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We consider the free Klein-Gordon equation with periodic damping. We show on this simple model that if the usual geometric condition holds then the decay of the energy is uniform with respect to the oscillations of the damping, and in particular the size of the derivatives do not play any role. We also show that without geometric condition the polynomial decay of the energy is even slightly better for a highly oscillating damping. To prove these estimates we provide a parameter dependent version of well known results of semigroup theory.

Introduction and statements of the main results

Let d ě 1 and m ą 0. For pu 0 , u 1 q P H 1 pR d q ˆL2 pR d q we consider on R d the damped Klein-Gordon equation # B 2 t u ´∆u `mu `aη B t u " 0, t ě 0, pu, B t uq| t"0 " pu 0 , u 1 q.

(1.1)

For the damping term we consider on R d a continuous and Z d -periodic function a which takes non-negative values and is not identically zero. Then for η ě 1 and x P R d we define the absorption index a η pxq :" apηxq. In this note we are interested in the decay of the energy of the solution u. It is defined by

Eptq :" }uptq} 2 H 1 `}B t uptq} 2 L 2 , where H 1 pR d q is endowed with the norm given by

}u} 2 H 1 :" }∇u} 2 L 2 `m }u} 2 L 2 . (1.2)
This energy in non-increasing. More precisely, for t 1 ď t 2 we have

Ept 2 q ´Ept 1 q " ´2 ż t 2 t 1 ż R d a η pxq |B t upt, xq| 2 dx dt ď 0.
It is known (see [START_REF] Burq | Exponential decay for the damped wave equation in unbounded domains[END_REF] and references therein) that for η " 1 the decay is uniform and hence exponential with respect to the initial energy under the so-called Geometric Control Condition. Here, with the free Laplacian, this assumption is that there exist T ą 0 and α ą 0 such that for all px, ξq P R d ˆSd´1 we have a T px, ξq :" 1 T ż T 0 apx `2tξq dt ě α.

It is not difficult to check that if this holds for a, then it also holds for a η for any η ě 1, with constants T and α which do not depend on η:

DT ą 0, Dα ą 0, @η ě 1, a η T ě α on R d ˆSd´1 .

(1.3)

However, in all the results about uniform energy decay for the damped Klein-Gordon (or wave) equation, some bounds are required for the variations of the absorption index.

This rises the natural question wether the exponential decay of the energy Eptq is uniform with respect to η ě 1.

Theorem 1.1. Assume that the damping condition (1.3) holds. Then there exist γ ą 0 and C ą 0 such that for η ě 1, pu 0 , u 1 q P H 1 pR d q ˆL2 pR d q and t ě 0 we have

}uptq} H 1 `}B t uptq} L 2 ď Ce ´γt `}u 0 } H 1 `}u 1 } L 2 ˘,
where u is the solution of (1.1).

This estimate essentially depends on the contribution of high frequencies. To prove such a result, it is standard to use semiclassical analysis. It is efficient but, on the other hand, it requires a lot of regularity. It is usual to replace the absorption coefficient a by a smooth symbol ã such that 0 ď ã ď a and ã still satisfies (1.3), possibly with a different α. This idea was already used in [START_REF] Royer | Limiting absorption principle for the dissipative Helmholtz equation[END_REF] but the first two radial derivatives of a had to be bounded. This was also used in [START_REF] Burq | Exponential decay for the damped wave equation in unbounded domains[END_REF] but, again, a uniformity on the derivatives of ã was required, so a was assumed to be uniformly continuous. Since the family pa η q ηě1 is not uniformly equicontinous, we cannot prove Theorem 1.1 with the results of [START_REF] Burq | Exponential decay for the damped wave equation in unbounded domains[END_REF] (see the counter-example of Figure 4.a therein).

The purpose of this note is to emphasize on a model case that the oscillations of the damping should not play a crucial role in the energy decay of the wave.

For the proof, we will use the same kind of ideas as in [START_REF] Burq | Exponential decay for the damped wave equation in unbounded domains[END_REF] and track (on our periodic setting) the role played by the frequency η of the damping.

In Theorem 1.1 we have discussed the energy decay under the damping condition (1.3). It is known that we cannot have uniform decay of the energy without this assumption. However, for a fixed periodic damping, it is proved in [START_REF] Wunsch | Periodic damping gives polynomial energy decay[END_REF] that without any geometric condition we have at least a polynomial decay (with loss of regularity). Here, we prove that this decay is uniform with respect to η, and moreover the loss of regularity is weaker for the highly oscillating damping.

This phenomenon is natural. Indeed, for large η the damping region becomes in some sense more uniformly distributed in R d , so even if the average strength of the damping does not depend on η, and even if (1.3) still does not hold for large η, the distance between undamped classical rays and the damping region gets smaller, so the phenomemon that a high frequency wave approximately following such a ray does not see the damping only appears for larger and larger frequencies.

Theorem 1.2. There exists c ą 0 such that for all η ě 1, pu 0 , u 1 q P H 2 pR d q ˆH1 pR d q and t ě 0 we have

}uptq} H 1 `}B t uptq} L 2 ď c ? 1 `t ˆ}u 0 } H 1 `}u 1 } L 2 `}∆u 0 } L 2 `}∇u 1 } L 2 η 2 ˙,
where u is the solution of (1.1).

For simplicity we have assumed that a is at least continuous, but this is not necessary. For Theorem 1.2 it is enough to assume that a is bounded and that for some open and Z d -periodic subset ω of R d and α 0 ą 0 we have a ě α 0 1 ω .

(1.4)

For Theorem 1.1 the assumption is that a is bounded and there exists ã P C 8 pR d q such that 0 ď ã ď a and (1.3) holds with a replaced by ã. As explained in [START_REF] Burq | Exponential decay for the damped wave equation in unbounded domains[END_REF], this is in particular the case if a is uniformly continuous (for instance, if a is continuous and periodic). We recall that the main point here is that even with a smooth absorption index a the rescaled version a η has derivatives which are not uniformly bounded in η. This note is organized as follows. In Section 2 we show how Theorems 1.1 and 1.2 are deduced from corresponding resolvent estimates in the energy space. In Section 3 we show that these resolvent estimates are in turn consequences of resolvent estimates in the physical space. And finally, in Section 4 we prove these resolvent estimates for a family of Schrödinger type operators on L 2 pR d q.

From resolvent estimates to the energy decay

As usual for the Klein-Gordon equation, we rewrite (1.1) as a first order Cauchy problem in the energy space. We set H :" H 1 pR d q ˆL2 pR d q, endowed with the product norm (recall that the norm on H 1 pR d q is as given by (1.2)). Then, on H, we consider for η ě 1 the operator

A η :" ˆ0 1 ∆ ´m ´aη ẇith domain (independent of η) DompAq :" H 2 pR d q ˆH1 pR d q.
Let U 0 " pu 0 , u 1 q P DompAq. Then u is a solution of (1.1) if and only if

U : t Þ Ñ puptq, B t uptqq is a solution of # B t U ´Aη U " 0, U p0q " U 0 .
(2.1)

We will check in Proposition 3.2 that A η generates a contractions semigroup on H. Then, in this setting, Theorem 1.1 reads

DC ě 0, Dγ ą 0, @η ě 1, @U 0 P H, @t ě 0, › › e ´itAη U 0 › › H ď Ce ´γt }U 0 } H . (2.2)
And Theorem 1.2 can be rewritten as Dc ě 0, @η ě 1, @U 0 P DompAq, @t ě 0,

› › e ´itAη U 0 › › H ď c ? 1 `t ˆ}U 0 } H `}A η U 0 } H η 2 ˙,
(2.3) We are going to prove these estimates from a spectral point of view. More precisely, we will use the following standard results of semigroup theory to deduce (2.2) and (2.3) from estimates for the resolvent of A η .

Theorem 2.1. Let K be a Hilbert space and let G be an operator on K generating a bounded C 0 -semigroup pe tG q tě0 . We set

M " sup tě0 › › e tG › › LpKq ,
where LpKq is the space of bounded operators on K. Assume that the resolvent set of G contains the imaginary axis. (i) If there exists C 1 ą 0 such that for all τ P R we have

› › pG `iτ q ´1› › LpKq ď C 1
, then there exist C ą 0 and γ ą 0 which only depend on C 1 and M such that for all t ě 0 we have › › e tG › › LpKq ď Ce ´γt . (ii) If there exist κ P N ˚, c 1 ą 0 and ν Ps0, 1s such that for all τ P R we have › › pG `iτ q ´1› › LpKq ď c 1 p1 `ν |τ |q κ , then there exists c ą 0 which only depends on c 1 and M such that for all t ě 0 we have › › e tG p1 `νGq

´1› › LpKq ď c t ´1 κ , where ¨ stands for p1 `|¨| 2 q 1 2 .
This first statement is a famous result by L. Gearhart [START_REF] Gearhart | Spectral theory for contraction semigroups on Hilbert space[END_REF] and J. Prüss [START_REF] Prüss | On the spectrum of C0-semigroups[END_REF] (see also F. Huang [START_REF] Huang | Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces[END_REF]). The second statement is due to A. Borichev and Y. Tomilov [START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups[END_REF]. Here we recall a proof to check the dependence with respect to the different parameters.

Proof. ' Let B be a bounded operator which commutes with G and such that

β :" sup τ PR › › pG `iτ q ´1B › › LpKq ă `8.
The spectrum of G is a subset of the left half-plane and for ε ą 0 and τ P R we have

› › pG ´pε ´iτ qq ´1› › LpKq ď M ε
(2.4) (see for instance Corollary II.1.11 in [START_REF] Engel | One-parameter semigroups for linear evolution equations[END_REF]). Hence, by the resolvent identity, we have for ε Ps0, 1s

› › pG ´pε ´iτ qq ´1B › › LpKq (2.5) ď › › pG `iτ q ´1B › › LpKq `ε › › pG ´pε ´iτ qq ´1› › LpKq › › pG `iτ q ´1B › › LpKq ď p1 `M qβ.
' We define on K ˆK the operator

G " ˆG B 0 G ˙,
with domain DompGq :" DompGqˆDompGq. We can check that G has the same spectrum as G, and for z in their common resolvent set we have

pG ´zq ´1 " ˆpG ´zq ´1 ´pG ´zq ´2B 0 pG ´zq ´1 ˙.
Moreover G generates the C 0 -semigroup given by e tG " ˆetG te tG B 0 e tG ˙, t ě 0.

' Let ε ą 0 and ϕ P K. Since τ Þ Ñ pG ´pε ´iτ qq ´1ϕ is the inverse Fourier transform of t Þ Ñ ´1R `ptqe ´tε e tG ϕ, we obtain by the Parseval identity

ż R › › pG ´pε ´iτ qq ´1ϕ › › 2 K dτ ď πM 2 ε }ϕ} 2 K .
Since B commutes with G we also have by (2.5)

ż R › › pG ´pε ´iτ qq ´2Bϕ › › 2 K dτ ď ż R › › pG ´pε ´iτ qq ´1B › › 2 LpKq › › pG ´pε ´iτ qq ´1ϕ › › 2 K dτ ď πp1 `M q 2 M 2 β 2 ε }ϕ} 2 K .
Then, for ε ą 0 and Φ " pϕ 1 , ϕ

2 q P K ˆK, ż R › › pG ´pε ´iτ qq ´1Φ › › 2 KˆK dτ (2.6) ď ż R ´› › pG ´pε ´iτ qq ´1ϕ 1 › › 2 K `› › pG ´pε ´iτ qq ´2Bϕ 2 › › 2 K `› › pG ´pε ´iτ qq ´1ϕ 2 › › 2 K ¯dτ ď c M,β ε }Φ} 2 KˆK ,
and we have a similar estimate with pG ´pε ´iτ qq ´1 replaced by pG ˚´pε `iτ qq ´1. Then for t ą 0, ε ą 0 and Φ, Ψ P K ˆK we use the identity This gives a bound for e tG , and in particular there exists C M,β ą 0 such that for all t ě 0 we have

e tG Φ, Ψ KˆK " 1 2iπt ż τ PR e pε´iτ
› › e tG B › › LpKq ď C M,β t .
(2.7)

' We prove the second statement of Theorem 2.1. Since the resolvent is continuous on the imaginary axis, it is bounded on any compact subset. Thus it is enough to prove the estimate for |τ | ě 1. By the resolvent identity we can prove by induction on κ P N that pG `iτ q ´1pG `ν´1 q ´κ " pG `iτ q

´1 pν ´1 ´iτ q κ ´κ ÿ k"1 pG `ν´1 q ´pκ`1´kq pν ´1 ´iτ q k . Then › › pG `iτ q ´1pνG `1q ´κ› › " 1 ν κ › › pG `iτ q ´1pG `ν´1 q ´κ› › ď › › pG `iτ q ´1› › p1 `ν2 τ 2 q κ 2 `κ ÿ k"1 › › pG `ν´1 q ´1› › κ`1´k ν κ´k p1 `ν2 τ 2 q k 2 .
By assumption on the resolvent and by (2.4) this is uniformly bounded by a constant which only depends on M and c 1 . Then by (2.7) applied with B " pνG `1q ´κ there exists c which only depends on c 1 and M such that for all t ě 0 we have

› › e tG pνG `1q ´κ› › LpKq À c t .
Finally, we can follow the proof of [BEPS06, Proposition 3.1] to conclude. ' Now we turn to the proof of the first statement of Theorem 2.1. By (2.7) applied with B " Id K there exists C ě 0 (which only depends on C 1 and M ) such that

› › e tG › › LpKq ď C t .
In particular for T " 2 C we get › › e T G › › ď 1{2. Then for t ě T we denote by k the integer part of t{T and write

› › e tG › › ď › › e T G › › k › › ›e pt´kT qG › › › ď M 2 k ď 2M e ´t lnp2q T .
The proof is complete.

Thus, in order to prove (2.2) and (2.3) (and hence Theorems 1.1 and 1.2), it is enough to prove the following resolvent estimates for A η : Theorem 2.2. (i) Let η ě 1. Then A η generates a bounded C 0 -semigroup and its resolvent set contains the imaginary axis. (ii) There exists c 1 ą 0 such that for η ě 1 and τ P R we have

› › pA η `iτ q ´1› › LpHq ď c 1 ˆ1 `|τ | η 2 ˙2 .
(iii) If moreover (1.3) holds, then there exists C 1 ą 0 such that for η ě 1 and τ P R we have

› › pA η `iτ q ´1› › LpHq ď C 1 .

Resolvent estimates in the energy space

In this section we discuss the proof of Theorem 2.2. Introducing the wave operator A η on H was useful to apply the general results of the semigroup theory. However, to prove concrete resolvent estimates we have to go back to the analysis of Schrödinger operators on L 2 pR d q.

Proposition 3.1. Let η ě 1 and z P C. Then pA η `izq is invertible with bounded inverse on H if and only if the operator `´∆ `m ´iza η ´z2 ˘is invertible with inverse bounded on L 2 pR d q, and in this case we have

pA η `izq ´1 " ˆRη pzqp´a η `izq ´Rη pzq 1 `Rη pzqpiza η `z2 q izR η pzq ˙, (3.1) 
where we have set R η pzq " `´∆ `m ´iza η ´z2 ˘´1 .

Proof. Assume that R η pzq is well defined. It is a bounded operator from L 2 pR d q to H 2 pR d q, so the right-hand side of (3.1) defines a bounded operator from H to DompAq.

Then we can check by direct computation that it is a bounded inverse for pA η `izq.

Conversely, assume that ´iz belongs to the resolvent set of A η . For g P L 2 pR d q we define Rg as the first component of pA η `izq ´1G, for G " p0, ´gq P H. This defines a bounded operator R from L 2 pR d q to H 2 pR d q and we can check, again by direct computation, that it is an inverse for p´∆ `m ´iza η ´z2 q.

We begin the proof of Theorem 2.2 with the statement that A η generates a bounded C 0 -semigroup. For this we prove that A η is m-dissipative. By the usual Lummer-Phillips Theorem, this ensures that A η generates for all η ě 1 a contractions semigroup. We recall that an operator T with domain DompT q on a Hilbert space K is said to be dissipative if for all ϕ P DompT q we have Re T ϕ, ϕ ď 0.

Moreover T is said to be m-dissipative if some (and hence any) ζ P C with Repζq ą 0 belongs to the resolvent set of T . Proposition 3.2. For all η ě 1 the operator A η is m-dissipative on H.

Proof. Let U " pu, vq P DompAq. We have

A η U, U H " ∇v, ∇u L 2 `m v, u L 2 ` p∆ ´mqu, v L 2 ´ a η v, v L 2 , so Re A η U, U H "
´ a η v, v L 2 ď 0. This proves that A η is dissipative. On the other hand, the operator ´∆ `m `aη `1 is self-adjoint and bounded below by m `1. In particular it is invertible with bounded inverse on L 2 pR d q. By Proposition 3.1, this implies that 1 is in the resolvent set of A η , hence A η is m-dissipative.

The estimates for the resolvent of A η will be deduced from estimates of the "resolvent" R η pτ q defined in Proposition 3.1. To work with a fixed damping, we first rescale the problem. For η ě 1, u P L 2 and x P R d we set pΘ η uqpxq " η d 2 upηxq. This defines a unitary operator Θ η on L 2 pR d q and we have Θ ´1 η `´∆ `m ´iτ a η ´τ 2 ˘Θη " `´η 2 ∆ `m ´iτ a ´τ 2 ˘.

In particular the operator `´η 2 ∆ `m ´iτ a ´τ 2 ˘has an inverse bounded on L 2 pR d q if and only if R η pτ q is well defined, and in this case, if we set R η pτ q " `´η 2 ∆ `m ´iτ a ´τ 2 ˘´1 , (3.2) then }R η pτ q} LpL 2 q " }R η pτ q} LpL 2 q .

(3.3) Finally, Theorem 2.2 will be a consequence on the following estimates on R η pτ q:

Proposition 3.3. (i) For all η ě 1 and τ P R the operator `´η 2 ∆ `m ´iτ a ´τ 2 ȋs invertible with bounded inverse on L 2 pR d q.

(ii) There exists c 2 ą 0 such that for η ě 1 and τ P R we have

}R η pτ q} LpL 2 q ď c 2 τ ˆ1 `|τ | η 2 ˙2 .
(iii) If (1.3) holds then there exists C 2 ą 0 such that for η ě 1 and τ P R we have

}R η pτ q} LpL 2 q ď C 2 τ .
The proof of Proposition 3.3 is postponed to the following section. Here we show that it indeed implies Theorem 2.2.

Proof of Theorem 2.2, assuming Proposition 3.3. ' Since R η pτ q is well defined for all η ě 1 and τ P R, this is also the case for R η pτ q and hence for pA η `iτ q ´1 by Proposition 3.1. Moreover, by (3.3), the estimates given for R η pτ q also hold for R η pτ q. ' Assume that for η ě 1 and τ P R we have

}R η pτ q} ď κpη, τ q τ ,
where κ is bounded below by a positive constant. For η ě 1, τ P R and u in the Schwartz space SpR d q we have }∇R η pτ qu} 2 L 2 " u, R η pτ qu ` p´m `iτ a η `τ 2 qR η pτ qu, R η pτ qu À κpη, τ q 2 }u} 2 L 2 . This proves that }R η pτ q} LpL 2 ,H 1 q À κpη, τ q.

By duality we also have }R η pτ q} LpH ´1,L 2 q " }R η pτ q ˚}LpL 2 ,H 1 q " }R η p´τ q} LpL 2 ,H 1 q À κpη, τ q.

Then, as above,

}∇R η pτ q∇u} 2 L 2 " ∇u, R η pτ q∇u ` p´m `iτ a η `τ 2 qR η pτ q∇u, R η pτ q∇u À }∇R η pτ q∇u} L 2 }u} L 2 ` τ 2 κpη, τ q 2 .
This yields }R η pτ q} LpH ´1,H 1 q À τ κpη, τ q.

' Let U " pu, vq P S ˆS. By Proposition 3.1 we have

› › pA η `iτ q ´1U › › H À }R η pτ qp´a η `iτ qu} H 1 `}R η pτ qv} H 1 `› › u `Rη pτ qpiτ a η `τ 2 qu › › L 2 `}τ R η pτ qv} L 2 . First, for |τ | ě 1, }R η pτ qp´a η `iτ qu} H 1 " }u} H 1 τ `1 τ }R η pτ qp∆ ´mqu} H 1 À κpη, τ q }u} H 1 .
This estimate also holds for |τ | ď 1 and, similarly,

› › u `Rη pτ qpiτ a η `τ 2 qu › › L 2 " }R η pτ qp´∆ `mqu} L 2 À κpη, τ q }u} H 1 . We also have }R η pτ qv} H 1 `}τ R η pτ qv} L 2 À κpη, τ q }v} L 2 , so › › pA η `iτ q ´1U › › H À κpη, τ q p}u} H 1 `}v} L 2 q À κpη, τ q }U } H .
Thus the second and third statements of Theorem 2.2 follow from the corresponding statements of Proposition 3.3.

Resolvent estimates for the rescaled operator

In this section we prove Proposition 3.3. This will conclude the proof of Theorems 1.1 and 1.2. The three statements of Proposition 3.3 are proved separately in Propositions 4.1, 4.3 and 4.4 below.

When working in a periodic setting, it is standard to introduce the Floquet-Bloch decomposition to reduce the problem on R d to a family of problems on the torus. Here we use the notation of [JR]. For u P SpR d q and σ P R d we set

u 7 σ pxq " ÿ nPZ d upx `nqe ´ipx`nq¨σ .
This defines for all σ a Z d -periodic function and for x P R d we have

upxq " 1 p2πq d ż σPr0,2πs d e ix¨σ u 7
σ pxq dσ.

Moreover we have the Parseval identity

}u} 2 L 2 " 1 p2πq d ż σPr0,2πs d › › u 7 σ › › 2 L 2 7 dσ,
where L 2 7 is the set of L 2 loc and Z d -periodic functions on R d , endowed with the norm given by

› › u 7 σ › › 2 L 2 7 " ż r0,1s d ˇˇu 7 σ pxq ˇˇ2 dx.
Proposition 4.1. For all η ě 1 and τ P R the operator `´η 2 ∆ `m ´iτ a ´τ 2 ˘has a bounded inverse on L 2 pR d q.

Proof. Let η ě 1 and τ P R be fixed. If τ " 0 it is clear that the selfadjoint operator ´η2 ∆ `m is bounded below by m ą 0 and hence invertible. Now we assume that τ ‰ 0. For σ P R d we set ∆ σ " e ´ix¨σ ∆e ix¨σ " pdiv `iσ ⊺ qp∇ `iσq. and P σ " `´η 2 ∆ σ `m´iτ a´τ 2 ˘(DompP σ q is the set of H 2 loc and Z d -periodic functions). Then for u P SpR d q we have `´η 2 ∆ `m ´iτ a ´τ 2 ˘u " 1 p2πq d ż σPr0,2πs d e ix¨σ P σ u 7 σ pxq dσ.

Let σ P R d . The operator P σ has nonempty resolvent set and compact resolvent, so its spectrum is given by a sequence of eigenvalues. Let u P DompP σ q be such that

P σ u " 0. Since › › ? au › › 2 L 2 7 " ´Im P σ u, u τ " 0,
we get that u vanishes in an open subset of R d so, by unique continuation, u " 0. Then 0 is not an eigenvalue of P σ , so P σ is invertible with bounded inverse in L 2 7 . We set R σ " P ´1 σ . Then for f P SpR d q we set Rf "

1 p2πq d ż σPr0,2πs d e ix¨σ R σ u 7 σ pxq dσ.
Since R σ is a continuous function of σ, it is bounded on r0, 2πs d . Then, by the Parseval identity,

}Rf } 2 L 2 " 1 p2πq d ż σPr0,2πs d › › R σ f 7 σ › › 2 L 2 7 dσ À 1 p2πq d ż σPr0,2πs d › › f 7 σ › › 2 L 2 7 dσ " }f } 2 L 2 .
Thus R defines a bounded operator on L 2 pR d q. Then we check that it is an inverse for `´η 2 ∆ `m ´iτ a ´τ 2 ˘and the proposition is proved. Now we turn to the proof of the second statement of Proposition 3.3. It relies on the following observability estimate: Proposition 4.2. Let ω be a nonempty, open and Z d -invariant subset of R d . Then there exists C ą 0 such that for all u P H 2 pR d q and λ P R we have

}u} L 2 ď C ´}p´∆ ´λqu} L 2 `}u} L 2 pωq ¯.
This kind of estimate is a difficult result in general. It is only known in very particular settings (see for instance [START_REF] Jaffard | Contrôle interne exact des vibrations d'une plaque rectangulaire[END_REF][START_REF] Burq | Control for Schrödinger operators on tori[END_REF][START_REF] Anantharaman | Wigner measures and observability for the Schrödinger equation on the disk[END_REF]). Proposition 4.2 is deduced in [START_REF] Wunsch | Periodic damping gives polynomial energy decay[END_REF] from the case of the torus by means of the Floquet-Bloch decomposition as above. With this proposition in hand, we can prove the following resolvent estimate: Proposition 4.3. There exists c 2 ą 0 such that for all η ě 1 and τ P R we have

}R η pτ q} LpL 2 q ď c 2 τ ˆ1 `|τ | η 2 ˙2 .
Proof. We have }R η p0q} ď 1{m, so if τ 0 ą 0 is such that τ 0 }a} 8 `τ 2 0 ď m{2 then by a standard perturbation argument we have }R η pτ q} ď 2{m for all τ P r´τ 0 , τ 0 s. Thus, in the rest of the proof it is enough to estimate }R η pτ q} for |τ | ě τ 0 . So let u P H 2 pR d q, η ě 1 and τ P R with |τ | ě τ 0 . We set f " `´η 2 ∆ `m ´iτ a ´τ 2 ˘u.

This can be rewriten as

´∆u ´τ 2 ´m η 2 u " f `iτ au η 2 .
By Proposition 4.2 applied with ω given by (1.4) we obtain

}u} À 1 η 2 p}f } `|τ | }au}q `}u} L 2 pωq À }f } η 2 `ˆ1 `|τ | η 2 ˙}au} . (4.1)
Since a is bounded we have a À ? a, so for any ε ą 0 we have

}au} 2 L 2 À › › ? au › › 2 L 2 " ´Im f, u τ ď }f } L 2 }u} L 2 |τ | ď ε 2 ˆ1 `|τ | η 2 ˙´2 }u} 2 `ˆ1 `|τ | η 2 ˙2 }f } 2 4ε 2 τ 2 .
Then (4.1) gives

}u} À ε }u} `Cε |τ | ˆ1 `|τ | η 2 ˙2 }f } . With ε ą 0 chosen small enough we get }u} À 1 |τ | ˆ1 `|τ | η 2 ˙2 }f } ,
which gives the required estimate for R η pτ q.

We finally prove the last statement of Proposition 3.3:

Proposition 4.4. If the damping condition (1.3) holds, then there exists C 2 ą 0 such that for all η ě 1 and τ P R we have

}R η pτ q} LpL 2 q ď C 2 τ .
We notice that as long as |τ | remains comparable to η 2 this is a consequence of Proposition 4.3. Thus, Proposition 4.4 is only a result about frequencies greater that η 2 .

One of the standard method to prove such a resolvent estimate under a suitable geometric condition about classical trajectories is to use semiclassical analysis (see for instance [START_REF] Zworski | Semiclassical Analysis[END_REF] for an introduction to the subject) and, more precisely, the contradiction method of [Leb96]. For this, we rewrite the problem in a semiclassical setting. More precisely, Proposition 4.4 is a consequence of Proposition 4.3 and of the following lemma, applied with h " η{τ and ε " 1{η: Lemma 4.5. There exist h 0 ą 0 and C 3 ą 0 such that for h Ps0, h 0 s and ε Ps0, 1s we have

› › › `´h 2 ∆ ´iεha ´1˘´1 › › › LpL 2 q ď C 3 εh .
The difference with the usual high frequency estimates for the damped wave equation is that we make more explicit the dependence with respect to the strength of the damping. For the proof we essentially follow [START_REF] Burq | Exponential decay for the damped wave equation in unbounded domains[END_REF] and check the dependence in ε. Notice that up to now we have only used assumption (1.4). It is only for the proof of Lemma 4.5 that we need to replace a by a smooth absorption index.

Proof. ' We construct an absorption index a 8 P C 8 pR d q such that 0 ď a 8 ď a and a 8 T ě α{2 on R d ˆSd´1 , where T ą 0 and α ą 0 are given by (1.3). For this, we set ã " maxp0, a ´α{4q. Since a is continuous and periodic, so is ã, and there exists δ ą 0 such that if ãpxq ą 0 then a is positive on the ball Bpx, 2δq. Moreover, there exists a 0 ą 0 such that a ě a 0 on a δ-neighborhood of the support of ã. On the other hand, since ã is continuous and periodic it is uniformly continuous, so we can choose δ smaller to ensure that |ãpx 1 q ´ãpx 2 q| ď minpa 0 , α{4q whenever |x 1 ´x2 | ď δ. Let ρ P C 8 pR d , R `q be supported in the ball Bp0, δq and of integral 1. We set a 8 " ã ˚ρ. Then a 8 is smooth and takes non-negative values. It is supported in the δ-neighborhood of supppãq and }α ´a8 } 8 ď minpa 0 , α{4q so a 8 ď a. Moreover }a ´a8 } 8 ď α{2 so a 8 T ě α{2 on R d ˆSd´1 . Then, by continuity and periodicity of a 8 , there exists ε ą 0 such that for px, ξq P R 2d with 1 ´ε ď |ξ| 2 ď 1 `ε we have

a 8 T px, ξq ě α 4 . (4.2) 
' Assume by contradiction that the statement of the lemma is wrong. Then we can find sequences pu n q nPN P pH 2 pR d qq N , ph n q nPN Ps0, 1s N and pε n q nPN Ps0, 1s N such that h n Ñ 0, }u n } L 2 " 1 for all n P N and " ´2a 8 pxq `2 a 8 T px, ξq.

› › p´h 2 n ∆ ´iε n h n a ´1qu n › › L 2 " o nÑ8 pε n h n q. ( 4 
Let χ P C 8 0 pRq be supported in s1 ´ε, 1 `εr and equal to 1 on a neighborhood of 1 (ε was defined before (4.2)). For px, ξq P R 2d we set qpx, ξq :" χpξ 2 qe bpx,ξq ě χpξ 2 q. Then tξ 2 , qu " qtξ 2 , bu " 2q a 8 T ´2a 8 q.

By (4.2) we have tξ 2 , qu `2a 8 q `α 2 p1 ´χqpξ 2 q ě α 2 .

By the Gårding inequality we obtain for n large enough Op w hn ptξ 2 , ququ n , u n ě α 4

´ Op w hn ´2a 8 q `α 2 p1 ´χqpξ 2 q ¯un , u n With (4.4) and (4.6) we get lim inf nÑ8 Op w hn ptξ 2 , ququ n , u n ě α 4 .

This gives a contradiction with (4.5) and concludes the proof.

  qt pG ´pε ´iτ qq ´2Φ, Ψ KˆK dτ (see for instance Corollary III.5.16 in [EN00]). Applied with ε " 1{t this gives By the Cauchy-Schwarz inequality and (2.6) we obtain ˇˇ e tG Φ, Ψ ˇˇď cM,β }Φ} KˆK }Ψ} KˆK .

	ˇˇ	e tG Φ, Ψ ˇˇď	εe 2π	ż τ PR	› › pG ´pε ´iτ qq ´1Φ	› ›	› › pG ˚´pε `iτ qq ´1Ψ	› › dτ.

  .3) ' We have au n , u n " ´1 ε n h n Im p´h 2 n ∆ ´iε n h n a ´1qu n , u n L 2 ÝÝÝÑ For n P N we set P n " p´h 2 n ∆ ´iε n h n a ´1q. Let q P C 8 b pR 2d , Rq (the set of smooth and real valued functions with bounded derivatives). We consider the Weyl quantization of q Op w hn pqqu n , P n u n ´ P n u n , Op w hn pqqu n ȋε Op w hn pqqu n , au n ` au n , Op w hn pqqu n ˘`Oph n q, This also defines a symbol in C 8 b pR 2d , Rq and we have Op w hn pκqu n , u n " Op w hn pκqp´h 2 n ∆ ´1qu n , u n `Oph n q " Op w hn pκqP n u n , u n `Oph n q ÝÝÝÑ

	We have									
	Op w hn ptξ 2 , ququ n , u n "	1 h n	r´h 2 n ∆, Op w hn pqqsu n , u n `Oph n q
				"	h n 1	`		
	so by (4.3) and (4.4)								
							Op w hn ptξ 2 , ququ n , u n ÝÝÝÑ nÑ8	0.	(4.5)
	' Let κ P C 8 b pR 2d , Rq be equal to 0 on Let	!	px, ξq P R 2d : ˇˇ|ξ| 2 ´1ˇˇˇď	ε 0	)	for some ε 0 ą 0.
									κ : px, ξq Þ Ñ	κpx, ξq |ξ| 2 ´1 .
											(4.6)
								nÑ8	0.
	' For px, ξq P R 2d we set							
	bpx, ξq :"	2 T	ż T 0	ż t 0	a 8 px `2sξq ds dt "	2 T	ż T 0	pT ´sqa 8 px `2sξq ds.
	We have									
	bpx `2θξ, ξq "	2 T	ż T θ	`θ	pT ´s `θqa 8 px `2sξq ds,
	so									
	tξ 2 , bupx, ξq "	d dθ	bpx `2θξ, ξq ˇˇˇθ	"0
											nÑ8	0,
	and in particular		}a 8 u n } L 2 ď }au n } L 2 À	› ›	?	au n	› ›	L 2 ÝÝÝÑ nÑ8	0.	(4.4)
	' Op w h pqqupxq "	1 p2πhq	d 2	ż R d	ż R d	e	i h x´y,ξ q	ˆx	`y 2	, ξ ˙upyq dy dξ.

n `