
HAL Id: hal-01583513
https://hal.science/hal-01583513

Submitted on 7 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

SWEEP: a Streaming Web Service to Deduce Basic
Graph Patterns from Triple Pattern Fragments
Emmanuel Desmontils, Patricia Serrano-Alvarado, Pascal Molli

To cite this version:
Emmanuel Desmontils, Patricia Serrano-Alvarado, Pascal Molli. SWEEP: a Streaming Web Service to
Deduce Basic Graph Patterns from Triple Pattern Fragments. International Semantic Web Conference
(ISWC), Oct 2017, Vienna, Austria. �hal-01583513�

https://hal.science/hal-01583513
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


SWEEP: a Streaming Web Service to Deduce

Basic Graph Patterns from Triple Pattern

Fragments

Emmanuel Desmontils, Patricia Serrano-Alvarado and Pascal Molli

LS2N Laboratory - Université de Nantes – France
{firstname.lastname}@univ-nantes.fr

Abstract. The Triple Pattern Fragments (TPF) interface demonstrates
how it is possible to publish Linked Data at low-cost while preserving
data availability. But, data providers hosting TPF servers are not able to
analyze the SPARQL queries they execute because they only receive and
evaluate subqueries with one triple pattern. Understanding the executed
SPARQL queries is important for data providers for prefetching, bench-
marking, auditing, etc. We propose SWEEP, a streaming web service
that deduces Basic Graph Patterns (BGPs) of SPARQL queries from a
TPF server log. We show that SWEEP is capable of extracting BGPs of
SPARQL queries evaluated by a DBpedia’s TPF server.

1 Introduction

The Triple Pattern Fragments (TPF) interface demonstrates how it is possible to
publish Linked Data at low-cost while preserving data availability [8]. However,
data providers hosting TPF servers are not able to analyze the SPARQL queries
executed by their clients because they only receive single triple pattern queries.

Understanding the executed SPARQL queries is fundamental for data provi-
ders. Mining logs of SPARQL endpoints allows to detect recurrent patterns in
queries for prefetching [1], benchmarking [3], auditing [4], etc. It provides the
type of queries issued, the complexity and the used resources [2,6]. Such analysis
cannot be done on logs of TPF servers because they only contain information
about single triple patterns. A Basic Graph Pattern (BGP) of a SPARQL query,
that is a set of conjunctive graph patterns, is scattered over the log.

[7] reported statistics from the logs of the DBpedia’s TPF server. However,
statistics only concern single triple pattern queries and not BGPs. In previ-
ous work [5], we proposed an algorithm to extract BGPs of federated SPARQL

queries from logs of a federation of SPARQL endpoints. Here, we address a sim-
ilar scientific problem but in the context of a single TPF server.

In this demonstration, we present SWEEP, a streaming web service that is
able to extract BGPs from logs of TPF servers in real-time. From the stream of
single triple pattern queries of a TPF server, SWEEP is capable of extracting
BGPs. This allows data providers running TPF servers to better know how
their data are used. The demonstration highlights the performances of SWEEP
in terms of precision and recall.



2 Motivating example

In Figure 1, two clients, c1 and c2, execute concurrently queries Q1 and Q2

over the DBpedia’s TPF server. Q1 asks for movies starring Brad Pitt and Q2

for movies starring Natalie Portman.1 Both queries have one BGP composed of
several triple patterns (tpn).

SELECT ?movie ?title ?name WHERE {
?movie dbpedia-owl:starring ?actor . (tp1)
?actor rdfs:label "Brad Pitt"@en . (tp2)
?movie rdfs:label ?title . (tp3)
?movie dbpedia-owl:director ?director . (tp4)
?director rdfs:label ?name (tp5)

FILTER LANGMATCHES(LANG(?title), "EN")
FILTER LANGMATCHES(LANG(?name), "EN") }

c1(173.28.19.114) : Query Q1

SELECT ?titleEng ?title WHERE {
?movie dbpprop : starring ?actor . (tp01)
?actor rdfs : label ”Natalie Portman”@en . (tp02)
?movie rdfs : label ?titleEng . (tp03)
?movie rdfs : label ?title (tp04)

FILTER LANGMATCHES(LANG(?titleEng), "EN")
FILTER (!LANGMATCHES(LANG(?title), "EN")) }

c2(173.28.19.114) : Query Q2

DBpedia’s TPF server

?predicate = rdfs : label
& ?object = “Brad Pitt”@en . . .

?predicate = rdfs : label
& ?object = “Natalie Portman”@en . . .

Fig. 1: Concurrent execution of queries Q1 and Q2.

IP Time Asked triple pattern/TPF

1 172... 11:24:19 ?predicate=rdfs:label & ?object="Brad Pitt"@en

2 172... 11:24:23 dbpedia:Brad_Pitt rdfs:label "Brad Pitt"@en ,

3 172... 11:24:24 ?predicate=dbpedia-owl:starring & ?object=dbpedia:Brad_Pitt

4 172... 11:24:27 dbpedia:A_River_Runs_Through_It_(film) dbpedia-owl:starring dbpedia:Brad_Pitt

dbpedia:Troy_(film) dbpedia-owl:starring dbpedia:Brad_Pitt ...

5 172... 11:24:28 ?subject=dbpedia:A_River_Runs_Through_It_(film) &?predicate=rdfs:label

Table 1: Excerpt of a DBpedia’s TPF server log for query Q1.

The TPF client decomposes the SPARQL queries into a sequence of triple
pattern queries partially presented in Table 1. The odd-numbered lines represent
received triple pattern queries and the even-numbered ones represent sent triples
after evaluation on the RDF graph. Lines 1 and 3, correspond to triple pattern
queries for tp2 and tp1 of Q1.2 We can observe that the object in Line 3, comes
from a mapping seen in Line 2. This injection of a mapping obtained from a
previous triple pattern query, is clearly a bind join from tp2 towards tp1.

As the TPF server only sees triple pattern queries, the original queries are
unknown to the data provider. In this work, we address the following research
question: Can we extract BGPs from a TPF server log?

The main challenge is to distinguish similar queries, that is queries whose
triple patterns are the same for the TPF server as tp1 vs tp

0
1. In our example,

we aim to extract two BGPs from the TPF server log, one corresponding to
Q1, BGP[1]= {tp1.tp2.tp3.tp4.tp5} and another corresponding to Q2, BGP[2]=
{tp01.tp02.tp03.tp04}.
1 These queries come from http://client.linkeddatafragments.org/.
2 TPF clients always rename variables as "subject" or "object", regardless of how they

are named in the original query.

http://client.linkeddatafragments.org/


3 SWEEP

SWEEP uses a TPF server log, as the one of Table 1, composed of an unlimited
ordered sequence of execution traces organized by IP-address. It considers a
fixed-size window sliding over the TPF server log. Window size can depend on
the memory available for the streamed log or on the average of known values
used as timeout by TPF clients.

We consider a set G of deduced BPGs. Each time a triple pattern query (tpqi)
arrives, SWEEP creates a new BPGj 2 G or updates an existing one.

Suppose G is empty and SWEEP receives tpq1 ={?s p2 toto} where ?s

produces 2 mappings: {c1, c2}. As G is empty, SWEEP creates BGP1 containing
tpq1 with the current time as timestamp, BGP1.ts = time().

Then, if tpq2 ={c1 p1 ?o} arrives, as c1 appears in mappings of a BGPj 2
G, SWEEP detects a bind join. This implies updating BGP1 with the join
{?s p2 toto . ?s p1 ?o}. If tpq3 = {c2 p1 ?o} arrives, as it is already rep-
resented in BGP1, nothing is done.

If BGP1 is out the window, i.e., time() � BGP1.ts > window, then it must
no longer be updated; it is delivered and removed from the stream.

We run SWEEP with queries proposed by the TPF web client (http://
client.linkeddatafragments.org/). From 21 queries executed, we obtained
100% of precision and 87% of recall of deduced BGPs when compared to the
BGPs of corresponding original queries. SWEEP succeeds in this case because
these queries are note very similar. Different precision and recall would be pro-
duced with a more challenging set of queries.

4 Demo

Figure 2 presents the dashboard of SWEEP available at http://sweep.priloo.
univ-nantes.fr. It shows the most recent deduced BGPs and original client
queries when they are available. Our TPF client, http://tpf-client-sweep.
priloo.univ-nantes.fr, sends the original client query to SWEEP to be able
to calculate precision and recall.

If you want to test SWEEP with another TPF client, you must specify the ad-
dress of the DBpedia’s TPF server we have setup: http://tpf-server-sweep.
priloo.univ-nantes.fr. In this case, SWEEP will deduce BGPs but will not
be able to calculate precision and recall.

We used, the versions of JavaScript for Node.js of the TPF server and client.
The source code is available at https://github.com/edesmontils/SWEEP.

5 Conclusion and perspectives

SWEEP demonstrates how it is possible to deduce the BGPs executed by a TPF
server. This allows data providers to have a better understanding of the usage
of their data.

With SWEEP it would be possible to detect whether clients are executing
federated queries over multiple datasets hosted by one TPF server. And if multi-
ple data providers agree on streaming their logs to a shared SWEEP service, they
would be able to detect federated queries executed over multiple TPF servers.

http://client.linkeddatafragments.org/
http://client.linkeddatafragments.org/
http://sweep.priloo.univ-nantes.fr
http://sweep.priloo.univ-nantes.fr
http://tpf-client-sweep.priloo.univ-nantes.fr
http://tpf-client-sweep.priloo.univ-nantes.fr
http://tpf-server-sweep.priloo.univ-nantes.fr
http://tpf-server-sweep.priloo.univ-nantes.fr
https://github.com/edesmontils/SWEEP


Fig. 2: SWEEP dashboard.

References

1. J. Lorey and F. Naumann. Detecting SPARQL Query Templates for Data Prefetch-
ing. In ESWC Conference, 2013.

2. K. Möller, M. Hausenblas, R. Cyganiak, G. Grimnes, and S. Handschuh. Learning
from Linked Open Data Usage: Patterns & Metrics. In WebSci10:Extending the
Frontiers of Society On-Line, 2010.

3. M. Morsey, J. Lehmann, S. Auer, and A.-C. N. Ngomo. DBpedia SPARQL
Benchmark–Performance Assessment with Real Queries on Real Data. In ISWC
Conference, 2011.

4. S. U. Nabar, B. Marthi, K. Kenthapadi, N. Mishra, and R. Motwani. Towards
Robustness in Query Auditing. In VLDB Conference, 2006.

5. G. Nassopoulos, P. Serrano-Alvarado, P. Molli, and E. Desmontils. FETA: Federated
QuEry TrAcking for Linked Data. In DEXA Conference, 2016.

6. F. Picalausa and S. Vansummeren. What are Real SPARQL Queries Like? In SWIM
Workshop, 2011.

7. R. Verborgh, E. Mannens, and R. Van de Walle. Initial Usage Analysis of DBpedia’s
Triple Pattern Fragments. In USEWOD Workshop, 2015.

8. R. Verborgh, M. Vander Sande, O. Hartig, J. Van Herwegen, L. De Vocht,
B. De Meester, G. Haesendonck, and P. Colpaert. Triple Pattern Fragments: a
Low-cost Knowledge Graph Interface for the Web. Journal of Web Semantics, 37–
38, Mar. 2016.


	SWEEP: a Streaming Web Service to Deduce Basic Graph Patterns from Triple Pattern Fragments

