Sections 3, we develop a Reformulation Linearization Technique-based formulation. The LP relaxations of the proposed compact formulations are analyzed and compared in Section 4. In Section 5, we present and analyze the results of a computational study using a large set of benchmark instances. Finally, some concluding remarks are provided in Section 6.

In the following, we shall consider the bidirected graph G 0 = (V; A) that is obtained from the genuine undirected graph G by replacing each edge e = fi; jg 2 E with two directed arcs (i; j) and (j; i) (with corresponding weights c ij = c ji = c e ). The root node 0 has an in-degree equal to zero.

MTZ-based formulations

A …rst formulation is based upon the following decision variables:

x ij ; (i; j) 2 A a binary variable that takes the value 1 if arc (i; j) belongs to the arborescence, and 0 otherwise. y j ; j 2 V a binary variable that takes the value 1 if the node j belongs to the arborescence, and 0 otherwise. u j ; j 2 V a nonnegative variable presenting the number of arcs in the dipath induced by the incidence vector x that connects the root node to the node j , j 2 V .

Using these variables, a …rst formulation of the STPRBH can be stated as follows:

STPRBH: Maximize P i2V p i y i (1) 
subject to:

y 0 = 1; (2) 
X (i;j)2A c ij x ij Q; (3) 
X i:(i;j)2A x ij = y j ; 8j 2 V ; (4) 
x jk y j ; 8j 2 V ; (j; k) 2 A;

(5)

(n + 1)x ij + u i u j n; 8(i; j) 2 A; (6) 0 u j h; 8j 2 V; (7) 
x ij 2 f0; 1g;

8(i; j) 2 A; (8) y j 2 f0; 1g; 8j 2 V : (9) 
The STPRBH seeks to maximize the collected revenues while respecting the budget and hop constraints. Constraint (2) forces the presence of the root vertex in the solution, Constraint (3) is the budget constraint which forces the total network cost to not exceed the budget Q, constraints (5) are included to to enforce connectivity. Constraints ( 6) and ( 7) refers to the Subtour-Elimination Constraints (SEC) and Constraint [START_REF] Haouari | Tight Compact Models and Comparative Analysis for the Prize Collecting Steiner Tree Problem[END_REF] guarantee that the largest potential in the solution does not exceed h.

In fact, the MTZ constraints was originally introduced by Miller Tucker and Zemlin in 1960 [START_REF] Miller | Integer programming formulations and traveling salesman problems[END_REF] in the context of the traveling salesman problem (noted TSP) which is a reference problem in combinatorial optimization. To present the MTZ constraints, we introduced a vector of new non negative variables u (u j ) j2V which is de…ned as : if x ij = 1 then u i + 1 u j 8(i; j) 2 A:

In 1960, Miller, Tucker and Zemlin were the …rst to write these constraints with linear programming. These constraints are noted MTZ constraints and was written as follows:

u i u j + 1 M ij (1 x ij ); 8(i; j) 2 A: (10) 
For each arc (i; j); (i; j) 2 A, M ij is a great number, Generally, M ij is set to the value n; 8(i; j) 2 A:

While most studies about MTZ constraints focus on the TSP, in 1995, Gouveia [START_REF] Gouveia | Using the Miller-Tucker-Zemlin constraints to formulate minimal spanning trees with hop constraints[END_REF] was the …rst to adapt the classical MTZ constraints to a tree optimization problem which is the minimum spanning tree problem with hop constraints (HMST). Recently, Akgün [START_REF] Akgün | New formulations for the hop-constrained minimum spanning tree problem via Sherali and Driscoll's tightened Miller-Tucker-Zemlin constraints[END_REF] has proposed new enhanced compact formulations for the (HMST). Additionally, Voß [START_REF] Voß | The Steiner tree problem with hop constraints[END_REF] adapted the MTZ constraints to the Steiner tree problem with hop constraints.

Let's denote the STPRBH formulation as the formulation MTZ.

Proposition 1 Formulation MTZ is valid for the STPRBH P roof. Let's consider a tree of the initial graph G 0 corresponding to a feasible solution of the STPRBH according to the generic model (1) [START_REF] Koch | Steinlib[END_REF]. We de…ne the value of each variable u j ; j 2 V ; by the number of edges in the path from the root node 0 to node j: Let's …x u 0 = 0: For each vertex j; j 2 V ; the corresponding u j value can not exceed the hop parameter h and is at least = 0 which corresponds to the Constraints (7): To deduce constraint (6); we note that if x ij = 1 then u j u i + 1: Thus, it is indeed a feasible solution for MTZ formulation for the STPRBH.

Otherwise, We consider a feasible solution (x; y; u) to the MTZ formulation for the STPRBH. In the one hand, Constraints (5) ensure that if a vertex j; j 2 V belongs to the feasible solution, it has a unique incoming arc. In the other hand, for each arc (i; j); (i; j) 2 A; if x ij = 1; then y i = y j = 1: So, Constraints (6) implies that u j u i + 1. By adding Constraints (6) for all arcs included in a given subtour, we obtain u i < u i for each vertex i covered by the subtour, which is absurd. Thus, we conclude that any feasible solution of the model MTZ can not contain any subtour. So, the solution (x; y; u) corresponds to a feasible tree STPRBH according to the generic model (1) (9):

A lifted MTZ-based formulation

To develop a lifted MTZ Constraints for the STPBRH, we have been inspired by the work of Desrochers and Laporte [START_REF] Desrochers | Improvements and extensions to the Miller-Tucker-Zemlin subtour elimination constraints[END_REF]. To this purpose, we de…ne j as the value of the minimum number of arcs between the root node and a node j; 8j 2 V:

(h + 1 j )x ij + u i u j + (h 1 j )x ji hy i j y j ; 8(i; j) 2 A; (11) 
We propose to tighten Constraints (7) as follows:

X j2 (i) max( i ; j + 1)x ji u i hy i x ik ; 8i 2 V ; 8k 2 + (i) (12) 
So, a new compact formulation for STPRBH is given as follows:

MTZ-L : Maximize P i2V p i y i : ( 2)-( 4), ( 8)-( 9), and ( 11)-( 12)

Proposition 2 Constraints ( 12) are valid subtour-elimination constraints.

P roof. First, we observe that: (i) x ij + x ji 1; 8(i; j) 2 A; and (ii) j u j h; 8j 2 V ; are trivially valid. Also, we set u j = 0; if y j = 0; 8j 2 V . Thus, we have:

j y j u j hy j ; 8j 2 V : (13) 
Consequently, if x ij = x ji = 0 then Constraints [START_REF] Miller | Integer programming formulations and traveling salesman problems[END_REF] are valid due to Constraints [START_REF] Snill | Branch-and-Price for the Steiner Tree Problem with Revenues,Budget and Hop Constraints, Thesis for Engineering Degree in[END_REF]. Next, suppose that x ij = 1, we have y i = y j = 1 and x ji = 0. Hence, Constraints (11) becomes u j u i + 1 which are a valid restriction. Finally, suppose that x ji = 1: Hence, we have y i = y j = 1, and x ij = 0. In this case, Constraints (13) become u i u j + 1. Also, by considering the symmetric inequality that is de…ned for arc (j; i); we get u i u j + 1. Thus, we deduce that u i = u j + 1; which is valid.

RLT-based formulation

The Reformulation-Linearization Technique (RLT) was introduced by Sherali and Adams [START_REF] Sherali | A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems[END_REF]. It is a generic strategy for constructing tight polyhedral relaxations of the feasible set of 0-1 mixed integer linear programs. This technique can also be used in a more general context such as the 0-1 polynomial programming problems.

In this section, we use this technique to derive an enhanced formulation for the STPRBH. To begin with, we express the subtour elimination constraints through nonlinear constraints as stated below:

u j x ij = (u i + 1)x ij ; 8(i; j) 2 A; i 2 V ; j 2 V ; (14) 
u j x 0j = x 0j ; 8j 2 + (0); (15) 
j u j h; 8j 2 V : (16) 
Note that if y j = 0, then u j can take any value from [ j ; h]; and if x ij = 1 for any arc (i; j) 2 A; then u j = u i + 1:

Reformulation phase

(i ) Using Constraints (4), we construct the following equalities:

2 4 X i2 (j) x ij = y j 3 5 u j ; 8j 2 V : (17) 
(ii ) Clearly, the inequality x 0j y j holds for each node j 2 + (0): Thus, we derive the following valid nonlinear inequalities (18) clearly valid if y j x 0j = 0; and otherwise, if y j x 0j = 1; then we must have u j 2:

(y j x 0j ) (u j 2) 0; 8j 2 + (0): (18) 
(iii ) Likewise, since the inequality u j h is valid for any node j 2 V ; then

(y j x 0j ) (h u j ) 0; 8j 2 + (0): (19) 
(iv ) In light of Constraints ( 18) and ( 19), we derive from Constraints (16) the following valid inequality:

[ j u j h] y j ; 8j 2 V n + (0): (20) 
(v ) Using conditional logic with (16), as for (18) above, and noting that x ij = 1 implies that u j maxf i + 1; j g and x ji = 1 implies that u j h 1, the following inequalities are valid:

(u j maxf i + 1; j g) x ij 0; 8(i; j) 2 A; j 2 V ; (21) 
(h 1 u j ) x ji 0; 8(j; i) 2 A; j 2 V : (22) 
(vi ) From the other restrictions in (16), we derive the valid inequalities stated below:

(h u j )x ij 0; 8(i; j) 2 A; j 2 V ; (23) 
(u j j )x ji 0; 8(j; i) 2 A; j 2 V : (24) 
(vii ) The product of the two-node subtour-elimination constraints x ij +x ji y j ; 8 f(i; j); (j; i)g A; j 2 V ; by the upper and lower bounding conditions in (16), respectively yield:

(y j x ij x ji ) (u j j ) 0; 8 f(i; j); (j; i)g A; j 2 V ; (25) 
(y j x ij x ji ) (h u j ) 0; 8 f(i; j); (j; i)g A; j 2 V : (26) 
Obviously several other valid RLT inequalities could be generated for the STPRBH. However, we choose a useful restricted set, being aware to the fact that every nonlinear term created in the reformulation phase should lead to a new variable in the following linearization phase.

Linearization phase

We introduce two new classes of RLT variables t (t ij ) (i;j)2A;i2V and v (v j ) j2V to linearize Constraints (17)-(26) by using the substitutions

t ij = u i x ij ; 8(i; j) 2 A; i 2 V ; and v j = u j y j ; 8j 2 V : (27) 
Furthermore, since (15) holds, we can replace

u j x 0j by x 0j ; 8j 2 V : (28) 
Likewise using (16), we derive the following identities for linearizing the terms u j x ij 8(i; j) 2 A; j 2 V :

u j x ij = t ij + x ij ; (i; j) 2 A; i 2 V : (29) 
The foregoing RLT process of substituting ( 27)-( 29) into ( 17)-( 26) hence yields the formulation RLT stated below:

RLT : Maximize P i2V p i y i (30) 
subject to 

y 0 = 1; (31) X (i;j)2E c ij x ij Q; (32) 
X i:(i;j)2A x ij = y j ; 8j 2 V ; (33) X i2 (j) x ij + X i2 (j);i6 =0 t ij = v j ; 8j 2 V ; (34) 
2y j x 0j v j hy j (h 1)x 0j ; 8j 2 + (0); (35) j y j v j hy j ; 8j 2 V n + (0); (36) 
(maxf i + 1; j g 1)x ij t ij (h 1)x ij ; 8(i; j) 2 A; j 2 V ; (37) 

Comparison of the LP relaxations

Developing di¤erent compact formulations leads us to wonder about the performance of these formulations. It should be mentioned that Polzin and Daneshmand [START_REF] Polzin | A comparison of Steiner tree relaxations[END_REF] proposed a complete study on the comparison of Steiner tree relaxations. Haouari et.al [START_REF] Haouari | Tight Compact Models and Comparative Analysis for the Prize Collecting Steiner Tree Problem[END_REF] have exposed a comparative study for the LP relaxation of the Price Collecting Steiner Tree Problem. Before moving to an empirical comparison of the STPRBH LP relaxations, we present some theoretical comparative results.

Let's denote by Z LP (F ) the value of the optimal solution of the linear relaxation of formulation F . P roof. For the instance B1 (Table 2), we …nd Z LP (M T Z L) = 365:712 > Z LP (RLT ) = 298:355:

The LP relaxation hierarchy is summarized in Figure 1. In this …gure, the relationship between the three proposed formulations is described as follows : an arc between two boxes means that the LP relaxation of the formulation in the upper box is strictly stronger than that in the lower box. Evidently, the relation "strictly strongly" is transitive.

Insert Figure1 here 5 Computational results

A commercial MIP solver (CPLEX 12.1) and an Intel Core 2 Duo computer processor with 3.0 GB RAM were used to evaluate the empirical performance of the proposed formulations. We set the maximum CPU time limit to 6000 seconds. We have tested the performance of the proposed formulations on the STP instances of Classes B and C obtained from SteinLib and the quota values considered are Q = s=10 and s=30. Thus, the 128 instances are obtained with di¤erent numbers of vertices and edges ranging from 50 to 500 nodes and 63 up to 625 edges. We start by comparing the LP relaxations of the three proposed formulations. The results obtained are displayed in Tables 12345678.

In these tables, the column headings are as follows: Inst: name of the instance from [START_REF] Koch | Steinlib[END_REF]; n: number of nodes; m: number of edges; %Gap_ min = 100 U B U B min

U B min

; where U B refers to the value of the LP relaxation bound; U B min refers to the value of the best upper bound across all the LP relaxations; and T ime : CPU time required to solve the corresponding LP relaxations (in seconds).

Insert Table 1 here Insert Table 2 here Insert Table 3 here Insert Table 4 here Insert Table 5 here Insert Table 6 here Reading results of the Class B, we see from theses tables that the RLT formulation outperformed MTZ-based formulations. Indeed, its LP relaxation yielded a zero gap. Moreover, we observe that lifted variant MTZ-L, and the RLT exhibited very similar performances. Not surprisingly, we see that the gaps provided by the MTZ formulation reached up to over than 48%. Interestingly, we observe that all the LP relaxations of the MTZ-based formulations required very short CPU times.

In addition to the Class B test problems, we also considered Class C that include large instances. The results obtained for these test cases in Class C are reported in Tables below. Insert Table 7 here Insert Table 8 here

We observe from theses tables that the RLT formulation outperformed the two other formulations with a short average CPU time and a zero gap.

We next assess the performance of the proposed formulations to solving STPRBH to optimality by using CPLEX 12.1 with its default parameter settings. The obtained results are reported in Tables 9101112131415.

Insert Table 9 here Insert Table 10 here Insert Table 11 here Insert Table 12 here Insert Table 13here Insert Table 14 here Insert Table 15 here Observing theses tables, we conclude that the RLT formulation and MTZ-L formulation e¢ciently solve all the instances of Class C with a short average CPU time. Although, basic MTZ formulation could not solve to optimality several instances from Class C.

Summary and conclusion

In this paper, we addressed the Steiner Tree Problem with Revenues, Budget and Hop constraints.We proposed three compact MIP formulations, two of which are based on the classical work of Miller, Tucker, and Zemlin [START_REF] Miller | Integer programming formulations and traveling salesman problems[END_REF], and a new formulation by using the Reformulation-Linearization Technique. A comprehensive experimental study was conducted to analyze the performance of these formulations in terms of exact and approximate solution using a large set of benchmark instances from the literature. An analysis of the performance of the LP relaxations revealed that lifted variant MTZ-L, and the RLT exhibited an excellent performance. Also, computational results for solving the instances to optimality using a commercial software package (CPLEX 12.1) demonstrated that formulations MTZ-L and the RLT consistently solved to optimality all 500-node instances within a few seconds. 

Inst

Proposition 3 Z

 3 LP (M T Z) Z LP (M T Z L). Moreover, there exist instances for which Z LP (M T Z) > Z LP (M T Z L). P roof. The proof is obvious. For the instance B1 (Table 2), we …nd Z LP (M T Z) = 405:738 > Z LP (M T Z L) = 365:712: Proposition 4 Z LP (M T Z L) Z LP (RLT ). Moreover, there exist instances for which Z LP (M T Z L) > Z LP (RLT ).

  [START_REF] Koch | Steinlib[END_REF], and adapted by Costa et al. ([START_REF] Costa | Fast heuristics for the Steiner tree problem with revenues, budget and hop constraints[END_REF],[START_REF] Costa | Models and branch-andcut algorithms for the Steiner tree problem with revenues, budget and hop constraints[END_REF]) as follows. The terminal vertices (of the Steiner Tree Problem) were considered as pro…table vertices with revenue generated randomly from the discrete uniform distribution U [1; 100]. The Steiner vertices (of the Steiner Tree Problem) were assigned a zero revenue. These instances tend to be very sparse undirected graphs. For the Class B, we consider three values for the hop limit h = 3; 6; and 9 and two values for the budget Q = s=5 and s=10, where s = P e2E c e . Concerning the class C, the hop limit values used are h = 5 and 15

Table 9 :

 9 Detailed performance for the MTZ based formulations for the class B test problems to optimality (hop = 3, b = s/5)

		n	M		Time MTZ	Time MTZ-L	Time RLT
	B.01	50	63	222	1.099	0.003	0.004
	B.02	50	63	45	0.565	0.002	0.003
	B.03	50	63	184	0.794	0.002	0.003
	B.04	50	100	379	>6000	0.020	0.025
	B.05	50	100	652	>6000	0.011	0.015
	B.06	50	100	1035	>6000	0.022	0.026
	B.07	75	94	67	2.063	0.005	0.006
	B.08	75	94	85	2.499	0.003	0.004
	B.09	75	94	108	4.132	0.002	0.003
	B.10	75	150	488	>6000	0.009	0.027
	B.11	75	150	454	>6000	0.009	0.013
	B.12	75	150	1054	>6000	0.015	0.016
	B.13	100	125	243	3.652	0.003	0.004
	B.14	100	125	66	3.895	0.004	0.005
	B.15	100	125	265	2.344	0.003	0.005
	B.16	100	200	158	>6000	0.006	0.005
	B.17	100	200	887	>6000	0.030	0.045
	B.18	100	200	471	>6000	0.012	0.017
	Average				2.338	0.008	0.012

Table 10 :

 10 Detailed performance for the MTZ based formulations for the class B test problems to optimality (hop = 3 b = s/10)

	Inst	n	m		Time MTZ	Time MTZ-L	Time RLT
	B.01	50	63	403	0.460	0.030	0.020
	B.02	50	63	671	1.770	0.020	0.020
	B.03	50	63	894	96.778	0.016	0.015
	B.04	50	100	455	0.827	0.297	0.063
	B.05	50	100	666	0.078	0.000	0.016
	B.06	50	100	1269	2.075	0.577	0.124
	B.07	75	94	511	695.323	0.030	0.020
	B.08	75	94	581	3031.213	0.016	0.015
	B.09	75	94	1144	>6000	0.031	0.031
	B.10	75	150	702	1.455	0.312	0.298
	B.11	75	150	893	1.552	0.618	0.103
	B.12	75	150	1867	0.185	0.770	0.154
	B.13	100	125	454	>6000	0.033	0.030
	B.14	100	125	1257	>6000	0.047	0.031
	B.15	100	125	1205	>6000	0.016	0.016
	B.16	100	200	822	>6000	0.022	0.044
	B.17	100	200	1299	1.715	0.259	0.100
	B.18	100	200	2589	18.670	1.029	0.257
	Average				296.315	0.229	0.075

Table 11 :

 11 Detailed performance for the MTZ based formulations for the class B test problems to optimality (hop = 6, b = s/5)

	Inst	n	m		Time MTZ	Time MTZ-L	Time RLT
	B.01	50	63	467	0.421	0.031	0.032
	B.02	50	63	671	0.140	0.110	0.312
	B.03	50	63	1136	0.904	0.328	0.358
	B.04	50	100	455	0.125	0.141	0.125
	B.05	50	100	666	0.047	0.062	0.218
	B.06	50	100	1269	0.281	0.078	0.188
	B.07	75	94	674	0.109	0.343	0.250
	B.08	75	94	836	0.281	0.250	0.390
	B.09	75	94	1749	2.964	0.453	0.312
	B.10	75	150	702	0.124	0.624	0.312
	B.11	75	150	893	0.437	0.406	0.327
	B.12	75	150	1867	0.218	0.280	0.406
	B.13	100	125	785	0.343	0.515	0.483
	B.14	100	125	1403	0.531	0.421	0.358
	B.15	100	125	2554	1.989	0.312	0.296
	B.16	100	200	33	0.044	0.005	0.006
	B.17	100	200	1299	0.236	0.005	0.008
	B.18	100	200	67	>6000	0.008	0.022
	Average				0.540	0.242	0.244

Table 12 :

 12 Detailed performance for the MTZ based formulations for the class B test problems to optimality (hop = 6, b = s/10)

	Inst	n	M		Time MTZ	Time MTZ-L	Time RLT
	B.01	50	63	405	0.069	0.079	0.111
	B.02	50	63	498	6.628	0.995	0.513
	B.03	50	63	855	0.971	0.141	0.145
	B.04	50	100	455	0.055	0.012	0.167
	B.05	50	100	666	0.143	0.011	0.044
	B.06	50	100	1262	2.008	0.644	0.870
	B.07	75	94	618	0.969	0.438	0.485
	B.08	75	94	761	64.821	1.767	0.642
	B.09	75	94	1302	2.527	0.186	0.242
	B.10	75	150	702	1.001	0.103	0.097
	B.11	75	150	893	0.560	1.262	0.138
	B.12	75	150	1866	1.118	0.306	0.361
	B.13	100	125	743	0.156	0.179	0.107
	B.14	100	125	939	20.419	2.980	1.793
	B.15	100	125	1530	>6000	2.755	1.485
	B.16	100	200	822	3.617	1.185	0.122
	B.17	100	200	1299	0.296	0.081	0.225
	B.18	100	200	2573	>6000	1286.292	302.914
	Average				6.542	72.189	17.247

Table 13 :

 13 Detailed performance for the MTZ based formulations for the class B test problems to optimality (hop = 9, b = s/5)

	Inst	n	M		Time MTZ	Time MTZ-L	Time RLT
	B.01	50	63	267	0.081	0.084	0.121
	B.02	50	63	203	0.872	0.258	0.223
	B.03	50	63	580	0.140	0.082	0.030
	B.04	50	100	447	1.896	0.267	1.325
	B.05	50	100	643	0.091	0.115	0.199
	B.06	50	100	903	1.183	0.579	0.497
	B.07	75	94	402	0.329	0.399	0.207
	B.08	75	94	537	2.888	0.534	0.248
	B.09	75	94	703	0.772	0.444	0.236
	B.10	75	150	694	0.291	0.525	0.467
	B.11	75	150	863	11.825	4.912	2.698
	B.12	75	150	1401	0.226	0.273	0.516
	B.13	100	125	511	0.212	0.303	0.427
	B.14	100	125	454	3.051	4.570	1.788
	B.15	100	125	810	21.327	2.273	0.576
	B.16	100	200	749	22.437	5.415	3.614
	B.17	100	200	1255	0.185	0.201	0.200
	B.18	100	200	1980	0.608	0.218	0.452
	Average				3.800	1.191	0.768

Table 14 :

 14 Detailed performance for the MTZ based formulations for the class B test problems to optimality (hop = 9, b = s/10)

					Time MTZ			Time MTZ_L				Time RLT	
				hop= 5	hop= 15	hop= 5	hop= 15	hop= 5	hop= 15
	Inst	n	m	b=S/10	b=S/30	b=S/10	b=S/30	b=S/10	b=S/30	b=S/10	b=S/30	b=S/10	b=S/30	b=S/10	b=S/30
	C.01_10	500	625	>6000	0.016	7.168	6.423	0.463	0.140	0.706	8.124	0.027	0.016	0.186	0.474
	C.01_100	500	625	>6000	>6000	3.370	3.495	0.140	0.036	0.421	0.171	0.141	0.226	0.171	0.453
	C.02_10	500	625	0.163	0.047	33.355 526.169 0.056	0.639	31.391 344.054	0.081	0.016	0.323	122.642
	C.02_100	500	625	>6000	>6000	17.488 14.134	0.012	0.014	9.360	9.063	0.023	0.028	0.405	44.444
	C.03_10	500	625	0.775	0.031	91.198 92.981	0.082	0.140 175.520 213.069	0.076	0.016	157.758	69.407
	C.03_100	500	625	>6000	>6000	>6000 211.786 0.053	0.040 271.271 100.090	0.042	0.316	>6000	684.435
	C.04_10	500	625	1.001	0.032 2160.275 4.211	0.039	0.078 234.388	6.090	0.039	0.015	108.140	6.331
	C.04_100	500	625	>6000	>6000	364.248 12.558	0.027	0.156 105.075	8.580	0.035	0.491	94.485	7.488
	C.05_10	500	625	>6000	0.702	347.344 10.709	0.003	0.031 174.530 33.354	0.001	0.047	135.487	4.693
	C.05_100	500	625	>6000 1041.264 57.888 15.163	0.021	0.081	39.076	7.222	0.036	0.090	7.315	23.197
	average			0.646	173.682 342.481 89.762	0.089	0.135 104.173 72.981	0.050	0.126	56.030	96.356

Table 15 :

 15 Detailed performance for the MTZ based formulations for the class C test problems to optimality