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Stability of planar traveling fronts in bistable reaction-diffusion systems

This paper is concerned with the multidimensional stability of planar traveling fronts in bistable reaction-diffusion systems. It is first shown that planar traveling fronts are asymptotically stable under spatially decaying initial perturbations by appealing to the comparison principle and super-subsolution method. In particular, if the perturbations belong to L 1 (R n-1 ) in a certain sense, we obtain a convergence rate like t -n-1

2 . Then we show that the solution of the Cauchy problem converges to the planar traveling front with rate t -n+1 4 for a spatially non-decaying perturbation with the help of semigroup theory. Finally, we prove that there exists a solution oscillating permanently between two planar traveling fronts, which indicates that planar traveling fronts are not always asymptotically stable in multidimensional space under general bounded perturbations.

Introduction

In this paper, we study the large time behavior of the following Cauchy problem:

   ∂u ∂t = ∆u + f (u), x = (x 1 , . . . , x n ), t > 0, u(x, 0) = u 0 (x), x = (x 1 , . . . , x n ), (1.1) 
where u = u(x, t) = (u 1 , . . . , u m ) ∈ R m , (x, t) ∈ R n × R + with n ≥ 2. In the sequel, we assume that f satisfies the following hypotheses.
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(H1) There exist only two equilibrium E -< E + of f , and E ± are stable. That is, f (E ± ) = 0, λ ± := s(f ′ (E ± )) < 0, where s(A) := max ¶Reλ♣ det(λI -A) = 0♦. We also assume that the matrices f ′ (E ± ) are irreducible. (H2) The nonlinearity f (u) = (f 1 (u), . . . , f m (u)) is defined on an open domain Ω ⊂ R n and of class C 1+α in u. Moreover, f satisfies the following conditions:

∂f i ∂u j ≥ 0 for all u ⊂ [E -, E + ] ⊂ Ω and 1 ≤ i ̸ = j ≤ m.
Moreover, there exist nonnegative constants L ± ij such that

∂f i ∂u j + L - ij ¶u i -E - i ♦ -+ L + ij ¶E + i -u i ♦ -≥ 0 for i ̸ = j and u ∈   E -,  E +  ⊂ Ω ,
where  E -< E -< E + <  E + and for any a ∈ R, ¶a♦ -=  0, a ≥ 0, -a, a < 0.

According to [START_REF] Wang | Traveling curved fronts in monotone bistable systems[END_REF], we define a function  f = (  f 1 , . . . ,  f m ) as

 f i (u) = f i (u) +  1≤j≤m,j̸ =i L - ij ¶u i -E - i ♦ -(u j -E - j ) +  1≤j≤m,j̸ =i L + ij ¶E + i -u i ♦ + (u j -E + j ) for u ⊂   E -,  E +



. By Theorem 2.2 and Corollaries 1 and 2 in [START_REF] Wang | Traveling curved fronts in monotone bistable systems[END_REF], the comparison principle follows immediately on [E -, E + ].

Here, we state some notations which will be used in this paper. For simplicity, we use 0 and 1 to denote column vectors (0, . . . , 0) and (1, . . . , 1), respectively. In addition, ∆, ∆ x ′ and ∇ x ′ refer to

 n-1 i=1 ∂ 2 ∂x 2 i + ∂ 2 ∂ξ 2 ,  n-1 i=1 ∂ 2 ∂x 2 i and  ∂ ∂x1 , . . . , ∂ ∂xn-1  , respectively.
It is known from [START_REF] Volpert | Travelling Wave Solutions of Parabolic Systems[END_REF] that the one dimensional problem

∂u ∂t = ∆u + f (u), (x, t) ∈ R × R +
admits a planar traveling front Φ(x + ct) = (φ 1 (x + ct), . . . , φ m (x + ct))

satisfying      φ ′′ i -cφ ′ i + f i (Φ) = 0, Φ(±∞) := lim ξ→±∞ Φ(ξ) = E ± , φ ′ i > 0 (1.2)
for i = 1, . . . , m, where ξ = x + ct. It is evident that such a front is also a solution of (1.1).

Stability is an important topic in the study of traveling fronts of reaction-diffusion equations [START_REF] Volpert | Travelling Wave Solutions of Parabolic Systems[END_REF]. Recently, an increasing attention has been paid to the study of multidimensional stability of traveling fronts.

For instance, Xin [START_REF] Xin | Multidimensional stability of traveling waves in a bistable reaction-diffusion equation I[END_REF] showed that the stability in one space dimension implies the stability in multiple dimensions for a scalar reaction-diffusion equation when n ≥ 4 with perturbations decaying like t -(n-1)/4 by appealing to the theory of semigroups. Levermore and Xin [START_REF] Levermore | Multidimensional stability of traveling waves in a bistable reaction-diffusion equation II[END_REF] further studied the same problem with the help of the maximum principle and energy methods, they obtained that the planar traveling front is stable in any compact set moving with the wave for n ≥ 2. Kapitula [START_REF] Kapitula | Multidimensional stability of planar traveling waves[END_REF] extended the result in [START_REF] Xin | Multidimensional stability of traveling waves in a bistable reaction-diffusion equation I[END_REF] to reaction-diffusion systems for the case n ≥ 2 by considering a drift of perturbations along translates of the wave under a spectral hypothesis on the one-dimensional linearized operator around the traveling front (see Hypothesis 1.1 in [START_REF] Kapitula | Multidimensional stability of planar traveling waves[END_REF]). Matano et al. [START_REF] Matano | Stability of planar waves in the Allen-Cahn equation[END_REF] treated the L ∞ -stability in multidimensional space to Allen-Cahn equations under general initial perturbations. In particular, they proved that if the initial perturbations belong to L 1 ∩ L ∞ in a certain sense, then the solution of the Cauchy problem goes to the planar traveling front algebraically. Zeng [START_REF] Zeng | Stability of planar travelling waves for bistable reaction-diffusion equations in multiple dimensions[END_REF] considered the multidimensional stability of bistable reaction-diffusion equations and got an algebraic rate as time goes to infinity of planar traveling fronts in L ∞ . Lv and Wang [START_REF] Lv | Stability of planar waves in reaction-diffusion system[END_REF] generalized the results in [START_REF] Matano | Stability of planar waves in the Allen-Cahn equation[END_REF] to two species Lotka-Volterra competition-diffusion system. Other related works can be referred to [START_REF] Chen | Multidimensional stability of disturbed pyramidal traveling fronts in the Allen-Cahn equation[END_REF][START_REF] Sheng | Multidimensional stability of time-periodic planar traveling fronts in bistable reaction-diffusion equations[END_REF][START_REF] Sheng | Multidimensional stability of V-shaped traveling fronts in the Allen-Cahn equation[END_REF][START_REF] Roquejoffre | Nontrivial large-time behaviour in bistable reaction-diffusion equations[END_REF][START_REF] Matano | Large time behavior of disturbed planar fronts in the Allen-Cahn equation[END_REF][START_REF] Lv | Stability of planar waves in monostable reaction-diffusion equations[END_REF][START_REF] Lv | Stability of planar waves in reaction-diffusion system[END_REF] and references therein.

Nevertheless, it seems that there is no research on the multidimensional stability for a general reaction-diffusion system without assuming the hypothesis on the spectral gap of the one-dimensional linearized operator in the unweighed space. The objective of the current study is to deal with the stability of planar traveling fronts in multiple dimensions. More precisely, we first prove that the planar traveling front is asymptotically stable under spatially decaying initial perturbations. In particular, we obtain an algebraic convergence rate (t -n-1

2 ) if the initial perturbations belong to L 1 in some sense. Then we further show that the solution of the Cauchy problem converges to the planar traveling front with rate t -1 2 if n = 2, 3 and t -n+1 4 if n ≥ 4 for a spatially non-decaying perturbation with the help of semigroup theory. Finally, we prove that there exists a solution oscillating permanently between two planar traveling fronts, which indicates that planar traveling fronts are not always asymptotically stable in multidimensional space under general bounded initial perturbations.

Hereafter, we study system (1.1) in a reference frame. Without loss of generality, we assume that the solution travels towards x n -direction. Let

w(x ′ , ξ, t) = u(x ′ , x n + ct, t), x ′ = (x 1 , . . . , x n-1 ), ξ = x n + ct.
Then w(x ′ , ξ, t) satisfies

w t -∆w + cw ξ -f (w) = 0, x ′ ∈ R n-1 , ξ ∈ R, t > 0, w(x ′ , ξ, 0) = u 0 (x ′ , ξ), x ′ ∈ R n-1 , ξ ∈ R.
For simplicity, we still denote w(x ′ , ξ, t) by u(x ′ , ξ, t) and consider the following problem:

u t -∆u + cu ξ -f (u) = 0, x ′ ∈ R n-1 , ξ ∈ R, t > 0, (1.3) u(x ′ , ξ, 0) = u 0 (x ′ , ξ), x ′ ∈ R n-1 , ξ ∈ R. (1.4)
The main results of this paper are as follows.

Theorem 1.1. Assume that (H1)-(H2) hold. Let

u 0 ∈ [E -, E + ] be such that lim R→∞ sup ♣x ′ ♣+♣ξ♣≥R ♣u 0 (x ′ , ξ) -Φ(ξ)♣ = 0. (1.5)
Then the solution u(x ′ , ξ, t) of (1.3)-(1.4) satisfies

lim t→∞ sup (x ′ ,ξ)∈R n ♣u(x ′ , ξ, t) -Φ(ξ)♣ = 0.
Theorem 1.2. Assume that (H1)-(H2) hold. Let

u 0 (x ′ , ξ) = Φ(ξ + v 0 (x ′ ))
for some smooth function

v 0 ∈ L 1 (R n-1 ) ∩ L ∞ (R n-1 ). Then one has sup (x ′ ,ξ)∈R n ♣u(x ′ , ξ, t) -Φ(ξ)♣ ≤ Ct -n-1 2 , t > 0,
where C > 0 is a constant depending on f , ∥v 0 ∥ L 1 (R n-1 ) and ∥v 0 ∥ L ∞ (R n-1 ) .

Proposition 1.3. Assume that the assumptions in Theorem 1.2 hold. Assume further that either v 0 ≥ 0,

v 0 ̸ ≡ 0 or v 0 ≤ 0, v 0 ̸ ≡ 0. Then there exist constants  C > 0 and  C > 0 such that  C(1 + t) -n-1 2 ≤ sup (x ′ ,ξ)∈R n ♣u(x ′ , ξ, t) -Φ(ξ)♣ ≤  Ct -n-1 2 , t > 0. (1.6) Theorem 1.4. Assume that l ≥  n-1 2  + 1 and Φ(ξ -σ 0 1 (x ′ )) -q 0 1 (x ′ )p(ξ) ≤ u 0 (x ′ , ξ) ≤ Φ(ξ + σ 0 2 (x ′ )) + q 0 2 (x ′ )p(ξ), (1.7) 
where p(ξ) is defined in (2.3). Assume that there exists a constant δ > 0 such that

E 0 = ∥σ 0 i ∥ L 1 + ∥σ 0 i ∥ H l+1 + ∥q 0 i ∥ L 1 + ∥q 0 i ∥ H l ≤ δ for i = 1, 2. (1.8)
Then there exists a positive constant D satisfying sup

(x ′ ,ξ)∈R n ♣u(x ′ , ξ, t) -Φ(ξ)♣ ≤ D(1 + t) -1 2 , n = 2, 3, t ≥ 0, sup (x ′ ,ξ)∈R n ♣u(x ′ , ξ, t) -Φ(ξ)♣ ≤ D(1 + t) -n+1 4 , n ≥ 4, t ≥ 0. Theorem 1.5. Let n = 2. Assume that (H1)-(H2) hold. Let u(x ′ , ξ, 0) = Φ(ξ +v * 0 (x ′ )) for some v * 0 (x ′ ) defined on R with ∥v * 0 ∥ L ∞ (R) = δ. Then for t ω = ω(ω!) 2 4
, there holds

lim ω→∞ sup ♣x ′ ♣≤ω!-1,ξ∈R ♣u(x ′ , ξ, t ω ) -Φ(ξ + (-1) ω δ)♣ = 0.
Remark 1.6. In light of Theorems 1.2 and 1.5, the boundedness of the perturbations in L 1 may play a substantial role in considering the multidimensional stability. Moreover, the results of Theorem 1.4 is new for reaction-diffusion systems. Actually, compared with the results obtained by [START_REF] Kapitula | Multidimensional stability of planar traveling waves[END_REF][START_REF] Matano | Stability of planar waves in the Allen-Cahn equation[END_REF], we extend the results in [START_REF] Matano | Stability of planar waves in the Allen-Cahn equation[END_REF] to reaction-diffusion systems and get a convergence rate, and the rate we obtain in Theorem 1.4 is better than t -n-1

4
in [START_REF] Kapitula | Multidimensional stability of planar traveling waves[END_REF].

The rest of this paper is organized as follows. In Section 2, we state some preliminaries. In Section 3, we prove the multidimensional stability for spatially decaying initial perturbations, i.e., we prove Theorems 1.1 and 1.2 and Proposition 1.3. Furthermore, we show that planar traveling fronts are not always asymptotically stable in multiple dimensions under general bounded initial perturbations in Section 4, namely, we prove Theorem 1.5. The proof of Theorem 1.4 is left in Section 5.

Preliminaries

By virtue of Theorems 3.2 and 3.6 and Lemma 3.7 in [START_REF] Crooks | On the Vol'pert theory of travelling-wave solutions for parabolic systems[END_REF] and Theorem 4.1 in [START_REF] Coddington | Theory of Ordinary Differential Equations[END_REF], we have the following lemma.

Lemma 2.1. Assume that (H1)-(H2) hold. Let Φ be the traveling front defined in (1.2). Then there exist λ > 0, µ < 0 and A

-, A + ∈ R m + such that Φ(ξ) -E -= A -e λξ + o(e λξ ), ξ → -∞, Φ ′ (ξ) = A -λe λξ + o(e λξ ), ξ → -∞, Φ(ξ) -E + = A + e µξ + o(e µξ ), ξ → +∞, Φ ′ (ξ) = A + µe µξ + o(e µξ ), ξ → +∞.
According to Lemma 2.1, we get the following lemma.

Lemma 2.2. Let Φ(ξ) be the traveling front of (1.2). Then there exists a constant k > 0 which depends only on f such that

-kΦ ′ ≤ Φ ′′ ≤ kΦ ′ for ξ ∈ R. Lemma 2.3. Let v ± (x ′ , t
) be solutions of the following problem:

∂ ∂t v ± (x ′ , t) = ∆ x ′ v ± ± k♣∇ x ′ v ± ♣ 2 , x ′ ∈ R n-1 , t > 0 v ± (x ′ , 0) = v ± 0 (x ′ ), x ′ ∈ R n-1 , where k is the constant defined as in Lemma 2.2. Let u(x ′ , ξ, t) be the solution of (1.3)-(1.4) with Φ(ξ + v - 0 (x ′ )) ≤ u 0 (x ′ , ξ) ≤ Φ(ξ + v + 0 (x ′ )), (x ′ , ξ) ∈ R n . Then one has Φ(ξ + v -(x ′ , t)) ≤ u(x ′ , ξ, t) ≤ Φ(ξ + v + (x ′ , t)), (x ′ , ξ) ∈ R n , t ≥ 0.
(2.1)

Proof. Define L i [u] := ∂u i ∂t -∆u i + c∂ ξ u i -fi (u) = 0. (2.2)
We only show that Φ(ξ + v -(x ′ , t)) is a subsolution of (1.3), since the supersolution can be proved similarly.

It suffices to show that

L i [Φ](ξ + v -(x ′ , t)) ≤ 0.
In fact, by Lemma 2.2, we have

L i [Φ](ξ + v -(x ′ , t)) := ∂φ i ∂t (ξ + v -(x ′ , t)) -∆φ i (ξ + v -(x ′ , t)) + c∂ ξ φ i -f i (Φ(ξ + v -(x ′ , t))) = φ ′ i ∂v - ∂t -φ ′′ i -φ ′′ i ♣∇ x ′ v -♣ -φ ′ i ∆ x ′ v -+ cφ ′ i -f i (Φ(ξ + v -(x ′ , t))) ≤ φ ′ i  ∂v - ∂t -∆ x ′ v -+ k♣∇ x ′ v -♣ 2  = 0.
This completes the proof.

Lemma 2.4 ([13, Lemmas 2.4 and 2.5]). Let k > 0 be any constant and v ± (x ′ , t) be solutions of the following Cauchy problems:

v ± t = ∆v ± ± k♣∇v ± ♣ 2 , x ′ ∈ R n-1 , t > 0, v ± (x ′ , 0) = v 0 (x ′ ), x ′ ∈ R n-1 . If v 0 (x ′
) is bounded and continuous on R n-1 and satisfies lim ♣x ′ ♣→∞ ♣v 0 (x ′ )♣ = 0, then there hold

lim t→∞ sup x ′ ∈R n-1 ♣v ± (x ′ , t)♣ = 0.
Moreover, if we further assume that v 0 ∈ L 1 (R n-1 ), then we have

sup x ′ ∈R n-1 ♣v ± (x ′ , t)♣ ≤ 1 k ∥ exp(kv 0 ) -1∥ L 1 (R n-1 ) • t -n-1 2 , t > 0. Lemma 2.5 ([13, Lemma 2.8]). Assume that u 0 (x ′ , ξ) satisfies lim R→∞ sup ♣x ′ ♣+♣ξ♣≥R ♣u 0 (x ′ , ξ) -Φ(ξ)♣ = 0.
Then there holds

lim R→∞ sup ♣x ′ ♣+♣ξ♣≥R ♣u(x ′ , ξ, T ) -Φ(ξ)♣ = 0
for any fixed T > 0, where u(x ′ , ξ, t) is the solution of (1.3)-(1.4).

Lemma 2.6 ([13, Lemmas 3.1 and 3.2]). Let n = 2. Let k > 0 be defined as in Lemma 2.2 and v ± (x, t) be solutions of the following problem:

v ± t = v ± xx ± kv ± , x ∈ R, t > 0, v ± (x, 0) = v ± 0 (x), x ∈ R, respectively. Suppose that v ± 0 (x) are all bounded functions on R and satisfy v + 0 (x) ≤ δ, x ∈ R, and v + 0 (x) ≤ -δ, ♣x♣ ∈ [ω! + 1, (ω + 1)! -1] and v - 0 (x) ≥ -δ, x ∈ R, and v - 0 (x) ≥ δ, ♣x♣ ∈ [ω! + 1, (ω + 1)! -1]
for some constant δ > 0 and some integer q ≥ 2, respectively. Then there hold sup

♣x♣≤ω!-1 v + (x, T ) ≤ -δ + C  ♣ζ♣∈[0,2/ √ ω]∪[ √ ω,∞] e -ζ 2 dζ and sup ♣x♣≤ω!-1 v -(x, T ) ≥ δ -C  ♣ζ♣∈[0,2/ √ ω]∪[ √ ω,∞] e -ζ 2 dζ,
respectively, where T = ω(ω!) 2 /4, C > 0 is a constant that only depends on δ and k.

By virtue of the assumption (H1) and Perron-Frobenius theorem there exist irreducible constant matrices

B ± = (µ ± ij ) such that ∂fi ∂uj (E ± ) < µ ± ij
for all i, j = 1, . . . , m, and that the principal eigenvalues of B ± are negative. Furthermore, we can choose positive vectors p ± = (p ± 1 , . . . , p ± m ) such that p ± are the positive eigenvectors corresponding to the principal eigenvalues of B ± . Define

ζ(s) := 1 2  1 + tanh  s 2  .
Let the positive vector function p(ξ) := (p 1 (ξ), . . . , p m (ξ)) be defined by

p i (ξ) = ζ(ξ)p + i + (1 -ζ(ξ))p - i , i = 1, . . . , m. (2.
3)

It is easy to check that p(ξ) satisfies

p i (•) ∈ [min ¶p - i , p + i ♦, max ¶p - i , p + i ♦] on R and min 1≤i≤m inf ξ∈R p i (ξ) > 0, p i (ξ) → p ± i as ξ → ±∞ and p ′ i (ξ) → 0 as ξ → ±∞ for i = 1, . . . , m.
Lemma 2.7. Let k > 0 be given in Lemma 2.2. Then there exist positive constants ρ ≥ 1 and β such that, for any δ ∈ (0, δ 0 ), the functions u ± (x ′ , ξ, t) defined by

u ± (x ′ , ξ, t) := Φ  ξ + v ± (x ′ , t) ± ρδ  1 -e -βt  ± δp  ξ + v ± (x ′ , t) ± ρδ  1 -e -βt  e -βt
are a supersolution and a subsolution of (1.3), respectively, where v ± (x ′ , t) are respective solutions of the following equations:

v ± t = ∆ x ′ v ± ± k♣∇ x ′ v ± ♣ 2 , x ′ ∈ R n-1 , t > 0. v ± (x ′ , 0) = v ± 0 , x ′ ∈ R n-1
with v ± 0 are continuous and bounded functions.

Proof. It suffices to prove that u + (x ′ , ξ, t) is a supersolution of (1.3), since the subsolution can be proved in the same way. For v ∈ R m and

r 1 > 0, set B r1 (v) = ¶u ∈ R m : ∥u -v∥ < r 1 ♦.
By the definitions of µ ± ij , there exist a sufficiently small positive constant ϵ and a positive constant r such that

∂f i ∂u j (u) ≤ µ ± ij for u ∈ B 4ϵ (E ± ) ∩ [E -, E + ] and i, j = 1, . . . , m, (2.4) m  j=1 µ ± ij γ j ≤ -rγ i for γ = (γ 1 , . . . , γ m ) ∈ B 4ϵ (p ± ) ∩ R m + . ( 2.5) 
By the parabolic estimates, there exists

M 1 > 0 such that ♣∇ x ′ v ± ♣ 2 ≤ M 1 . Owing to Φ(ξ) → E ± as ξ → ±∞,
there exist a sufficiently small positive constant δ 1 ∈ (0, 1/2) and a sufficiently large constant M such that

r -(k + 1)δ 1 M 1 -2δ 1 > 0, ♣p ′ i (ξ)♣, ♣p ′′ i (ξ)♣ ≤ δ 1 p i (ξ) for ♣ξ♣ ≥ M and i = 1, . . . , m, ∥p(ξ) -p + ∥ ≤ ϵ for ξ ≥ M , ∥p(ξ) -p -∥ ≤ ϵ for ξ ≤ -M , ( 2.6) 
∥Φ(ξ) -E + ∥ ≤ ϵ for δ ∈ (0, δ 1 ] and ξ ≥ M ,

∥Φ(ξ) -E -∥ ≤ ϵ for δ ∈ (0, δ 1 ] and ξ ≤ -M . Set β ∈  0, r -(k + 1)δ 1 M 1 -2δ 1 1 + δ 1  , δ 0 := min  δ 1 , 1 ρ , C 3 2C 1 , ϵ C 1 , δ 1 (m -1)C 1 L + , δ 1 (m -1)C 1 L -  , ( 2.7 
)

ρ ≥ max  2C 1 (C 1 C 2 + C 1 β + (c + 1)C 1 + (k + 1)C 1 M 1 ) βC 3 , 1  ,
where C i , i = 1, 2, 3 are given by

C 1 := max  sup ξ∈R ∥p(ξ)∥, sup ξ∈R ∥p ′ (ξ)∥, sup ξ∈R ∥p ′′ (ξ)∥  , C 2 := max 1≤i≤m  sup u∈[ E -, E + ] n  j=1     ∂f i ∂u j (u)      , ( 2.8 
)

C 3 := min 1≤i≤m  inf ♣ξ♣≤M φ ′ i (ξ)  , L + = max i,j=1,...,m L + ij , L -= max i,j=1,...,m L - ij .
For simplicity, we write ξ + v ± (x ′ , t) ± ρδ  1e -βt  by η. Substituting u + into (2.2), we have

L i [u + ] = ∂v + ∂t φ ′ i + ρδβe -βt φ ′ i -δβp i e -βt + ∂v + ∂t δe -βt p ′ i + δe -βt ρδβe -βt p ′ i -φ ′′ i -φ ′′ i ♣∇ x ′ v + ♣ 2 -φ ′ i ∆ x ′ v + -δe -βt p ′′ i -δe -βt p ′′ i ♣∇ x ′ v + ♣ 2 -δe -βt p ′ i ∆ x ′ v + + cφ ′ i + cδe -βt p ′ i -f i (u + ) -  1≤j≤m,j̸ =i L - ij ¶u + i -E - i ♦ -(u + j -E - j ) -  1≤j≤m,j̸ =i L + ij ¶E + i -u + i ♦ -(u + j -E + j ) = (kφ ′ i -φ ′′ i )♣∇ x ′ v + ♣ 2 + ρδβe -βt φ ′ i + f i (Φ) -f i (u + ) + δe -βt  -βp i + cp ′ i + (kp ′ i -p ′′ i )♣∇ x ′ v + ♣ 2 + ρδβe -βt p ′ i -p ′′ i  -  1≤j≤m,j̸ =i L - ij ¶u + i -E - i ♦ -(u + j -E - j ) -  1≤j≤m,j̸ =i L + ij ¶E + i -u + i ♦ -(u + j -E + j ) ≥ ρδβe -βt φ ′ i + f i (Φ) -f i (u + ) -δe -βt  βp i -cp ′ i -(kp ′ i -p ′′ i )♣∇ x ′ v + ♣ 2 -ρδβe -βt p ′ i + p ′′ i  -  1≤j≤m,j̸ =i L - ij ¶u + i -E - i ♦ -(u + j -E - j ) -  1≤j≤m,j̸ =i L + ij ¶E + i -u + i ♦ -(u + j -E + j ).
(2.9)

To show L i [u + ] ≥ 0 for i = 1, . . . , m, we divide R into three disjoint cases: (i) ♣η♣ ≤ M , (ii) η > M , (iii) η < -M .
We first consider case (i). Apparently, ¶u + i -E - i ♦ -= 0. In view of (2.6), we have

E + i -u + i ≥ 0 due to δ ≤ ϵ C1 from (2.7), whence ¶E + i -u + i ♦ -= 0.
It follows from the mean value theorem that there exists

θ i = θ i (x, t) ∈ (0, 1) such that f i (Φ) -f i (u + ) = - m  j=1 ∂f i ∂u j (Φ + θ i δpe -βt )δp j e -βt ≥ -C 1 C 2 δe -βt .
By (2.6), (2.7) and (2.9), we obtain

L i [u + ] ≥ -C 1 C 2 δe -βt + C 3 ρδβe -βt -δe -βt (C 1 β + ρδβe -βt C 1 + (c + 1)C 1 + (k + 1)C 1 M 1 ) ≥ δe -βt [ρβ(C 3 -δC 1 ) -(C 1 C 2 + C 1 β + (c + 1)C 1 + (k + 1)C 1 M 1 )] ≥ 0.

Now we turn to case (ii). It is clear that ¶u

+ i -E - i ♦ -= 0. Moreover, the definition of u + implies ¶E + i - u + i ♦ -≤ δp i e -βt
. By the mean value theorem and (2.4)-(2.6), there exists θ i = θ i (x, t) ∈ (0, 1) such that

f i (Φ) -f i (u + ) = - m  j=1 ∂f i ∂u j (Φ + θ i δpe -βt )δp j e -βt ≥ -δe -βt m  j=1 µ + ij p j ≥ rδp i e -βt .
It then follows from (2.7)-(2.9) that

L i [u + ] ≥ rδe -βt p i (η) -δe -βt p i (η)(β + (k + 1)δ 1 M 1 + ρδβδ 1 + δ 1 ) -  1≤j≤m,j̸ =i L + ij ¶E + i -u + i ♦ -(u + j -E + j ) ≥ rδe -βt p i (η) -δe -βt p i (η)(β + (k + 1)δ 1 M 1 + ρδβδ 1 + δ 1 + δ(m -1)C 1 L + ) ≥ δe -βt p i (η)(r -β -(k + 1)δ 1 M 1 -βδ 1 -2δ 1 ) ≥ 0.
Similarly, we can prove L i [u + ] ≥ 0 for case (iii). This completes the proof.

The following lemma comes from Lemma 3.2 in [START_REF] Kapitula | Multidimensional stability of planar traveling waves[END_REF], see also [START_REF] Kapitula | On the nonlinear stability of plane waves for the Ginzburg-Landau equation[END_REF][START_REF] Kawashima | Large-time behavior of solutions to hyperbolic-parabolic systems of conservation laws and applications[END_REF][START_REF] Chern | Convergence to diffusion waves of solutions for viscous conservation laws[END_REF][START_REF] Xin | Multidimensional stability of traveling waves in a bistable reaction-diffusion equation I[END_REF].

Lemma 2.8. Let x ′ ∈ R n-1 and l ≥  n-1 2  + 1.
Then the semigroup S(t) generated by the linear operator N = ∆ x ′ enjoys the following decay estimates:

(i) ∥S(t)u∥ H l (R n-1 ) ≤ A 1 ∥u∥ H l (R n-1 ) , (ii) ∥S(t)u∥ H l (R n-1 ) ≤ A 1 (1 + t) -n-1 4 ∥u∥ L 1 (R n-1 ) + A 1 e -νt ∥u∥ H l (R n-1 ) , (iii) ∥∇ x ′ (S(t)u)∥ H l (R n-1 ) ≤ A 1 t -1 2 ∥u∥ H l (R n-1 ) , (iv) ∥∇ x ′ (S(t)u)∥ H l (R n-1 ) ≤ A 1 (1 + t) -n+1 4 ∥u∥ L 1 (R n-1 ) + A 1 t -1 2 e -νt ∥u∥ H l (R n-1 ) ,
where A 1 and ν are positive constants and ν is independent of u.

Asymptotic stability under spatially decaying perturbations

In light of the supersolutions and subsolutions constructed in Section 2, we prove Theorems 1.1 and 1.2 and Proposition 1.3 in this section.

Proof of Theorem 1.1. We only show the upper estimate, since the lower estimate can be proved similarly. Take constants k > 0 as in Lemma 2.2 and ρ ≥ 1 as in (2.7). Let constants δ 0 > ε > 0 and ε = ε/(2∥Φ ′ ∥ L ∞ (R) + C 1 ) with C 1 defined as in (2.8). By the comparison principle, we have

E -≤ u(x ′ , ξ, t) ≤ E + .
It then follows from the assumption (1.5) and Lemma 2.5 that there exists a constant R > 0 such that sup

♣x ′ ♣+♣ξ♣≥R ♣u(x ′ , ξ, T 1 ) -Φ(ξ)♣ ≤ ε ρ min 1≤i≤n, ¶ inf s∈R p(s)♦, (x ′ , ξ) ∈ R n
for T 1 > 0. Thus we can take a function v 0 (x ′ ) ≥ 0 with lim ♣x ′ ♣→∞ v 0 (x ′ ) = 0 such that

u(x ′ , ξ, T 1 ) ≤ Φ(ξ + v 0 (x ′ )) + ε ρ min 1≤i≤n, ¶ inf s∈R p(s)♦1, (x ′ , ξ) ∈ R n .
Then the comparison principle and the supersolution constructed in Lemma 2.7 imply

u(x ′ , ξ, t) ≤ Φ  ξ + v(x ′ , t) + ε  1 -e -βt  + ε ρ p  ξ + v(x ′ , t) + ε  1 -e -βt  e -βt ,
where v(x ′ , t) is the solution of the following problem:

v t = ∆ x ′ v + k♣∇ x ′ v♣ 2 , x ′ ∈ R n-1 , t > 0, v(x ′ , 0) = v 0 (x ′ ), x ′ ∈ R n-1 .
In view of Lemma 2.4, we have that there exists a constant

T 2 > 0 such that v(x ′ , T 2 ) ≤ ε for x ′ ∈ R n-1 . It then follows that u(x ′ , ξ, t) ≤ Φ(ξ + 2ε) + C 1 ε1 ≤ Φ(ξ) + (2∥Φ ′ ∥ L ∞ (R) + C 1 )ε1 = Φ(ξ) + ε1
for t ≥ T 1 + T 2 and (x ′ , ξ) ∈ R n , where C 1 is given in (2.8). By using a similar argument, one can obtain

u(x ′ , ξ, t) ≥ Φ(ξ -2ε) -C 1 ε1 ≥ Φ(ξ) -(2∥Φ ′ ∥ L ∞ (R) + C 1 )ε1 = Φ(ξ) + ε1
for t ≥ T 1 +T 2 and (x ′ , ξ) ∈ R n . Combining the above two inequalities, we get the conclusion of Theorem 1.1.

The proof is complete.

Proof of Theorem 1.2. In light of Lemma 2.3, one has

Φ(ξ) -∥Φ ′ ∥ L ∞ (R) • sup x ′ ∈R n-1 ♣v -(x ′ , t)♣1 ≤ Φ(ξ + v -(x ′ , t)) ≤ u(x ′ , ξ, t) ≤ Φ(ξ + v + (x ′ , t)) ≤ Φ(ξ) + ∥Φ ′ ∥ L ∞ (R) • sup x ′ ∈R n-1 ♣v + (x ′ , t)♣1.
Hence, the statement of Theorem 1.2 is an immediate consequence of Lemma 2.4. This completes the proof.

Proof of Proposition 1.3. We only study the case v 0 ≥ 0, v 0 ̸ ≡ 0, since the case v 0 ≤ 0, v 0 ̸ ≡ 0 can be treated similarly. By Theorem 1.2, it remains to show that sup

(x ′ ,ξ)∈R n ♣u(x ′ , ξ, t) -Φ(ξ)♣ ≥  C 1 (1 + t) -n-1 2 .
Following from Cole-Hopf transformation, we obtain that

v(x ′ , t) = - 1 k ln  R n-1 Γ (x ′ -y, t) exp(-kv 0 (y))dy 
is the solution of the following problem

v t = ∆ x ′ v -k♣∇ x ′ v♣ 2 , x ′ ∈ R n-1 , t > 0, v(x ′ , 0) = v 0 (x ′ ), x ′ ∈ R n-1 ,
where Γ (a, b) is defined by

Γ (a, b) = 1 (4πb) n-1 2 e -♣a♣ 2 4b .
The assumption v 0 ≥ 0, v 0 ̸ ≡ 0 implies that there exist a constant δ > 0 and a nonempty open set

D ⊂ R n-1 such that v 0 ≥ δ for x ′ ∈ D. It then follows that v(x ′ , t) ≥ - 1 k ln  1 -  D Γ (x ′ -y, t)(1 -exp(-kδ))dy  ≥ - 1 k ln  1 -♣D♣(1 -exp(-kδ)) • min y∈D Γ (x ′ -y, t)  ≥ ♣D♣ k (1 -exp(-kδ)) • min y∈D Γ (x ′ -y, t), which implies v(0, t) ≥ C ′ (1 + t) -n-1 2 .
By the first inequality of (2.1), we have

u(0, t) ≥ Φ(v(0, t)) ≥ Φ(0) + min ξ∈[0,∥v∥ L ∞ (R n-1 ) ] ♣Φ ′ (ξ)♣ • v(0, t)1 ≥ Φ(0) + C ′ 1(1 + t) -n-1 2
for t ≥ 0. Thus we obtain the left-hand inequality of (1.6). This completes the proof.

Permanent oscillating solutions

In this section, we show Theorem 1.5, which indicates that planar traveling fronts are not always stable in multiple dimensions. For convenience, we write x instead of x ′ in the sequel.

Proof of Theorem 1.5. We define two sequences of smooth functions ¶v ± 0,i (x)♦ i=1,2,... satisfying

♣v ± 0,i (x)♣ ≤ δ, x ∈ R, v + 0,i (x) =  -δ, ♣x♣ ∈ I 2i , δ, ♣x♣ ∈ Ĩ2i , and v - 0,i (x) =  δ, ♣x♣ ∈ I 2i+1 , -δ, ♣x♣ ∈ Ĩ2i+1 ,
where

I ω = [ω! + 1, (ω + 1)! -1], Ĩω = [0, ω!] ∪ [(ω + 1)!, ∞]. Let v * 0 (x) ∈ C ∞ (R) be such that v - 0,i (x) ≤ v * 0 (x) ≤ v + 0,i (x) for all i ≥ 1.
Set u * (x, ξ, t) be the solution of (1.3)-(1.4) with u * (x, ξ, 0) = Φ(ξ + v * 0 (x)) and v ± i (x, t) be the solution of the following problem:

v ± i,t = v ± i,xx ± k(v ± i,x ) 2 , x ∈ R, t > 0, v ± i (x, 0) = v ± 0,i (x), x ∈ R.
It then follows from the comparison principle that

Φ(ξ -δ) ≤ Φ(ξ + v - 0,i (x)) ≤ Φ(ξ + v * 0 (x)) ≤ Φ(ξ + v + 0,i (x)) ≤ Φ(ξ + δ).
Moreover, Lemma 2.3 yields that

Φ(ξ -δ) ≤ u * (x, ξ, t) ≤ Φ(ξ + v + i (x, t)).
In view of Lemma 2.6, we get

Φ(ξ -δ) ≤ sup ♣x♣≤(2i)!-1 u * (x, ξ, t 2i ) ≤ sup ♣x♣≤(2i)!-1 Φ(ξ + v + i (x, t 2i )) ≤ Φ(ξ -δ) + ∥Φ ′ ∥ L ∞ (R) • C1  ♣ϑ♣∈[0,2/ √ 2i]∪[ √ 2i,∞] e -ϑ 2 dϑ,
where

t 2i = (2i)((2i)!) 2 /4. This implies that lim i→∞ sup ♣x♣≤(2i)!-1,ξ∈R ♣u * (x, ξ, t 2i ) -Φ(ξ -δ)♣ = 0. ( 4.1) 
On the other hand, by Lemma 2.3 and the inequality v * 0 (x) ≥ v - 0,i (x) for i = 1, 2, . . . , we have

Φ(ξ + δ) ≥ sup ♣x♣≤(2i+1)!-1 u * (x, ξ, t 2i+1 ) ≥ sup ♣x♣≤(2i+1)!-1 Φ(ξ + v - i (x, t 2i+1 )) ≥ Φ(ξ + δ) -∥Φ ′ ∥ L ∞ (R) • C1  ♣ϑ♣∈[0,2/ √ 2i+1]∪[ √ 2i+1,∞] e -ϑ 2 dϑ,
where t 2i+1 = (2i + 1)((2i + 1)!) 2 /4. Thus we have

lim i→∞ sup ♣x♣≤(2i+1)!-1,ξ∈R ♣u * (x, ξ, t 2i+1 ) -Φ(ξ + δ)♣ = 0. (4.
2)

The conclusion of Theorem 1.5 follows from (4.1)-(4.2). The proof is complete.

Proof of Theorem 1.4

In this section, we obtain explicit estimates for σ(x ′ , t) and q(x ′ , t) by appealing to the theory of semigroup. In other words, we prove Theorem 1.4. We use the same notations as in the previous sections.

Lemma 5.1. Let σ(x ′ , t) and q(x ′ , t) be solutions of the following problems:

∂σ ∂t -∆ x ′ σ + a♣∇ x ′ σ♣ 2 -αq = 0, x ′ ∈ R n-1 , t > 0, (5.1) σ(x ′ , 0) = σ 0 1 (x ′ ), x ′ ∈ R n-1 and ∂q ∂t -∆ x ′ q + r 2 q = 0, x ′ ∈ R n-1 , t > 0, (5.2) 
q(x ′ , 0) = q 0 1 (x ′ ), x ′ ∈ R n-1 ,
respectively, where

a = max ¶c -2κ 0 , c -2κ 1 , c -κ 2 ♦ and α = C 1  κ 2 + r 2 + 1 + c  C 3
with C 1 , C 3 defined as in (2.8) and κ 0 , κ 1 , κ 2 specified in the sequel. Then the functions defined by

u(x ′ , ξ, t) := Φ(ξ + σ(x ′ , t)) + q(x ′ , t)p(ξ) and u(x ′ , ξ, t) := Φ(ξ -σ(x ′ , t)) -q(x ′ , t)p(ξ)
is a pair of super-subsolutions of (1.3).

Proof. It suffices to show u(x ′ , ξ, t) is a subsolution, since the supersolution can be proved analogously.

Noting that ¶E + iu i ♦ -= 0, substituting u into (2.2), we have

L i [u] = ∂u i ∂t -∆u i + c∂ ξ u i -f i (u) -  1≤j≤m,j̸ =i L - ij ¶u i -E - i ♦ -(u j -E - j ) = -φ ′ i ∂σ ∂t -φ ′′ i -φ ′′ i ♣∇ x ′ σ♣ 2 + φ ′ i ∆ x ′ σ + cφ ′ i -f i (u) -  ∂q i ∂t -∆ x ′ q i  p i (ξ) -q(p ′′ i + cp ′ i ) -  1≤j≤m,j̸ =i L - ij ¶u i -E - i ♦ -(u j -E - j ) = -φ ′ i  ∂σ ∂t -∆ x ′ σ + c♣∇ x ′ σ♣ 2  + f i (Φ)♣∇ x ′ σ♣ 2 -(f i (u) -f i (Φ)) -  ∂q ∂t -∆ x ′ q  p i (ξ) -q(p ′′ i + cp ′ i ) -  1≤j≤m,j̸ =i L - ij ¶u i -E - i ♦ -(u j -E - j ).
By the definition of p i (ξ) in (2.3), there exists a constant M sufficiently large such that (2.4)-(2.6) hold and max i=1,...,m max ξ∈R ¶♣φ ′ i ♣♦∥σ∥ L ∞ ≤ ϵ when ξ < -M or ξ > M . Moreover, when ξ < -M or ξ > M , we choose q ∈ (0, ϵ C1 ), then one has

E --3ϵ1 ≤ Φ(ξ) -σ max i=1,...,m max ξ∈R ¶♣φ ′ i ♣♦ -θ i qp ≤ Φ(ξ -σ) -θ i qp ≤ Φ(ξ) -qp ≤ E -+ 2ϵ1.
Thanks to the mean value theorem, there exists

θ i (x ′ , t) ∈ [0, 1] such that f i (u) -f i (Φ) = - m  j=1 ∂f i ∂u j (Φ -θ i qp)qp j ≥ -q m  j=1 µ + ij p j ≥ rqp i .
We consider three cases: (i) ξ < -M , (ii) ξ > M , (iii) ♣ξ♣ < M .

(i) ξ < -M . By virtue of Lemma 2.1 and (2.8), there exists a positive constant κ 0 satisfying lim

ξ→-∞ f i (Φ) φ ′ i = m  j=1 ∂f i ∂u j (E -) φ j -E - j φ ′ i ≤ κ 0 .
On the other hand, one deduces  1≤j≤m,j̸ =i

L - ij ¶u i -E - i ♦ -(u j -E - j ) ≥ -  1≤j≤m,j̸ =i L - ij q 2 p i p j ≥ -(m -1)L -q 2 p i C 1 ≥ - 1 4 rqp i
by taking q ≤ r 4(m-1)L -C1 . Since p ′ i → 0 and p ′′ i → 0 as ξ → -∞, then there hold

-q(p ′′ i + cp ′ i ) ≤ 1 4 rqp i .
Hence, we have

L i [u] ≤ -φ ′ i  ∂σ ∂t -∆ x ′ σ + (c -2κ 0 )♣∇ x ′ σ♣ 2  -  ∂q ∂t -∆ x ′ q + r 2 q  p i ≤ 0. (5.3) (ii) ξ > M . Owing to Lemma 2.1, we have lim ξ→∞ f i (Φ) φ ′ i = - m  j=1 ∂f i ∂u j (E + ) E + j -φ j φ ′ i ≤ κ 1
for some positive constant κ 1 . Thus by a similar argument to case (i) one infers

L i [u] ≤ -φ ′ i  ∂σ ∂t -∆ x ′ σ + (c -2κ 1 )♣∇ x ′ σ♣ 2  -  ∂q ∂t -∆ x ′ q + r 2 q  p i ≤ 0. (5.4) 
(iii) ♣ξ♣ ≤ M . In view of (2.8), we have φ ′ i (ξ) ≥ C 3 for ♣ξ♣ ≤ M . By the hypothesis (H2), there exists κ 2 > 0 such that f i (Φ) ≤ κ 2 φ ′ i and

f i (Φ) -f i (Φ -qp(ξ)) = m  j=1 ∂ ∂u j f i (Φ -θ i qp(ξ))qp j ≤ κ 2 qp i .
It then follows from (2.6) and (2.8) that

L i [u] ≤ -φ ′ i  ∂σ ∂t -∆ x ′ σ + (c -κ 2 )♣∇ x ′ σ♣ 2  + (κ 2 + r)qp i -q(p ′′ i + cp ′ i ) -  ∂q ∂t -∆ x ′ q + rq  p i ≤ -φ ′ i  ∂σ ∂t -∆ x ′ σ + (c -κ 2 )♣∇ x ′ σ♣ 2  + C 1  κ 2 + r 2 + 1 + c  q -  ∂q ∂t -∆ x ′ q + r 2 q  p i = 0. ( 5.5) 
Combining (5.3)-(5.5), we get the conclusion. The proof is complete.

Lemma 5.2. There exists a unique solution q(x ′ , t) of (5.2) such that

∥q(x ′ , t)∥ H l (R n-1 ) ≤ e -r 2 t ∥q 0 ∥ H l (R n-1 ) (5.6) and ∥q(x ′ , t)∥ L 1 (R n-1 ) ≤ e -r 2 t ∥q 0 ∥ L 1 (R n-1
) .

(5.7)

Proof. Rewrite equation (5.2) as

∂ t  e r 2 t q  = ∆ x ′  e r 2 t q  , x ′ ∈ R n-1 , t > 0.
Then there exists a unique solution of the form q(x ′ , t) = e -r 2 t S(t)q 0 , where S(t) is the semigroup generated by the operator ∆ x ′ . Moreover, it follows from Lemma 2.8 that for l ≥  n-1

2  + 1, ∥q(t)∥ H l (R n-1 ) ≤ e -r 2 t ∥q 0 ∥ H l (R n-1 ) .
Since ∥S(t)h∥ L 1 ≤ ∥h∥ L 1 for any function h, then we have

∥q(t)∥ L 1 (R n-1 ) ≤ e -r 2 t ∥q 0 ∥ L 1 (R n-1 ) .
The proof is complete.

Lemma 5.3. If σ(x ′ , t) is a solution of (5.1), then w(x ′ , t) = ∇ x ′ σ(x ′ , t) satisfies sup 0≤t≤1 ∥w(x ′ , t)∥ H l ≤ 2A 1 ∥σ 0 1 (x ′ )∥ H l+1 + 4αA 1 ∥q(t)∥ H l .
(5.8)

Proof. Taking the divergence to the first equation of problem (5.1), we get

∂ t w -∆ x ′ w -∇ x ′ • (a♣w♣ 2 + αq) = 0, x ′ ∈ R n-1 , t > 0, (5.9 
)

w(x ′ , 0) = ∇ x ′ σ 0 (x ′ ), x ′ ∈ R n-1 .
We a priori assume that

M (t) ≡ sup 0≤τ ≤t (1 + τ ) n+1 4 ∥w(τ )∥ H l (R n-1 ) ≤ M 0 , t ≥ 0 (5.10)
for some constant M 0 ≤ 1 4aA1A2 . Notice that the Sobolev imbedding yields

∥h 1 h 2 ∥ H l (R n-1 ) ≤ A 2 ∥h 1 ∥ H l (R n-1 ) ∥h 2 ∥ H l (R n-1 ) (5.11) 
for any functions h 1 , h 2 , where A 2 is a positive constant depending only on l and n.

Since ∇ x ′ (S(t)h) = S(t)∇ x ′ h for any function h, then the solution of problem (5.9) can be written as

w(x ′ , t) = S(t)(∇ x ′ σ 0 (x ′ )) -  t 0 ∇ x ′ (S(t -τ )(a♣w♣ 2 (τ ) + αq(τ )))dτ.
It then follows from Lemma 2.8 and (5.11) that for l ≥

 n-1 2  + 1, ∥w(x ′ , t)∥ H l (R n-1 ) ≤A 1 ∥∇ x ′ σ 0 (x ′ )∥ H l (R n-1 ) + A 1  t 0 (t -τ ) -1 2  aA 2 ∥w(τ )∥ 2 H l (R n-1 ) + α∥q(τ )∥ H l (R n-1 )  dτ.
This yields that for l ≥

 n-1 2  + 1, ∥w(x ′ , t)∥ H l (R n-1 ) ≤ A 1 ∥σ 0 (x ′ )∥ H l+1 (R n-1 ) + 2αA 1 t 1/2 ∥q(t)∥ H l (R n-1 ) + 2aA 1 A 2 t 1/2  sup 0≤τ ≤t ∥w(x ′ , τ )∥ H l (R n-1 )  2 ≤ A 1 ∥σ 0 (x ′ )∥ H l+1 (R n-1 ) + 2αA 1 ∥q(t)∥ H l (R n-1 ) + 2aA 1 A 2  sup 0≤t≤1 ∥w(x ′ , t)∥ H l (R n-1 )  2 .
This together with (5.10) yields

(1 -2aA 1 A 2 M (t)) sup 0≤t≤1 ∥w(x ′ , t)∥ H l ≤ A 1 ∥σ 0 (x ′ )∥ H l+1 + 2αA 1 ∥q(t)∥ H l .
and

  t/2 0 +  t t/2  (1 + t -τ ) -n+1 4 e -r 2 τ dτ ≤ 2 r  1 + t 2  -n+1 4 + 4  e -r 2 t  1 + t 2  n+1 2   1 + t 2  -n+1 4 ≤ 2 r  1 + t 2  -n+1 4 + A 4  1 + t 2  -n+1 4 ,
where

A 4 = 4e r 2  n+1 re  n+1 2 . It then follows that (1 + t) n+1 4 II ≤ A 5 (M (t)) 2 + A 6 ∥q 0 ∥ L 1 (5.15) for t ≥ 1, where A 5 = aA 1  4 + 2 n-1  2 n+1 4
and

A 6 = αA 1  2 r + A 4  2 n+1 4 .
It remains to estimate III. In view of (5.6) and (5.10), we get

III ≤ aA 1 A 2 (M (t)) 2  t 0 (t -τ ) -1 2 e -ν(t-τ ) (1 + τ ) -n+1 2 dτ + αA 1 ∥q 0 ∥ H l  t 0 (t -τ ) -1 2 e -ν(t-τ ) e -r 2 τ dτ.
Notice that for n ≥ 2 and t ≥ 1, there hold By a similar argument to that of (5.13), we obtain

  t/2 0 +  t t/2  (t -τ ) -1 2 e -ν(t-τ ) (1 + τ ) -n+1 2 dτ ≤ 2 √ 2 n -1 e -νt 2 + 2  1 + t 2  -n 2 ≤ A 7  1 + t 2  -n+1 4 and   t/2 0 +  t t/2  (t -τ ) -1 2 e -ν(t-τ ) e -rτ dτ ≤ 2 √ 2 r e -ν 2 t + 2  t 2 e -r 2 t ≤  2 √ 2 r γ 1 + 2A 8   1 + t 4  -n+1 4 , where A 7 = 2 √ 2 n-1 γ 1 + 2 and A 8 =  n+3 2re  n+3 
I 1 ≤ B 4 (1 + t) -n-1 4 (∥σ 0 ∥ L 1 + ∥σ 0 ∥ H l ) ,
where B 4 = A 1 max ¶1, γ 2 ♦ and γ 2 = e ν ( n-1 4νe )

n-1 4 . By virtue of Lemma 5.  n-1 4 . We then conclude that for all t ≥ 0, ∥σ(t)∥ H l ≤ (B 9 E 0 + B 10 )E 0 (1 + t) Armed with the estimates (5.18) and (5.19), the existence and uniqueness of the solution to the Cauchy problems (5.1) is now a standard application of semigroup theory (see [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF]), we omit the details here.

Proof of Theorem 1.4. Let σ 1 (x ′ , t) and q 1 (x ′ , t) be solutions of problems (5.1) and (5.2), respectively. It follows from Lemma 5.1 and (1.7) that Φ(ξσ 1 (x ′ , t))q 1 (x ′ , t)p(ξ) ≤ u(ξ, x ′ , t).

Since σ 0 (x ′ ) and q 0 (x ′ ) are positive, σ 1 (x ′ , t) and q 1 (x ′ , t) are always positive. Hence, u(ξ, x ′ , t) -Φ(ξ) ≥ -(σ 1 (x ′ , t) max 1≤i≤m max ξ∈R φ ′ i (ξ)1 + q 1 (x ′ , t)p(ξ)).

  For two vectors c = (c 1 , . . . , c m ) and d = (d 1 , . . . , d m ), the symbol c < d means c i < d i for each i = 1, . . . , m and c ≤ d means c i ≤ d i for each i = 1, . . . , m. The interval [c, d] denotes the set of u ∈ R m with c ≤ u ≤ d. For c = (c 1 , . . . , c m ), we define ♣c♣ =  m i=1 c 2 i . For any bounded u ∈ C(R n , R m ), we define ∥u∥ = sup x∈R n ♣u(x)♣.

5 , we have  1 + t 2  n-1 4 II 1 ≤ 3  4 + 2 n- 1  2 r + A 4  1 + t 2  n-1 4 III 1 ≤and γ 3 = e r 2  n- 1 2re

 51241342124124121 B 5 (E 0 ) 2 + B 6 ∥q 0 ∥ L 1 ,where B 5 = 4aA 1 B 2 and B 6 = αA 1  . In light of Lemma 5.5, one gets B 7 (E 0 ) 2 + B 8 ∥q 0 ∥ H l , where B 7 = 4aA 1 A 2 B 3

-n-1 4 ,where B 9 = 2 n- 1 4 2 n-1 4 max ¶B 6 ,

 4921246 (B 5 + B 7 ) and B 10 = max ¶B 4 , B 8 ♦♦. The proof is complete.

  ′ , t)∥ H l ≤ B 1 (∥σ 0 ∥ L 1 + ∥σ 0 ∥ H l + ∥q 0 ∥ L 1 + ∥q 0 ∥ H l ) + B 2 (M (t)) 2 ,where B 1 = max ¶A 3 , A 6 , A 10 ♦ and B 2 = A 5 + A 9 . The proof is complete. Lemma 5.5. Let M (t) be defined as in(5.10). Then one hasM (t) ≤ 2B 3 E 0 , t ≥ 0. (2A 1 ∥σ 0 ∥ H l+1 + 4αC 1 ∥q 0 ∥ H l ) . , 4αA 1 ♦ + B 1 . It is evident that M (t)is sufficiently small. Actually, inequality (5.17) holds for all t ≥ 0 as 1 -4B 2 B 3 E 0 ≤ 0. However, the assumption (1.8) implies that it is impossible by letting δ < 1 8B2B3 . Then one obtainsM (t) ≤ 2B 3 E 0 , t ≥ 0, or equivalently, ∥w(x ′ , t)∥ H l ≤ 2B 3 E 0 (1 + t) -n+1 4 , t ≥ 0. (5.18)This completes the proof.Lemma 5.6. There holds∥σ(t)∥ H l ≤ (B 9 E 2 0 + B 10 E 0 ) (1 + t)where B 9 and B 10 will be defined later. It follows from (5.11) and Lemma 2.8 that ∥σ(t)∥ H l ≤ A 1  (1 + t) -n-1 4 ∥σ 0 ∥ L 1 + e -νt ∥σ 0 ∥ H l

	4 . It then follows that n+1 4 III ≤ A 9 (M (t)) 2 + A 10 ∥q 0 ∥ H l 4 aA 1 A 2 A 7 and A 10 = 2 (1 + t) n+1 n+1 4 αA 1  2 √ 2γ1 r + 2A 8  ∥w(x Proof. In view of (5.8), we have for t ≥ 1, where A 9 = 2 one derives (1 + t) n+1 4 sup 0≤t≤1 (1 + t) n+1 4 ∥w(x ′ , t)∥ H l ≤ 2 n+1 4 It follows from (5.12) that for t ≥ 0, n+1 4 4 , t ≥ 0, . Consequently, by (5.14)-(5.16), (5.16) (5.19) Proof. Write the solution of problem (5.1) as σ(t) = S(t)σ 0 - t 0 S(t -τ )  a♣w(τ )♣ 2 + αq(τ )  dτ. max ¶2A 1 -n-1  + A 1  t 0 4  a∥w(τ )∥ 2 L 2 + α∥q(τ )∥ L 1  (1 + t -τ ) -n-1 + A 1  t 0 e -ν(t-τ )  aA 2 ∥w(τ )∥ 2 H

M (t) ≤ B 3 E 0 + B 2 (M (t)) 2 ,

(5.17

)

where

B 3 = 2 l + α∥q(τ )∥ H l  := I 1 + II 1 + III 1 .
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Notice that M 0 ≤ 1 4aA1A2 . Then we get sup

The proof is complete.

Lemma 5.4. Assume that w(x ′ , t) satisfies (5.9). Then one has

for all t ≥ 1, where B 1 and B 2 are positive constants that will be specified in the sequel.

Proof. Since ∇ x ′ (S(t)h) = S(t)∇ x ′ h for any function h, we then write the solution of (5.9) as

It then follows from Lemma 2.8 and (5.11) that

A straightforward computation yields

where

By virtue of (5.7) and (5.10), one has

Hence, for n ≥ 2 and t ≥ 1, one arrives at

Similarly, we can construct the supersolution Φ(ξ + σ 2 (x ′ , t)) + q 2 (x ′ , t)p(ξ) such that

Consequently, one has

where C 1 is defined as in (2.8).

In the case n = 2, it follows from Lemmas 5.2-5.6 and ∥h∥ L ∞ (R) ≤ ∥h∥

L 2 (R) (see [START_REF] Lieb | Analysis[END_REF] for instance) for any function h that there exists some positive constant D such that sup

(5.20)

In the case n = 3, the Sobolev embedding implies that ∥h∥

when lp > n -1 for any function h, where D 0 is a positive constant independent of h. It then yields from Lemmas 5.2-5.6 that sup

(5.21)

In the case n ≥ 4, since Lemmas 5.3-5.5 imply that σ ∈ H l+1 (R n-1 ), then σ ∈ W l,p (R n-1 ) with p = 2(n-1) n-3 . By Gagliardo-Nirenberg-Sobolev inequality, that is,

where D 1 is a constant depending only on n, one infers from Lemmas 5.3-5.5 that