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ABSTRACT. The development of foils for racing boats has changed the strategy of sailing.
Recently, the America’s cup held in San Francisco, has been the theatre of a tragicomic
history due to the foils. During the last round, the New-Zealand boat was winning by 8 to
1 against the defender USA. The winner is the first with 9 victories. USA team understood
suddenly (may be) how to use the control of the pitching of the main foils by adjusting the
rake in order to stabilize the ship. And USA won by 9 victories against 8 to the challenger
NZ. Our goal in this paper is to point out few aspects which could be taken into account
in order to improve this mysterious control law which is known as the key of the victory
of the USA team. There are certainly many reasons and in particular the cleverness of the
sailors and of all the engineering team behind this project. But it appears interesting to
have a mathematical discussion, even if it is a partial one, on the mechanical behaviour of
these extraordinary sailing boats. The numerical examples given here are not the true ones.
They have just been invented in order to explain the theoretical developments concerning
three points: the possibility of tacking on the foils for sailing upwind, the nature of foiling
instabilities, if there are, when the boat is flying and the control laws.

FIGURE 1. Principle of the flying boat with the AC45 of Oracle USA
Team - TV snapshot
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1. Introduction. The control of foiling during the America’s cup appeared to be a deter-
minant point in the success of Oracle Team USA (OTUSA). In particular during upwind
legs, when the boat had to avoid the waves created by the wake of the preceding boat, the
automatic stabilization is a fundamental advantage that OTUSA exploited in a smart way
and finally won the competition. Such situations are represented on the figures 2 taken
from TV transmissions during the America’s cup in San Francisco (September 2013).

FIGURE 2. Two situations where the controlled foiling could avoid to
tack and to loose the race

In this paper, we have tried to give a simple and precise mathematical model and analy-
sis of such boats. Even if a more industrial 3D analysis would be obviously more realistic,
and in order to be as simple as possible, we restrict our analysis to a bi-dimensional case.
Hence, only two movements of the ship are taken into account: the heaving which is a
normal displacement to the surface of the sea, and the pitching which is the rotation around
a horizontal axis transverse to the main direction of the ship. Hence, the yawing angle and
the rolling are eliminated from our model. Obviously they are meaningful, but according
to our mind, not necessary for the understanding of our purpose.
The inclination of the main foil should be manually driven but a hydraulic ram can be used
for the control process (rules of the race) using the high pressure collected from a small hole
in the foil. Because the system is a second order one (with inertia, damping and stiffness),
only a phase control can lead to optimal results. This driven angle is named the rake. It
appears, in the numerical simulations, that the regulation law strongly depends on the ship
velocity. Even if the experimental data that we introduce in our numerical model could be
improved, they are sufficient in order to give an idea of how things work.

The aim of this paper is to obtain a faithful dynamical model of the movement of the
boat which respects the following facts :
• the existence of the foiling velocity under which the boat can’t stand up on its foil
• the possibility that the velocity of the boat can be greater than the wind velocity,
• the possibility to discuss the stall flutter phenomenon of the foils.
The plan of our work is the following one: we first compute the aerodynamic propulsion

force due to the wind and which is applied on the sails bearing in mind its importance since
it is the unique energy source of the boat. We then establish a nonlinear model which
take into account the apparent velocity of the water flow at the rear and main foils. We
then analyze the steady state of the non linear model and a numerical study will point out
the overspeed phenomenae. We finally study the stability of the linear model and discuss
the stall-flutter phenomenon. A part of the work was the characterization of the foiling
velocity at which the boat takes off. All our theoritical work is illustrated with numerical
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results with computations performed with Matlab. The fundamental tools for the numerical
analysis are developped in the book of P.-G. Ciarlet [4].

2. Dynamical model of the boat.

2.1. Description of the boat and main notations. The orthonormal basis of R3 is denoted
by (ex, ey, ez). The velocity of the boat is −uex where u > 0 and therefore the velocity of
the flow of the water in the basis connected to the boat is uex.As said before, the movement
is assumed to be represented by two functions (see figure 3): the heaving z and the pitching
angle γ in the plan (ez, ex). The equilibrium is written at an arbitrary point - say O. For
sake of convenience, it is chosen to be the center of rotation of the main foil.

FIGURE 3. The boat with the foils

The following notations are used:
Characteristics of the boat, of the air and of the water:
� %a mass density of the air,
� %e mass density of the water,
� g = 9.81m/s2 is the gravity,
� −uex velocity of the ship,
�M is the mass of the ship,
� G center of mass of the boat,
� JG is the inertia around the center of mass G in the pitching,
� JO is the inertia around the center of mass O in the pitching,
�Mo is the moment of the external forces at point O in the pitching,
� ds = O′S is the length of the stick supporting the steering rudder, O′ being the anchor

point of the rear foil;
� df = OF is the length of the foil in the depth direction;
� Ss, Sf are respectively the cross sections of the foils at the extremities of the rudder

and the main foil;
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� a (respectively b) is the distance between the center of mass and O (respectively O′)
� h = a+ b = OO′

� dog is the distance from the rotation point of the foil to the center of mass of this foil
Variables for the description of the movement of the boat:
� z is the heaving
� γ is the pitching angle
For the angles, apparent velocities and forces:
� α is the angle of attack of the mail foil,
� β is the angle of attack of the rear foil, it is supposed to be fixed,
� czf and czs are the lift hydrodynamic coefficients for the main foil and the rear foil.

They are continuous in their variables,
� cmf et cms are the pitching hydrodynamic coefficients at points F and S. They are

continuous functions in their variables,
� v is the absolute wind velocity: it is in the plane (ex, ey),
� V the modulus of v, absolute wind velocity,
� θ = ̂(v,−ex) is the angle between the velocity of the wind and the direction in which

the boat is moving forward,
� Va is the modulus of the apparent velocity of the wind,
� Vas, Vaf are respectively the apparent flow velocity at the two foils: one on the rudder

and the other one which, is the main one, supported by the daggerboard;
� u is the modulus of the velocity of the ship,
� cf and ξ are respectively the stiffness and the damping coefficient of the system used

for the stabilisation of the main foil.
The forces applied to the ship and implying an evolution of these two previous functions,

are those due the rear and the main foils. The local hydrodynamical coefficients (cz for the
lift and cm for the pitching moment) depend respectively on the apparent local angle of
attack of each foil. For the rear foil, it is denoted by (β + γ)a and (α + γ)a for the main
one.

2.2. The apparent velocity of the wind. Even if it is a side subject for our main purpose,
it is worth to recall how the apparent wind velocity can induce overspeed for particular
positions of the boat with respect to the direction of the wind. The formulae used in this
section, aren’t original. Our goal is only to show with a simple numerical simulation,
the influence of various parameters on the boat velocity and mainly the one of the sailing
position and of the drag coefficient of the bows or the foils in the water.
Let us consider the situation represented on figure ??. Following the notations of this figure,
the apparent wind velocity is given by:

va = v − uex = −(V cos(θ) + u)ex + V sin(θ)ey, (1)

and its modules is equal to:

V 2
a = V 2[1 +

u2

V 2
+ 2

u

V
cos(θ)]. (2)

The apparent angle between the normal to the sail plane and this apparent wind velocity is
µa = (̂n, va) and it satisfies:

va = Va cos(
π

2
+ µa)τ + Va sin(

π

2
+ µa)n = Va[cos(µa)n− sin(µa)τ ]. (3)



SAILING BOATS WITH FOILS 5

FIGURE 4. The sail plane and the apparent wind

and therefore:
va.n = Va cos(µa) = (v − uex).n = v.n− sin(ζ)u

= −V cos(θ) sin(ζ) + V sin(θ) cos(ζ)− sin(ζ)u

= V sin(θ − ζ)− sin(ζ)u.

Using (3), we get:
Va cos(µa) = V sin(θ − ζ)− sin(ζ)u,

and thus:

µa = arccos

( sin(θ − ζ)− u

V
sin(ζ)√

1 +
u2

V 2
+ 2

u

V
cos(θ)

)
. (4)

The propulsion force due to the wind denoted by Fx, is the projection on the direction
ex of the aerodynamical force applied to the sail. For sake of simplicity it can be written
(the square of the cos(µa) takes into account the normal component of the apparent wind
velocity and n is the unit normal to the sail plane):

Fx =
1

2
ρaSa(va.n)2cxan.ex.

In fact, a correction coefficient is included in the surface Sa which takes into account the
aerodynamical coefficient cz(µa) of the sail. With (3), we get:

Fx =
1

2
ρaSaV

2
a cos2(µa)cxa sin(ζ).

The drag force is the sum of two contributions: one due to the sail and another one due
to the drag in the water of the bows (zero during the flight) and the foils which are always
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immersed. Furthermore, the last term depends on both β + γ and α + γ. Let us assume
that this drag force can be evaluated by:

Tx =
1

2
ρeSeu

2cxe,

where Se is the cross section immerged into the water and cxe the corresponding drag
coefficient. In fact, the important number is the product Secxe. It is about 1.5 m2 for a ship
floating and about .1 m2 for a flying one as far as the profil of the foils are correctly drawn.

2.3. The overspeed phenomenon . We deduce that the velocity u of the boat is obtained
by solving the equation:

Fx − Tx = 0.

Due to the complexity of this equation, it is easier to perform numerical tests. We have
drawn on Figure 5 the sign of the function Fx − Tx with respect to the two variables u on
the abscissa which is the velocity of the ship and ζ on the ordinate which is the angle of the
sail plane with the direction ex (velocity of the boat). The boundary between the two areas
(black and white) are the solutions.

The Figure 5a is concerned with a floating boat (which have its bows in the water)
whereas Figure 5b and Figure 5c illustrate the case of a flying boat.

For the floating boat, it appears, with the set of data used, that the absolute wind velocity
can’t be overtaken with our choice for the physical data. For the flying boat, the absolute
wind velocity can be exceeded. This is due to the reduction of the drag force on the bows
in the water. In fact the pictures on these figures show that a tacking for upwind sailing is
much better with large angles concerning the velocity because it enables to make the boat
flying above the water using the foils. And even if the distance covered is more important,
the time necessary can be smaller. But the flight must be stabilized similarly to what is
done with an aircraft. Because, even if the flight is stable, there can be perturbations due to
the gravity waves for instance. This is more critical if the boat has to cross over the wake
of a preceding boat. In fact the phenomenae are very close for a simple reason: the ratio
between the aerodynamical forces on the wing of an aircraft is similar to the one applied
to the foil of a flying ship. In fact, the ratio between the mass density of the water and the
one of the air is about 1000/1.2 ' 833 and the one between the square of the velocities is
about (10/290)2 ' 1/841.

And the equivalence is deduced from the fact that the forces are proportional to the mass
density times the square of the velocity.

3. Dynamical equations.

3.1. The apparent flow velocities on the foils. The apparent velocity of the water on the
foils implies the terms γ̇ and ż. It is the difference between the wind velocity and the one
of the boat. First of all, let us give the expressions of the velocities of the points S and F
corresponding respectively to the rudder and the main foil where the hydodynamic forces
are given from hydrotunnel tests. We refer to Figure 3.

One has:

Vs =

(
ż − hγ̇ cos(γ)

)
ez − hγ̇ sin(γ)ex +

d
−−→
O′S

dt
.

On another way, we have:
−−→
O′S = ds cos(γ − π

2
)(−ex) + ds sin(γ − π

2
)ez

= −ds sin(γ)ex − ds cos(γ)ez,
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A floating boat : SCxe = 0.3 m2, V = 20m/s
θ = 0.67rd (left ) and θ = 1.03rd (right)

Figure 5a. The speed is smaller than V .
A flying boat: SCXe = 0.01 m2, V = 10 m/s

θ = 0.67rd (left ) and θ = 1.03rd (right)

Figure 5b. The speed can be greater than 2V.
A flying boat: SCXe = 0.01 m2, V = 20 m/s

Figure 5c. The speed can be greater than 2V.

FIGURE 5.
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and therefore the velocity of the flow at point S is equal to:

Vs =

(
ż − hγ̇ cos(γ) + dsγ̇ sin(γ)

)
ez +

(
− hγ̇ sin(γ)− dsγ̇ cos(γ)

)
ex. (5)

We get analogous results at point F where the velocity of the flow is:

Vf =

(
ż + df (α̇+ γ̇) sin(α+ γ)

)
ez − df (α̇+ γ̇) cos(γ)ex. (6)

The computations of the hydrodynamic apparent velocities are performed at points S et F
in the axis (ex, ez). These apparent flow velocities are defined as the difference between
the absolute flow velocity and the one of the point considered. Let us notice that there
are two different notions for the apparent velocity: the one of the wind and the one of the
hydrodynamic flow on the foils. From now on, it is the second one which is taken under
consideration. It is given by the following formulae where V is therefore the apparent flow
velocity:

Vas = uex − Vs et Vaf = uex − Vf ,
and we then obtain:

Vas =

(
u+ γ̇(h sin(γ) + ds cos(γ))

)
ex −

(
ż − γ̇(h cos(γ)− ds sin(γ))

)
ez (7)

and

Vaf =

(
u+ df (α̇+ γ̇) cos(γ + α)

)
ex −

(
ż + df (α̇+ γ̇) sin(γ + α)

)
ez. (8)

Furthermore, the hydrodynamic apparent angle of attack of both the extremity of the
rudder and the one of the driven foil, which are denoted by (β+ γ)a et (α+ γ)a, are given
by the following expressions ((., .)3 is the scalar product in R3):

(β + γ)a = arsin
(

(ey,
Vas
|Vas|

∧ (cos(β + γ)ex − sin(β + γ)ez)3

)

(α+ γ)a = arsin
(

(ey,
Vaf
|Vaf |

∧ (cos(α+ γ)ex − sin(α+ γ)ez)3

)
.

(9)

3.2. The equations of the movement of the boat. The equations of the movement are the
following ones (the righthandside is derived from the factor of ż and γ̇ in the expression of
the power of the hydrodynamical forces):

Mz̈ − aM cos(γ)γ̈ = −Mg +
%eSs|Vas|2

2
czs((β + γ)a)

+
%eSf |Vaf |2

2
czf ((α+ γ)a),

−aM cos(γ)z̈ + J0γ̈ = −%eSs(h cos(γ)− ds sin(γ))|Vas|2

2
czs((β + γ)as)

+
%eSfdf sin(α+ γ)|Vaf |2

2
czf ((α+ γ)af )−M0

+
%eSsL|Vas|2

2
cms((β + γ)a) +

%eSfL|Vaf |2

2
cmf ((α+ γ)a).

(10)
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If the point O was chosen as the center of hydrodynamic forces, then one would have
M0 = 0.

3.3. On the steady state. First of all, let us characterize the equilibrium position of the
ship. The term (α0, β0) corresponding to the equilibrium of the ship over the water (γ = 0)
is solution of:

Ssczs(β
0) + Sfczf (α0) =

2Mg

%eu2
,

−Ssh
L
czs(β

0) +
Sfdf sin(α0)

L
czf (α0) + Sscms(β

0) + Sfcmf (α0) =
2M0

%eLu2
.

(11)

It can happen that there is no solution to system (11) and there may be several reasons
for this : for instance, it could be because there is no solution at all or because there is no
acceptable solution. Indeed, the angles α0 and β0 must be small enough and the interval
[−π

8
,
π

8
] seems to be reasonable. Or course, in order to solve (11), we have to know the

different hydrodynamic coefficients involved in it. We assume in the following computa-
tions that these coefficients depend linearly on their variable. It means that the angles α0

and β0 are assumed smaller than the static stall values. We prove the following theorem:

Theorem 3.1. (i) There exists uf > 0, such that for u < uf , system (11) has no solution.
(ii) In case of linear hydrodynamic coefficients, one can choose uf > 0 such that system

(11) has a unique solution for u ≥ uf and uf can be explicitely computed.

Proof
(i) Let us define

G(α0, β0) =



%e
2Mg

(
Ssczs(β

0) + Sfczf (α0)

)
%eL

2M0

(
− Ssh

L
czs(β

0) +
Sfdf sin(α0)

L
czf (α0)

+Sscms(β
0) + Sfcmf (α0)

)
.

System (11) can be written as G(α0, β0) =
1

u2

(
1
1

)
. Let us denote by ∆ the first bisector

of R2. System (11) has at leat one solution if and only if

1

u2

(
1
1

)
∈ G([0, 2π]2) ∩∆.

The set G([0, 2π]2) ∩∆ is bounded since G is continuous. Let us set:

U0 = max
(x,x)∈G([0,2π]2)∩∆

|x|.

A necessary condition for having solution is:

1

u2
≤ U0

and thus u ≥ 1√
U0

. The non negative real uf =
1√
U0

is convenient in order to prove the

point (i).
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(ii) We assume that the four hydrodynamic coefficients are linear. Let us write:

czs(ξ) = Rzsξ,

czf (ξ) = Rzfξ,

cms(ξ) = Rmsξ,

cmf (ξ) = Rmsξ.

(12)

By simplifying equation (11), we can easily prove that α0 is solution of:

Aα0 +Bα0 sin(α0) =
C

u2
, (13)

where coefficients A,B et C do not depend on the velocity u. Indeed, their values are

A =

(
h

L
SfRzfRzs + SfRmfRzs − SfRmfRzf

)

B =
h

L2
SfdfRzfRzs

and

C =
1

ρe

(
2Mgh

L
Rzs +

2M0

L
Rzs − 2MgRms

)
.

Let us set f(α0) =
1

C
(Aα0 +Bα0 sin(α0)). A necessary condition for existence of solu-

tion of (13) is that u satisfies:

u ≥ 1√
max|α0|≤π/8(|f(α0)|)

.

Taking into account an analogous condition for the angle β0, we introduce a critical speed
nammed foiling velocity and defined by:

uf = max

(
1√

max|α0|≤π/8(|f(α0)|)
, min

|β0(u)|≤
π

8

|u|)
)
. (14)

The value uf is the minimum speed for which the boat can stand up on the foils. It is
obvious that, if A 6= 0, the function f is one to one in a neighborhood of 0. Hence, the best
value of uf can be explicited : it depends of all the parameters that appear in A,B and C.
The proof of (ii) is complete.

The graphs that follow on Figures 6 and 7 provide the function |f | and the steady angles
α0 et β0 for a = 0.2. The foiling speed is nearly 7.2m/s for a 1000 kg boat which seems
reasonable. Of course, the foiling speed depends on the mass of the boat.

3.4. Linearization of the equations. The discussion on the dynamical stability will be
organized from a linearization of these equations around the steady angles α0, β0 solutions
of (11). The variables are z and γ. The first step is to formulate the linearized model around
an equilibrium position solution of (11). Let us recall that β is assumed to be fixed (equal to
β0), and the evolution of the pitching angle of the rear foil is only due to the global pitching
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FIGURE 6. Graph of the function |f |

FIGURE 7. The evolution of the steady equilibrium angles

of the boat -say γ. We write δ = α − α0. In a formal way one can write this linear model
as follows:{

Mz̈ − aMγ̈ = F1 +K1z + T1γ + C11ż + C12γ̇ +B1δ + E1δ̇,

−aMz̈ + J0γ̈ = F2 +K2z + T2γ + C21ż + C22γ̇ +B2δ + E2δ̇,
(15)

In practice, the coefficients C11, C12, C21 and C22 could be computed using a symbolic
computation software if for instance a three dimensional modelling would be concerned.
In our two dimensional case it is still possible to perform a hand computation.

We introduce the several matrices of the system - say -M, C et K,

M =

(
M −aM
−aM J0

)
, C =

(
C11 C12

C21 C22

)
, K = −

(
K1 T1

K2 T2

)
, (16)
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and the righthandsides F0, B, E are defined by:

F0 =

F1

F2

 , B =

B1

B2

 , E =

E1

E2

 . (17)

System (15) can now be written: find X =

z
γ

 satisfying

MẌ − CẊ +KX = F0 + δB + δ̇E , (18)

with initial data X(0) = X0 ∈ R2 and Ẋ(0) = X1 ∈ R2. For ξ1 and ξ2 small enough, we
set: 

czs(β
0 + ξ) = c0zs +Rzsξ + o(ξ),

czf (α0 + ξ) = c0zf +Rzfξ + o(ξ),

cms(β
0 + ξ) = c0ms +Rmsξ + o(ξ),

cmf (α0 + ξ) = c0mf +Rmsξ + o(ξ).

(19)

Obviously, we get on the one hand:
czs(β

0) = c0zs, czf (α0) = c0zf , cms(β0) = c0ms, cmf (α0) = c0mf ,
and on the other hand:

Rzs = c′ms(β
0), Rzf = c′zf (α0), Rms = c′ms(β

0) et Rmf = c′mf (α0).
Let us define:

F(z, γ, ż, γ̇, δ, δ̇) = −Mg +
%eSs|Vas|2

2
czs((β + γ)a) +

%eSf |Vaf |2

2
czf ((α+ γ)a),

and:

G(z, γ, ż, γ̇, δ, δ̇) = −%eSs(h cos(γ)− ds sin(γ))|Vas|2

2
czs((β + γ)as)−M0+

+
%eSfdf sin(α+ γ)|Vaf |2

2
czf ((α+ γ)af ) +

%eSsL|Vas|2

2
cms((β + γ)a)+

+
%eSfL|Vaf |2

2
cmf ((α+ γ)a),

the righthandsides of the system (10).
The expressions in (15) are (recall that the steady state is oftendenoted by 0) F1 = F(0),

F2 = G(0) and partial derivatives of the fonctions F and G with respect to z, γ, ż, γ̇, δ, δ̇ at
the equilibrium point (in apparition order). With (11), we can assume F(0) = G(0) = 0
thus F1 = F2 = 0 and F0 = 0. The following Lemma is useful for the computation of the
derivatives.

Lemma 3.2. We get at the equilibrium point (α0, β) the following expressions:

• ∂Vaf
∂α

=
∂Vaf
∂γ

= 0 • ∂|Vaf |
2

∂ż
= 0

• ∂

∂ż
(
Vaf
|Vaf |

) = − 1

u
ez • ∂|Vaf |

2

∂γ̇
= 2udf cos(α0)

• ∂|Vaf |
∂γ̇

= df cos(α0) • ∂

∂γ̇
(
Vaf
|Vaf |

) = − 1

u
df sin(α0)ez
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• ∂Vas
∂α

(0) =
∂Vas
∂γ

(0) = 0 • ∂|Vas|
2

∂ż
= 0

• ∂

∂ż
(
Vas
|Vas|

) = − 1

u
ez • ∂|Vas|

∂γ̇
= ds

• ∂|Vas|
2

∂γ̇
= 2uds • ∂

∂γ̇
(
Vas
|Vas|

) =
h

u
ez

• ∂(β + γ)a
∂ż

= − 1

u
• ∂(β + γ)a

∂γ̇
=
h

u

• ∂(α+ γ)a
∂α

=
∂(α+ γ)a

∂α
= 1 • ∂(α+ γ)a

∂ż
= − 1

u

• ∂(α+ γ)a
∂γ̇

= −df sin(α0)

u

The proof, which rests on a simple but long computation, is left to the reader.

3.4.1. Computation of the stiffness matrix K. One obtains:

K1 = K2 = 0 and thus K = −

0 T1

0 T2

 ,

with

T1 = ρe
u2

2
[SsRzs + SfRzf ]

and

T2 =
ρeSs

2
Lu2Rms +

ρeSf
2

Lu2Rmf

+
ρeSf

2
df cos(α0)u2c0zf +

ρeSf
2

df sin(α0)u2Rzf

+
ρeSs

2
dsu

2c0zs −
ρeSs

2
hu2Rzs.

We introduce the opposite of the dynamical stiffness :

R1 = (
SsRzs

2
+
SfRzf

2
),

and

R2 =
1

2
[−SshRzs + Sfdf sin(α0)Rzf + SsLRms + SfLRmf

+Ssdsc
0
zs + Sfdf cos(α0)c0zf ].

(20)

The stiffness matrix is then:

K = −ρeu2

0 R1

0 R2

 .

3.4.2. Computation of the matrix C. The coefficients are given explicitely in the following
table:
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Coefficient Expression of the coefficients of the matrix C around γ = 0
2

1

C11 −ρe
2
u

(
SsRzs + SfRzf

)

C12 ρeu

(
Ssdsc

0
zs + Sfdf cos(α0)czf +

Ssh

2
Rzs −

Sfdf
2

sin(α0)Rzf

)

C21
ρeu

2

(
− SsLRms − LSfRmf − Sfdf sin(α0)Rzf + SshRzs

)

C22

−%eSshu
2

[2dsc
0
zs + hRzs] +

%euSfd
2
f

2
[sin(2α0)c0zf − sin(α0)2Rzf ]

+
%euLSs

2

[
2dsc

0
ms + hRms

]
+
%euL

2
Sfdf

[
− sin(α0)Rmf + 2 cos(α0)c0mf

]

Table 2 Expressions of the coefficients Cij around γ = 0 versus α and β

4. Stability of the boat.

4.1. Static stability. We assume in this subsection that the apparent flow velocity is neg-
ligible (C = 0), and that the angles of attack at the main and the rear foils are solution of
(11) with a velocity larger than the foiling one (it is the one for which the foiling appears).
The model is:

MẌ +KX = 0. (21)

Let us set Y =

(
Ẋ
X

)
. We obtain Y ∈ R4 and

Ẏ =

(
O2 −M−1K
I2 O2

)
Y

We introduce the matrix 4× 4 A :

A =

(
O2 −M−1K
I2 O2

)
.

The solutions of
Ẏ = AY

are Y (t) = eAtY0 where Y (0) = Y0. The stability is governed by the sign of the real part
of the eigenvalues of the matrixA and more precisely the stability is acted if : (σ(A) is the
spectrum of A)

∀λ ∈ σ(A), Re(λ) ≤ 0.

A vector v 6= 0 is an eigenvector of A if one can find λ ∈ C such that Av = λv. One can

write with v =

(
v1

v2

)
where vi ∈ C2 (i=1,2):{

−M−1Kv2 = λv1,
v1 = λv2

,
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or equivalentely : (λ2I2+M−1K)v2 = 0 with v2 6= 0.We then deduce that the eigenvalues
are also the solutions of

det(λ2M+K) = 0.

Let us write (recall that JG = J0 − a2M ):

det(λ2M+K) = λ4MJG − λ2ρeu
2M(aR1 +R2).

The value λ0 = 0 is an eigenvalue because of the heaving which is not restricted, and the
others one are the solutions of

λ2 =
ρeu

2

JG
(aR1 +R2).

If aR1+R2 > 0, one of them is non negative and therefore an instability (which is coupling
between heaving and pitching) may appear. The stability is ensured if :

aR1 +R2 < 0. (22)

In that case, the solutions are λ = ±iµ where µ is the pulsation of the movement and we
have:

µ = u

√
%e|aR1 +R2|

JG
.

The frequency is f =
µ

2π
. Let us notice that the existence of the instability depends only

of u via the angles β0 and α0. There is no direct dependence. For a small enough, the sign
of aR1 +R2 is the same as the sign of R2 and is therefore equal to the sign of the trace of
the matrix (K) which is non negative. We deduce that the eigenvalues of K are λ1 = 0 and
λ2 = −ρeu2R2 > 0. If a = 0, it is easy to check that

J0γ̈ + λ2γ = 0.

Therefore

γ(t) = γ0 cos(

√
λ2

J0
t) +

γ1

√
J0√
λ2

sin(

√
λ2

J0
t).

Since z̈ = −λ2

M
γ, and since the initial data must satisfy (11), one can see that the angle of

attack of the main foil α0 must be adjusted in order that the boat resists capsizing.
The Figures 8 and ?? illustrate the numerical computation of the eigenvalues when the

hydrodynamics coefficients linearly depend of their variables for sake of simplicity. The
velocity u begins at 1m/s and up to 10m/s with 300 steps in time. At each iteration, the
values of the angles β0 and α0 at the equilibrium are computed with the formulae (11).
Once computed, the spectrum of the matrix A is obtained. We have drawn the real part
(damping or increase) and the frequency of the movement f with respect to the velocity u.
We can notice an instability in heaving due to the double null eigenvalue. The pitching is
stable since 0 is the only real eigenvalue. Moreover, a > 0 means that the center of mass
of the boat is behind (but not far from ) the point O. We have drawn the graphs for a = 0.2
and a = 0.8 with h = 5. The frequencies seems to be near 1Hz or 1.5 Hz for large values
of u. There is an instable region for small speeds for a = 0.8m.

The Figures 10 presents the same graphs for h = 7. One can notice that the movement
is stable for both values of a = 0.2 and a = 0.8.

The Figures 11 and 12 for different hydrodynamics coefficients, smaller at point S than
at point F , for h = 5. Same graphs for h = 7 concern the Figure ?? and Figure ??.

The Figures 13 and 14 concern the previous phenomenon. On Figure 13, we have drawn
R2 + aR1 with respect to a and u (recall that the stability is ensured if R2 + aR1 < 0).
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FIGURE 8. The evolution of the spectrum versus the velocity of the boat
with a = 0.2m and h = 5m

FIGURE 9. The evolution of the spectrum versus the velocity of the boat
with a = 0.8m and h = 5m

One can notice that for large value of the parameter a (the distance between the center
of mass and the daggerboad), there is a critical value uc = uc(a) under which instability
may occur. The Figure 14 is the graph of uc with respect to a. These graphs are achieved
with h = 5. The Figures 15 and 16 illustrate the same phenomenon in the case of different
hydrodynamics coefficients.
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FIGURE 10. The evolution of the spectrum versus the velocity of the
boat with a = 0.8m (left) and a = 0.2m (right) with h = 7m

FIGURE 11. The evolution of the spectrum versus the velocity of the
boat with a = 0.2m (left) and a = 0.8m (right), h = 5m and different
hydrodynamics coefficients

FIGURE 12. The evolution of the spectrum versus the velocity of the
boat with a = 1m (left) and a = 0.8m (right) with h = 7m and different
hydrodynamics coefficients

4.2. Dynamic stability. Let us notice that the dynamical behavior of a single foil is pre-
sented in [8] where the hydroelastic response and stability of both rigid and flexible 2D
hydrofoils in viscous flow is discussed from experimental and numerical aspects. There
are in general four kinds of dynamic instabilities which can occur in general.
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FIGURE 13. The criterium of stability with respect to a and u

FIGURE 14. The critical velocity with respect to a is sensitive to small
value of a

1. One is well known by the sailors. It concerns induced vibrations on the rudder due to
vortices created by the main foil. But, this so called buffting effect (see [5] [9]), can
occur only for very particular cases. In our case it would be due to a vortex shedding
from the main foil onto the one of the rudder. And it would appear if the frequency
of the vortices is close to the one of the rudder and its foil. It is quickly detected
and should be suppressed by an ad’hoc conception of the ship. It is not necessarily
destroying but can reduce considerably the efficiency as far as it takes energy from
the kinetical energy of the boat.

2. The second one is the classical flutter which is violent and corresponds usually to the
unlimited exchange of energy between two movements with the same eigenfrequency
(here for the heaving and the pitching). Clearly the secure flight of a ship would be
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FIGURE 15. The criterium of stability with respect to a and u

FIGURE 16. The critical velocity with respect to a is sensitive to small
value of a

seriously compromised by such an instability implying an exponential increase of the
movement of the ship [9]. It would be difficult to control it using the main foil without
additional lifting supplementary wing. Furthermore, because the phenomenon is very
quick and complex, its control requires an automatic loop driven by an electronic
computer. In fact as far as the boat is flying over the water, there no stiffness on the
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heaving excepted the one due to the hydrodynamical forces acting on the foils which
are fully immersed in our model. May be it would be different if the bows were in
contact with the water and the Archimède forces would operate.

3. The third possibility of instability is due to a fluctuation of the wind velocity. It is a
rather complex phenomena implying the apparent flow velocity but mainly the per-
turbation of the flow due to vortex shedding. The rudder is the part mainly concerned
by this phenomenon due to the turbulence generated from the main foil. It is under
the skipper/helmsman control. It is discussed in section 2.2. It could be compared
from the mathematical point of view to the buffting phenomenon.

4. The fourth dynamical instability and the last one in our discussion, is due to the
apparent water velocity on the foils. It could be compared to a stall flutter phenome-
non as the one encountered in the breakdown of the famous Tacoma-Narrows bridge
which collapsed on November 1940. This accident was correctly explained forty
years later by R. Scanlan [11] and the final explaination rests on the apparent flow
velocity. From the mechanical point of view, the phenomenon can be understand as a
negative damping. See also [6] for a similar collapse of a model of a military aircraft.

We are mainly interested in this paper in the case of stall flutter phenomenon (case 4).
We then consider the model:

MẌ − CẊ +KX = 0. (23)

We still set Y =

(
Ẋ
X

)
. We have Y ∈ R4 and :

Ẏ =

(
M−1C −M−1K
I2 O2

)
Y

Following the previous section, we have to consider the spectrum of the following matrix
A:

A =

(
M−1C −M−1K
I2 O2

)
.

Let v 6= 0 be an eigenvector of A. One has Av = λv (λ ∈ C) and with v =

(
v1

v2

)
with

vi ∈ C2 (i=1,2): {
M−1Cv1 −M−1Kv2 = λv1,
v1 = λv2,

which leads to
(λ2I2 − λM−1C +M−1K)v2 = 0,

with v2 6= 0. Therefore
det(λ2M− λC +K) = 0,

which is an equation like λ(Aλ3 + Bλ + C) = 0. The stability of (23) is ensured if the
solutions are simple and with a negative real part. We have λ = 0 or:

λ3mJG − λ2(mc22 + c11J0 + a(c21 + c12)) + λ(c11c22 − c21c12 − ρemu2(R2 + aR1))

+ρeu
2(c11R2 − c21R1) = 0.

If one consider the pulsation, then λ = iµ and µ is solution of

det(−µ2M− iµC +K) = 0,

and the stability condition becomes Im(µ) > 0.
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The Figures 17 concerns the dynamic stability. On the upper graph of the Figure 17(left),
we have drawn the maximum and minimum of the real part of the spectrum. On the cen-
tered graph, we have drawn the frequencies, and the down graph is the one of the equilib-
rium angles. On the Figure 17 (right), we have drawn the maximum of the real part of the
spectrum A with respect to the speed. The parameters are: a = 1m and h = 5m. The
Figures 18 concerns the case a = 0.2m et h = 5m. On Figures 22, 23 and 24, the criterion
of stability is drawn with respect to a and u respectively in case of identical hydrodynamic
coefficients for h = 5m, h = 7m and different hydrodynamic coefficents (czs and czf ): the
stability is ensured under the plan z = 0.

FIGURE 17. The spectrum (left) and criterium of stability (right) for a =
1 and h = 5

FIGURE 18. The spectrum (left) and criterium of stability (right) for a =
0.2 and h = 5.

The Figure 20 and 19 concern the case of different hydrodynamic coefficients for de-
creasing value of the parameter a and h = 5.As shown on Figure 19, the stability is ensured
but one can see that the eigenmodes are quite differents.

The Figure 21 concerns the case of different hydrodynamic coefficients for a and h = 7.
Same phenomena occur.
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FIGURE 24. The criterium of stability in case of different values of the
hydrodynamic coefficients
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