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Sébastien Forestier1,2 & Pierre-Yves Oudeyer2,3 (sebastien.forestier@inria.fr)
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Abstract

Some studies hypothesize a strong interdependence between
speech and tool use development in the first two years of life.
To help understand the underlying mechanisms, we present
the first robotic model learning both speech and tool use from
scratch. It focuses on the role of one important form of body
babbling where exploration is directed towards self-generated
goals in free play, combined with imitation learning of a con-
tingent caregiver. This model does not assume capabilities for
complex sequencing and combinatorial planning which are of-
ten considered necessary for tool use. Yet, we show that the
mechanisms in this model allow a learner to progressively dis-
cover how to grab objects with the hand, how to use objects
as tools to reach further objects, how to produce vocal sounds,
and how to leverage these vocal sounds to use a caregiver as
a social tool to retrieve objects. Also, the discovery that cer-
tain sounds can be used as a social tool further guides vocal
learning. This model predicts that the grounded exploration of
objects in a social interaction scenario should accelerate infant
vocal learning of accurate sounds for these objects’ names.
Keywords: tool use; speech development; free play; explo-
ration; imitation learning; social tool use; goal babbling

Introduction
Some studies hypothesize that there might be a strong in-

terdependence between speech and tool use development in
the first two years of life (Gibson, Gibson, & Ingold, 1994).
Tool use and language seems to require similar information
processing capabilities allowing the production and percep-
tion of sequential combinations of increasing complexity,
from reaching to spoon self-feeding and from words to sto-
ries. In addition to showing similar compositional proper-
ties, speech and tool use might share some neural correlates
involving Broca’s area (Higuchi, Chaminade, Imamizu, &
Kawato, 2009). Those common neural correlates could have
an evolutionary origin in the hominid lineage, where a selec-
tion pressure for complex tool use, language and social be-
haviors might have together driven the increase in brain plan-
ning capabilities (Morgan et al., 2015). In particular, the de-
velopment of tool use precursors follows several overlapping
phases of behaviors: 1) body babbling, where babies learn to
control their body parts, 2) interacting with a single object,
and 3) exploring object-object interactions (Guerin, Kruger,
& Kraft, 2013). From pointing movements to the control of a
rake, new representations and physical understanding are de-
veloped to allow the planning of tool use actions composed
of combinations of more simple actions, e.g. grasping the
rake. During the same period, infants progressively learn how
to efficiently use their vocal tract, comprising many complex
actuators from the larynx to the lips. At birth, they produce
immature protophones like squeals, growls or quasi-vowels,
and by the end of their first year they are able to produce the
speech-like syllables of their native language (Oller, 2014).
Those syllables then form words which become the basis

of syntactic combinations essential to language expressive-
ness. Infants do not only explore tool use and vocalizations
by themselves, driven by intrinsic motivations (Moulin-Frier,
Nguyen, & Oudeyer, 2013), but also spend a great part of
their time interacting with their parents and other social peers
where imitation is thought to be one of the important develop-
mental pathways (Meltzoff, 1999). For instance, infants im-
itate the vowels produced by an adult speaker by 6 month of
age (Kuhl, 2004), and 1.5-year-olds imitate demonstrations of
a rake-like tool function to retrieve an out-of-reach toy (Chen
& Siegler, 2000).

In order to investigate hypotheses about the joint develop-
ment of speech and tool use, we seek to build an embodied
model of tool use and speech learning. Existing robotic mod-
els of tool use showed first insights into how relations be-
tween tools and other objects could be learned from grounded
experimentation. In (Stoytchev, 2005), a robotic arm fo-
cused on learning rake-like tool affordances from the explo-
ration of already implemented stereotyped arm behaviors. In
(Tikhanoff, Pattacini, Natale, & Metta, 2013), the iCub robot
was given its arm’s forward model and inverse optimization
methods which led to stereotyped grasping. A recent series
of robotic models considered the learning of tool use from
scratch, without any kind of pre-programmed reaching skills
(Forestier & Oudeyer, 2016a, 2016b, 2016c). Those models
studied the developmental progression of robotic agents be-
tween phases of behaviors with objects, and the evolution of
their strategies to reach goals. They have shown interesting
similarities with infant development in terms of developmen-
tal trajectories and strategy choice dynamics.

Recent computational models of vocal development make
use of a simulated vocal synthesizer that the learning agent
must control in order to produce vocalizations, with human
sounds as targets to be imitated (Warlaumont, Westermann,
Buder, & Oller, 2013; Philippsen, Reinhart, & Wrede, 2014).
In (Moulin-Frier et al., 2013), the agent chooses the strat-
egy that shows the best competence progress: either au-
tonomously training to reach phonetic goals, or trying to im-
itate human sounds. They show that the intrinsic motivation
for learning progress self-organizes coherent infant-like de-
velopmental sequences. Those models of language acquisi-
tion study several developmental pathways to the learning of
forward and inverse models of a simulated vocal tract, from
autonomous exploration to human sounds imitation. How-
ever, agents are not situated into a physical environment
where vocalizations have a meaning related to objects.

Several works study joint action and language learning
(Cangelosi et al., 2010), but give an advanced knowledge of
the linguistic interaction protocol to the learning agent who
has to associate predefined actions or objects to predefined



labels and learn the semantic compositionality. Also, agents
learn actions without a nested tool use property.

In this paper we describe the first model that jointly consid-
ers the early development of both tool use and speech. Such a
model could allow the investigation of hypotheses about the
mechanisms underlying the observed links between tool use
and speech development. In a previous work, we showed
that the Model Babbling learning architecture (Forestier &
Oudeyer, 2016b) allows the development of tool use in a
robotic setup, through several fundamental ideas. First, goal
babbling is a powerful form of exploration to produce a di-
versity of effects by self-generating goals in a task space
(Baranes & Oudeyer, 2013). Second, the possible movements
of each object define a task space in which to choose goals,
and the different task spaces form an object-based represen-
tation that facilitates prediction and generalization, as ex-
plained by (Chang, Ullman, Torralba, & Tenenbaum, 2016).
Also, cross-learning between tasks updates all skills while ex-
ploring one in particular. A novel insight was that early de-
velopment of tool use could happen without a combinatorial
action planning mechanism: modular goal babbling in itself
allowed the emergence of nested tool use behaviors.

Here we extend this architecture so that the agent can im-
itate caregiver’s sounds in addition to autonomously explor-
ing. We hypothesize that these same algorithmic ingredients
allow a joint unified development of speech and tool use. Our
learning agent is situated in a simulated environment where a
vocal tract and a robotic arm are to be explored with the help
of a caregiver. The environment is composed of three toys,
one stick that can be used as a tool to move toys, and a care-
giver moving around. The caregiver helps in two ways. If the
agent touches a toy, the caregiver produces this toy’s name,
but otherwise produces a distractor word as if it was talking
to another adult. If the agent produces a sound close to a toy’s
name, the caregiver moves this toy within agent reach.

We show that our learning architecture based on Model
Babbling allows agents to learn how to 1) use the robotic arm
to grab a toy or a stick, 2) use the stick as a tool to get a toy, 3)
learn to produce toy names with the vocal tract, 4) use these
vocal skills to get the caregiver to bring a specific toy within
reach, and 5) choose the most relevant of those strategies to
retrieve a toy that can be out-of-reach. Also, the grounded
exploration of toys accelerates the learning of the production
of accurate sounds for toy names once the caregiver is able to
recognize them and react by bringing them within reach, with
respect to distractor sounds without any meaning in the envi-
ronment. Our model is the first to allow the study of the early
development of tool use and speech in a unified framework.

Methods
Learning Environment
The learning environment1 is composed of a simulated 2D
robotic arm and a simulated vocal tract that the agent controls

1Source code and notebooks available as a Github repository at
https://github.com/sebastien-forestier/CogSci2017

to interact with a caregiver and toys. In each trial, the agent
observes the current environmental state and then executes a
motor trajectory, either corresponding to moving the motors
of the arm or of the vocal tract, and gets the associated sen-
sory feedback composed of the trajectory of each object and
the sound produced by the agent or the caregiver (see Fig.1).

Simulated Robotic Arm The simulated 2D robotic arm has
3 joints, with its base fixed at position [0,0]. Each joint ro-
tates from −π rad to π rad and the 3 segments of the arm
have length 0.25, 0.15 and 0.1, so the arm has length 0.5.
The framework of Dynamical Movement Primitives (Ijspeert,
Nakanishi, Hoffmann, Pastor, & Schaal, 2013) is used to gen-
erate smooth joint trajectories from motor parameters. Each
of the 3 joints is controlled by a DMP starting at the rest posi-
tion of the joint (position 0) and parameterized by 7 weights:
one weight on each of 6 basis functions and one weight rep-
resenting the end position of the joint trajectory. To sum up,
the agent provides a set of 21 trajectory parameters which are
translated through DMPs to a set of smooth 50-steps trajec-
tories for the arm’s joints which gives a smooth 2D trajectory
to the robotic hand.

Tool and Toys In the environment of the robotic arm, 3 toys
can be grasped with the hand or with the help of a stick. The
stick has length 0.25 and is considered grasped as soon as the
hand reaches the handle side (orange) within a distance of 0.1.
At the end of the movement the stick is dropped and stays at
its current position while the arm is reset to its rest position
for the next iteration. The toys are reset to a random location
every 20 iterations, at a distance between 0 and 1 from the
center so possibly at an unreachable position.

Simulated Vocal tract A vocal tract is simulated through
the DIVA model (Guenther, 2006) and allows the production
of different sounds that we can classify into vowels. In the
DIVA model, a set of parameters defines a vocal tract contour
where each represents one component of a Principal Com-
ponent Analysis of midsagittal MRI vocal tract profiles (see
Fig.1b), from the jaw and tongue to the lips position. Here we
use only the first 7 articulatory parameters, controlling most
of the vocal tract shape’s variability. From a vocal tract con-
tour defined by a set of parameters, the DIVA software com-
putes the corresponding sound and outputs its first 2 formants,
which are often considered to give enough information to dis-
tinguish common English vowels. The DMP framework gen-
erates smooth trajectories of vocal parameters, as described
above for arm parameters, to allow the simulated vocal tract
to produce simple words composed of several vowels. Each
of the 7 articulators is controlled by a DMP parameterized
by 4 weights: the starting and end position of the parame-
ter trajectory, and weights on 2 basis functions. Given a set
of 28 trajectory parameters provided by a learning agent, the
DMPs output a set of smooth 50-steps trajectories for the 7
articulators that we use in the DIVA model, which through
the DIVA software generates a smooth trajectory of the first
two formants (called F1 and F2).
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Figure 1: Agent’s robotic and vocal environment. (a) Agent’s 3 DOF arm, controlled with 21 parameters, grabs toys with
its hand, or uses the stick to reach toys. Caregiver brings a toy within reach if the agent says its name. (b) Agent’s vocal
environment representing sounds as trajectories in the two first formants space. Agent’s simulated vocal tract produces sounds
given 28 parameters. When agent touches a toy, caregiver says toy’s name. Some sounds corresponding to random parameters
are plotted in red, and some sounds produced when imitating caregiver’s /uye/ word in blue (best imitation in bold, error 0.3).

Sounds: from Vowels to Words The simulated vocal tract
controlled through DMPs has the potential to produce words
composed of a sequence of 3 vowels in the set {/o/, /u/, /i/,
/e/, /y/}. See Fig. 1 (b), ”Motor babbling” condition, for an
example of 200 trajectories corresponding to random sets of
28 parameters. We define a set of 6 words that the caregiver
produces perfectly: {/yeo/, /euy/, /iuo/, /uye/, /eou/, /oey/}.
A sound trajectory produced by the vocal tract is recognized
if its distance to the perfect word is lower than 0.4.

Caregiver’s guidance A simulated caregiver is given two
roles to help the learning agent. First, at the beginning of the
experiment, the caregiver chooses randomly a label for each
toy from the set of 6 words. When the agent touches a partic-
ular toy with its hand, the caregiver then produces the sound
trajectory corresponding to the label of this toy. If the agent
does not touch any toy with the arm, the caregiver produces
one of the distractor sounds, as if she was talking to another
adult. Second, if the agent produces a sound trajectory rec-
ognized by the caregiver as the label of a toy, the caregiver
moves the corresponding toy in between herself and the agent
so that it becomes reachable by the agent with the hand. The
caregiver is reset to a random position at each iteration.

Sensory Feedback Before choosing a motor command, the
agent receives the state of the environment (or context) as the
2D position of the caregiver, the stick and the 3 toys (so 10D).
At the end of the movement, the agent receives a sensory
feedback s in the sensory space S (60D), from the different
objects in the environment. First, the trajectory of the hand is
represented as its x and y positions at 5 time points: steps 1,
13, 25, 38, 50 of the 50-steps trajectory (SHand , 10D). Sim-
ilarly, the trajectories of the stick and the 3 toys during the
movement are represented in 10 dimensional sensory spaces

(SStick, SToy1 , SToy2 , SToy3 , 10D each). Sound, either produced
by the agent or by the caregiver, is represented by the position
of the first two formants at 5 time points (SSound , 10D).

Unified Modular Learning Architecture
The goal of a learning agent is to use its robotic arm and vocal
tract to discover a diversity of sensory effects, and collect data
to learn repertoires of skills in the form of inverse models al-
lowing to reproduce these effects. Consequently, the agent is
not given a priori a single target task to be solved, but a mod-
ular object-based representation of task spaces. The agent
learns a set of sensorimotor models mapping a motor space
to one particular sensory space (see Fig. 2). For instance,
model 1 learns to move the hand from arm parameters, model
2 learns to move the stick, model 3, 4, and 5 learn to move
one of the toys, and model 6 how to produce sounds with the
arm, which will be possible by touching one of the toys with
the hand so that the caregiver produces the corresponding la-
bel. Controlling vocal tract, model 7, 8 and 9 learn to move
one of the toys by involving caregiver’s help, and model 10
learns to produce diverse sounds autonomously.

Exploration through Model Babbling In order to ac-
tively explore and learn the 10 sensorimotor models from
experimentation with the environment, learning agents use
the Model Babbling architecture developed in (Forestier &
Oudeyer, 2016b) that we extend to handle the 2 motor spaces:
the robotic arm and the vocal tract. First, the agent per-
forms some random exploration of motor spaces, 500 with
the robotic arm and 500 with the vocal tract, to get an ini-
tial sampling of those spaces. Then, at each iteration, the
learning agent first chooses to train one of the 10 models,
chosen randomly (e.g. from the robotic arm to the hand sen-
sory space). A particular goal is then randomly chosen in
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Figure 2: Learning Architecture. Agent controls 2 motor
spaces and receives sensory feedback about 6 objects. Each
arrow represents one of the 10 sensorimotor models learned.

the sensory space corresponding to the chosen model (e.g. a
particular 2D trajectory of the hand). The agent then uses the
corresponding inverse model to infer a motor command in the
corresponding motor space (e.g. arm parameters) to reach the
goal. Exploration happens in goal choice and in the new mo-
tor parameters that inverse models infer with generalization
mechanisms and adding exploration noise.

Imitation of Sounds When the agent is choosing to train
to produce sounds with its vocal tract (model 10), instead of
always choosing random goals, it does this for half of the iter-
ations (chosen randomly), and the other iterations are focused
on trying to imitate the caregiver, by randomly choosing one
of the sounds previously produced by the caregiver as a goal.

Forward and Inverse Models Each sensorimotor model
provides a forward model and an inverse model, with the
same implementation as in (Forestier & Oudeyer, 2016b).
The forward model predicts which sensory trajectory would
be observed given the current context and a motor command
to execute. The inverse model infers a motor command that
could reach a desired goal given the current context. When a
motor command m is executed (either 21 parameters for the
robotic arm or 28 for the vocal tract) in a context c and a sen-
sory feedback s is received in S, all the sensorimotor models
that share the same motor space are updated. New informa-
tion comes as a tuple (m,ci,si) with si being a subset of s
variables corresponding to the respective sensory space, and
ci being the subset of c relevant for this sensorimotor model.
The relevant context for models 1 and 10 is empty, which
means that hand trajectories and vocal sounds produced by
the agent do not depend on the current position of other ob-
jects. The context for model 2 is the position of the stick,
and for models 3, 4, and 5, the position of the stick and of
the corresponding toy. For model 6, all toys are relevant, and
for models 7, 8 and 9, the caregiver and the toy is useful.
Given a database of (m,ci,si) experiments, an inverse model
infers a probable motor command m to reach a goal sg in a
context ci by looking for the nearest neighbor sNN in Si of sg
and retrieving the associated motor parameters mNN that were
used to reach sNN . It then outputs mNN plus Gaussian noise
(σ = 0.05) to explore new parameters.

Results
We ran 500 independent trials of 80000 iterations (or robot
experiment) each. We measured how agents learned to move
objects by giving them new goals in new contexts, and we
analyzed the accuracy of the learned vocalizations.

Competence to Reach Toys
After 80000 iterations of training, we measured the perfor-
mance of each agent to retrieve a toy depending on its current
position with its preferred method: with the hand, with the
stick used as a tool or involving caregiver’s help. Fig. 3 shows
the mean competence of all agents to retrieve toys depending
on the current position of the toys. The competence error to
retrieve a toy is measured by the distance between a goal tra-
jectory given to the agent, where the toy is moved towards
the center, and the actual trajectory that the agent succeeds
to give to the toy. The agent chooses the strategy expected
by its inverse models to best reach the goal trajectory for the
toy given the current context (position of the stick, toys and
caregiver) and its past experience of 80000 iterations.

In most toy locations, the normalized competence of learn-
ing agents is significantly better (46% on average) than the
normalized competence of a random agent (0%). Our learn-
ing architecture thus allows to successfully reach new goals
in multiple sensory spaces with multiple available strategies.
Local variations reflects differences in strategy preferences
and performances. For instance, where the hand cannot reach
for the toy anymore, the agent still thinks this is a good strat-
egy as it worked in a similar context (before the limit), but the
hand strategy leads there to a bad performance. More training
would refine the inverse models and the choice of strategy.
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Figure 3: Competence after 80000 iterations. 0% means that
competence to retrieve a toy there is as bad as with random
agents, 100% says that agents perfectly retrieve a toy there.

Three Strategies to Reach Toys
Fig. 4 shows the preference for the hand, tool and vocal
strategies to retrieve a toy depending on the distance of the
toy. In the center region, where agents can retrieve toys with
all three strategies, agents choose most often the hand strat-
egy (around 65% of the trials) and less the other two (around
15% to 20% each). In the second region, unreachable with



the hand, this strategy is still used around 50% of the trials,
and the two other between 20% and 30%. In the last region
where the only useful strategy is to say the name of the toy
so that the caregiver brings it closer, the vocal strategy is used
more often: at distance 1 from center, it is used in 49% of
trials, hand strategy in 38%, and tool strategy in 13%.
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Figure 4: Strategy preferences depending on the distance of
the toy. The two vertical bars shows the hand and stick limits.

Vocal Learning with Caregiver’s Feedback
The agents learn to produce vocalizations both with goal bab-
bling and imitation of the caregivers’ sounds. For each agent,
three of caregiver’s sounds (randomly selected) are toy names
and the three others are distractors: sounds that have no spe-
cial meaning for the agent. We measure errors to reproduce
caregiver’s sounds as the distance between the sound trajec-
tory produced by the caregiver and the best imitation of the
agent. We group the results into two categories: errors of
sounds that serve as toy names and as distractors. From the
500 runs we could retrieve error data for 1482 toy names and
1482 distractors. Fig. 5 shows the distribution of errors after
80000 iterations. First, 88% of sounds have an error lower
than 0.4, and thus are successful imitations. Second, the me-
dian error for toy names is 0.23 and for distractors is 0.30.
Imitations of toy names are more accurate than of distractors:
a Mann-Whitney U test gives p < 10−72. Errors distribution
above 0.4 is similar for the two categories, but few toy name
sounds have an error just below 0.4 compared to distractors:
their distribution is shifted towards smaller errors.

Discussion
This unified robotic model allows to study the interaction be-
tween the early development of tool use and speech. Results
show that agents learn to 1) use the robotic arm to grab a toy
or a stick, 2) use the stick as a tool to get a toy, 3) learn to pro-
duce toy names with the vocal tract, 4) use these vocal skills
to get the caregiver to bring a specific toy within reach, and
5) choose the most relevant of those strategies to retrieve a
toy, for instance preferring to use caregiver’s help when the
toy is out-of-reach. Interestingly, learning the production of
accurate sounds for toy names was faster than for distractor
sounds because inverse models often select the use of vocal-
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Figure 5: Distribution of accuracy of imitations of caregivers’
sounds after 80000 iterations. Below 0.4 vocal error, sounds
are recognized as imitations by the caregiver. Imitations of
toy names are more accurate than imitations of distractors.

izations to retrieve toys through the caregiver. Grounding vo-
cal interaction between agent and caregiver in a play scenario
thus accelerated the learning of toys’ names production.

The proposed unified Model Babbling architecture does
not integrate sequencing and combinatorial planning mech-
anisms and agents were not given initial teleological under-
standing of speech or tool use. However, with goal babbling
and an object-based representation of task spaces, our ar-
chitecture still allowed agents to learn behaviors showing a
nested tool use structure, e.g. reusing movements of the stick
to move a toy, or sound trajectories produced with the vocal
tract so that the caregiver brings a toy. This suggests that ob-
serving infants using tools or asking for help with toys should
not necessarily be interpreted as a correlate of capabilities for
combinatorial sequencing and planning of actions.

It should be noted that for the agents in our model, involv-
ing the caregiver to move toys through vocalizations is a strat-
egy with no special status with respect to the other strategies.
This social interaction emerges from the same drive to refine
sensorimotor models as in the learning of hand or stick move-
ments. The production of sounds that can be understood by
the caregiver as toy names to make it react and help can thus
be interpreted as an emergent form of social tool use.

Those results offer a new prediction: exploration and play
with objects in a grounded interaction scenario with a care-
giver accelerates infant vocal learning of accurate sounds for
the names associated to these objects. This hypothesis is con-
sistent with experimental data from infant development re-
search. First, (Clerkin, Hart, Rehg, Yu, & Smith, 2017) shows
that the objects that are frequent in the visual field of 8 1/2 to
10 1/2 mouth-old infants are also the objects for which in-
fants acquire the name early. They explain that the particular
distribution of object frequency in visual field can help link-
ing the heard label to the good object in a scenario where the
caregiver says the name of an object. However, this data is
also consistent with our hypothesis: the most frequent objects
in the visual field are the ones that the infant will most often
choose goals for, and will engage caregiver’s help by trying to



vocalize those toys’ names. Infants could thus receive more
vocal feedback for those words and learn to produce them
earlier. This view also fits with recent data about the body-
object interaction measure. In (Thill & Twomey, 2016), the
authors use a measure of the extent to which adults could eas-
ily interact with a named item and show that it predicts better
the age of acquisition of the name of an item than its concrete-
ness or imageability. In other words, the easier the interaction
with an object is, the sooner its name will be acquired. Fur-
thermore, caregiver’s nonvocal feedback can also help vocal
learning. Indeed, (Goldstein, King, & West, 2003) provides
evidence that a nonvocal feedback mechanism such as react-
ing to infant’s vocalizations by smiling, or touching the infant
can shape vocal babbling in real time. In our experiment, the
caregiver reacts to a toy’s name by giving the toy to the agent,
which guides vocal learning. Such a mechanism could also be
an important pathways to infant vocal development.

Our unified robotic model of speech and tool use gives a
basis for future research in modeling interactions between
their early development. From this study, we derived experi-
mental predictions that could drive new experiments with in-
fants and allow us to test and refine the model.
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