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Abstract

This paper presents a methodology for parameter es-
timation of a suitable model for energy management
services in office and apartment settings. The ob-
jective of this work is to identify model structures
and tune parameters to fit recorded data. Once these
parameters have been identified , the model will sup-
port energy services (prediction, explanation). Grey-
box models are proposed to estimate the tempera-
ture and CO2 concentration based only on few sen-
sors. Then, two different estimation parameter meth-
ods have been applied relying on a descent algorithm
or a genetic one. Different structures have been com-
pared. Finally, the resulting model has been applied
to two case studies: an office and an apartment.

1 Introduction

As buildings become more energy-efficient, the effect
of human activities on their global consumption in-
creases. To limit this impact, a first attempt was
made to increase the level of automation in build-
ings. However, from surveys led in residential and
office buildings, Carassus (2011) and Sidler (2011)
conclude that automation does not reduce the gap
between predicted and effective consumption. This
work reveals that static rules can not be sufficient.
In order to reach the goal of low energy consumption
in the operation phase of buildings, occupants must
then be involved in the energy management process.
The proposed work is part of a research project fo-
cusing on a system embedding energy services with
a high level of interaction (called ”e-consultant”) to
empower users with energy services. The role of these
energy services is to allow users to define their own
objective and consequently generate information and
advice concerning the best controls to apply on ac-
tive systems of building (HVAC systems, sun-shading
devices, windows opening,). An analysis of the soci-
ological literature was made in order to implement
relevant services for the users and favouring real and
durable changes in their behaviours.

The identified services require thermal and aeraulic
behavioural models easy to set up. The work pre-
sented in this paper focuses on the development and

implementation of such a model. It involves to deal
with: the definition of model structures and the pa-
rameter estimation method with validation on case
studies. The model must be simple enough to ease
its set-up with estimation and prediction capabilities.
The limits in terms of complexity and computational
time are discussed later. This e-consultant should
target both old and new dwellings and be configured
by end-users thus it must not require much expert
knowledge. Consequently, some sensors are needed
to estimate the thermal and aeraulic model. Tests
have been performed to limit the instrumentation re-
quirements. This paper describes a methodology to
determine relevant model structures on different case
studies. These structures should be generic: it should
adapt to both mono-zone and multi-zone case stud-
ies and it should be based on a minimal number of
sensors and requiring little expert knowledge.

The paper is organized as follows. The office setting
is described in Section 2. Then, the two different
parameters estimation methods are presented : meta-
optimization in section 3 and genetic algorithms in
section 4. The latter section is devoted to a complex
multi-zones case study for validation: an apartment.

2 Proposed approach

2.1 First study case: Mono-zone office

In order to validate model structure, a real case
study has been chosen: an office occupied by 1 to
4 persons. In terms of instrumentation, the office is
equipped with almost 200 sensors. The office itself
is equipped with 26 sensors measuring temperatures,
CO2 and COV concentrations, illuminance, humidity
and power consumption, door and windows contacts,
motions and weather (cf. figure 1). Only indoor tem-
perature, CO2 sensors, window and door contacts and
weather station for outdoor temperature and nebulos-
ity are used to estimate the parameters of the models.

Some estimators were defined for occupancy and
heating during winter season. For occupancy, power-
consumption measurements are used to estimate the
number of in-use computers and thus the number of
occupants. Regarding the heating power, a temper-
ature sensor has been placed on the surface of the
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Figure 1: Map of the office with sensors

heater and the power heating is computed using equa-
tion 1

Pheat = K(Theater − Toffice) (1)

where K is estimated.

2.2 Literature review

Semi-physical models are considered because of their
limited complexity. A literature review reveals that
the use of electric analogy modelling is prevalent
among grey box models (Hazyuk et al. (2012), Math-
ews et al. (1994), Bacher and Madsen (2011)) since
they offer a good representation of the different com-
ponents of the buildings and a high ease of use.

To obtain models requiring little computations, a first
very simple structure has been implemented, infor-
mation being then added so as to meet an adequate
accuracy. Opening of doors and windows are taken
into consideration since Fabi et al. (2012) claim that
the opening of windows is one of the user-accessible
adaptive actions most impacting energy consump-
tion, comfort and air quality. They are the occupant
possible actions during summer period. Castillo et al.
(2014) also came to the conclusion that taking into
account the opening of the door on the corridor led to
significant improvements in their results. The simple
structure is built by locating the whole inertia in a
fictive wall represented by a single equivalent capaci-
tor (see figure 2). The model with 4 capacitors is the
most complex model tested in this study (see figure 3)
taking into account the available data and the instru-
mentation constraint. It includes simultaneously the
capacitor of the fictive wall, the ones of the inner and
exterior walls and the one of the indoor air which rep-
resent the dynamics of the building. Between those
two structures, 7 others were developed, deleting the

inertia of the reference model or adding more capac-
itors representing the inertia of the air and the inner
or outer wall. The different structures are summa-
rized in table 1 and the RC-networks are displayed in
Annexe A.

Φin

TinTinTout Tn

Rout Rn

RDRW

Ri

Ci

Τ

ζW ζD

Figure 2: Reference model for the office
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Figure 3: Model with 4 capacitors

The full model includes 4 state variables, each one
representing the temperature in a part of the study
case:

• Tin: The temperature of the office ambient air,
which is used as the model output

• τ : The temperature of a fictive wall

• Tw,n: The surface temperature of the inner wall

• Tw,out: The surface temperature of the outer wall

The parameters of the model represent different ther-
mal properties of the building. This includes thermal
resistances:

• Ri: between the fictive wall average temperature
and the wall surface

• RW : between the exterior and the interior
through the window

• Rout: between the exterior and the interior

• Rw,out1: between the average wall temperature
and the inner surface of the exterior wall

• Rw,out2: between the average wall temperature
and outer surface of the exterior wall

• Rn: between the adjacent room and the interior

• RD: between the adjacent room and the interior
through the door
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• Rw,n1: between the average wall temperature
and inner surface of the interior wall

• Rw,n2: between the average wall temperature
and outer surface of the interior wall

The heat capacities of different parts of the building
are represented by:

• Ci: for the fictive wall

• Cair: for the interior

• Cw,out: for the outside wall

• Cw,n: for the interior wall

Door and window openings are represented respec-
tively by ζD and ζW standing for opening time ratios,
ϕin represents the internal gains: solar, electric and
occupancy gains.
Thermal models are coupled with an aeraulic model
presented in figure 4 and described by equation 2 .

Figure 4: Aeraulic model

V
dΓin

dt
= −(QW+QD)Γin+QWΓout+QDΓn+Sbody

CO2
n

(2)
where Γin, Γout and Γn represent the CO2 concen-
trations of the office, the outdoor and the neighbour-
hood, Sbody

CO2
the average production of CO2 per person

and n the number of occupants in the room.

2.3 Models parameter estimation

Using physical models for energy management in
buildings requires a non-linear optimisation step
which consists in estimating the parameters of the
models using recorded data during a training period.
During a validation period, the estimated parameters
are then used to check the error between the predicted
and the measured output as an objective function.
Different parameter estimation methods exist: some
of them require expert knowledge to select a relevant
initial dataset such as usual descent algorithms in a
rough parameter space while others require a linear
model such as linear regressions. Since the models
used in this study are not linear and do not rely on
expert knowledge some methods can be eliminated.
Non-linear optimization algorithms considered in this
work are meta-heuristic and descent algorithms. The
descent algorithms are based on the computation of
the gradient and sometimes Hessian of the objective

function. Thus, according to an initial point, they can
be stuck in a local optimum but they are less costly
in terms of computational time than meta-heuristic
algorithms. That is why a ”meta-optimization” pro-
cedure has been implemented in order to try to avoid
that problem while keeping a low computational cost.
Genetic algorithms have been used because they find
the global optimum with a sufficient computational
time but they are usually fairly more costly than de-
scent algorithms.

2.4 Models validation and selection methods

Once the parameters estimated, several model selec-
tion and validation procedures can be used. They
differ according to the objective(s) of the model. In
this work, the chosen procedure is inspired from the
work of Bacher and Madsen (2011) and the PhD the-
sis of Reynders (2015). It consists in validating the
robustness and the accuracy of the identified model
but also in selecting the most suitable order.

2.4.1 Tools

To do so, different tools are needed: the standardized
version of the Root Mean Square Error (sRMSE) and
a sensitivity analysis. The RMSE enables to quan-
tify the forecast error between the indoor simulated
temperature and the measured one. From here, the
sRMSE is computed per equation 3 allowing the com-
parison of the model on different datasets.

sRMSE =

√
1
N

∑N
k=1(ŷk − yk)2

ymax − ymin
(3)

where yk represents the measured value and ŷ the
predicted one of the indoor temperature.
A sensitivity analysis is performed in order to ensure
that each parameter is useful for forecasting the tem-
perature and CO2 concentrations in the case study.
Different methods exist such as the Sobol indices
described by Sobol (2001) or the one described by
Saltelli et al. (1999) but both require a lot of sim-
ulations. Morris (1991) developed another method
requiring fewer simulations and still a few hypothe-
ses, which makes it faster than the Sobol and FAST
(Fourier Amplitude Sensitivity Testing) enabling to
take into consideration the interactions between the
parameters. As the goal of the sensitivity analysis
in this research is to ensure that the structure of the
model is consistent and that each parameter has an
impact on the output, it is not completely suitable.
For a first estimation, the method of Morris is imple-
mented but the method of Sobol should be further
investigated.

2.4.2 Validation method

The validation method consists in different steps:

• Validity of the model during estimation phase

• Capacity of the model to predict future be-
haviour
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Table 1: Summary of studied models

Models States Observations N
Reference τTin TnToutζDζW 12
Model0C - TnToutζDζW 10
Model2Cair τTin TnToutζDζW 13
Model2CwallTout τTw,out TnToutζDζW 15
Model2CwallTn τTw,n TnToutζDζW 15
Model3CTout τTinTw,out TnToutζDζW 16
Model3CTn τTinTw,n TnToutζDζW 16
Model3Cwall τTw,outTw,n TnToutζDζW 18
Model4C τTinTw,outTw,n TnToutζDζW 19

• Stability of the model along seasonal variations

For the first two steps, the sRMSE is computed and
a limit to 0.1 is set up to validate a model. Then, for
the stability, the higher value on the validation phase
is chosen between both summer and winter scenario.
A range of ±20% of this value is defined and if the
other value does not fit in that range, the model is
considered as not valid.

2.4.3 Selection method

If the models verify every condition of the validation,
then they are compared to each other in order to se-
lect the most suitable one. For that purpose, the sum
of the sRMSE obtained for both summer and winter
will be computed and then compared. The selected
model will be the one with the lower value. To com-
plete the selection process a sensitivity analysis will
be performed to ensure that all parameters are sig-
nificant.

3 Meta optimisation

3.1 Principle

The meta-optimization approach chosen has been
presented by Le Mounier (2016) in her PhD thesis.
The goal is to guarantee the physical validity of pa-
rameters and to guide the optimization in order to
improve the results. It requires an a priori knowledge
of the values of the parameters in order to initialize
them. Parameters are initialized set at values with of
the right order of magnitude. Then, lower and upper
bounds are define very broad in order both to give
more freedom to the algorithm and to limit the im-
pact of the choice of initial values. Thereafter, the
optimization is guided towards zones where the ob-
jective function is not monotonous in the parametric
directions. The procedure consists in the implemen-
tation of a series of successive optimizations and in
the selection of set of parameters minimizing the er-
rors without letting them reach their bounds.

3.2 Limits

Thus this approach was applied to the different mod-
els but several limits appeared. First, the meta opti-
misation was applied to the model with one capacity
and the results were good with a sRMSE between

0.06 and 0.08 according to the seasons and a com-
putational time around of approx. 3 minutes. Then,
the complexity of the models was increased step by
step and the models with two capacitors were imple-
mented. For example, for the model with an air ca-
pacitance, the sRMSE reached 0.7 - 0.8 with a compu-
tational time peaking 28 hours. Further investigation
revealed that the algorithm was not able to converge
to an optimum. It also showed that the procedure is
not ergodic. Indeed, 406 simulations were run with
406 different values to initialize the parameters of the
model. The results can be seen in figure 5: it can be
noticed that depending on the initial point, the abso-
lute average error can vary strongly reaching values
up to 20◦C, obviously widely outside the acceptable
limit for an energy management model. According
to the results and limits presented in that section, it
seems obvious that this method can not be used here.
Then, another method of parameter estimation is in-
vestigated allowing to compare models and to select
a suitable thermal structure.

Figure 5: Absolute average error for 406 simulations

4 Genetic algorithm
To solve the problems of convergence and sensitiv-
ity to the initial point, it was considered to use ge-
netic algorithms to free the models from the prob-
lems of convergence although they are usually more
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costly in terms of computational time. Furthermore,
the choice was made of a multi-objective algorithm to
deal separately with CO2 and temperature objectives.
Several algorithms have been developed, such as the
VEGA algorithm (Vectorial Evaluation Genetic Al-
gorithm) Schaffer (1985), the NPGA (Niched Pareto
Genetic Algorithm) which resorted mainly to a se-
lection based on Pareto domination (cf. Horn et al.
(1994)). Later, it was superseded by the algorithm
NPGA2 which uses the degree of domination of an
individual as a deciding factor for the tournament
selection Erickson et al. (2001). Also available is the
algorithm NSGA-II (Non Dominated Sorting Genetic
Algorithm), an elitist genetic algorithm introduced by
Deb et al. (2000) in the 2000s and based on a classifi-
cation of individuals in several levels. This last algo-
rithm speeds up the sorting process in comparison of
the algorithm NSGA while preserving the diversity of
populations (Shaikh et al. (2014)); it has been chosen
in this study.

4.1 Principle

The basic principle of this algorithm lies on four main
steps: creation of the initial population, selection of
individuals, mutations and crossover operations and
computation of the selection criteria. The sorting of
the population is done according to the criteria of the
Pareto domination favouring individuals with a high
crowding distance so as to maintain a good diversity
in the population.

4.2 Training and validation dataset

The summer scenario consists in an estimation of the
model on the month of May 2015 and in its validation
on the month of June 2015. It is a month of heavy
heat in Grenoble since the outdoor temperatures os-
cillates between 20 and 32◦C (cf. 6a). Measured
data involves a great number of openings of the win-
dows and of the door which have a clear impact on
the office temperature and CO2 concentrations. The
winter scenario consists in estimating the model on
the month of October 2015 and in validating it on
the month of November 2015. This period is charac-
terised by an indoor temperature relatively high for
the season: around 22◦C for the month of October
and by a great fall on temperature in November go-
ing until 16◦C. The outdoor temperature oscillates
between 0 and 15◦C (cf. 6b), which implies a heavy
use of the heaters. The similar trends between the
indoor air temperature and the outdoor temperature
expresses the light inertia of the study case.

4.3 The reference model

Following the same approach as previously, the model
with one capacity was tested first and then, the com-
plexity of the models has been increased step by step.
Figure 7 shows the temperature responses for the
model with one capacity for both summer and winter
scenarios. The red curve illustrates the first phase of

(a) Summer period (b) Winter period

Figure 6: Outdoor temperature

validation of the model which consists in the simula-
tion of the model on a dataset not used for estimating
the parameters. The separation between the train-
ing and the cross validation phases is materialized by
a colour change on the plots. It allows to perform
a qualitative evaluation of the results of the model.
Then, for a quantitative analysis of the estimation re-
sults, the standardized RMSE is computed (cf. table
2). The numerical values confirm the relevance and
the accuracy of the model.
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Figure 7: Results of the reference model
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Table 2: sRMSE values

Estimation Validation

Summer 0.13949 0.11774

Winter 0.14327 0.167634

4.4 Validation

According to the results of the sRMSE shown in fig-
ure 8, the ”Model2Cair” and ”Model3CTout” can be
eliminated because of the sRMSE value criteria and
the ergodicity along the seasons. The models ”Refer-
ence” and ”Model0C” do not comply with the limit
of sRMSE value.

(a) Summer

(b) Winter

Figure 8: Results of the different models in estimation
and validation phase

4.5 Selection

The next step consists in selecting the most suitable
model between ”Model3CTn”, ”Model2CwallTout”,
”Model3Cwalls”, ”Model2CwallTn” and ”Model4C”
which will be done by looking at the sum of the
sRMSE values obtained for the different seasons. The
result can be seen in the figure 9. It appeared directly

that the ”Model4C” is the best one according to the
criterion described above.

Figure 9: Sum of the sRMSE values for both seasons

4.6 Sensitivity analysis

The Morris analysis shown in figure 10 reveals that
three main structural parameters of the model Cw,out,
Rw,n2 and Rw,out2 seem not to have a negligible im-
pact on the output. Yet, deleting one of the branch
containing the parameters Cw,out and Rw,out2 would
mean considering one the structure with three capac-
ities which performances (according to the criteria
of accuracy) are less interesting. Hence, that result
needs to be investigated further, especially studying
the estimated values of the parameters. However,
contrary to the other methods, the Morris method
is qualitative which means that it is possible to clas-
sify the different parameters but not to ensure their
relevance. As the goal of the sensitivity analysis in
this research is to ensure that the structure of the
model is consistent and that each parameter has an
impact on the output, it is not suitable. Then, de-
spite the computational cost, Sobol method will be
further investigated in order to confirm these results.

Figure 10: Morris analysis
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4.7 Removal of sensors

In parallel, attempts have been made to quantify the
impact of the loss of data on the accuracy of the re-
sults. For that purpose, the information of the door
and window contacts used in the thermal model is no
longer used in the estimation process. The results can
be seen in figure 11. It can be noted that removing
the contact data does not seem to have a significant
impact in the sRMSE values and even tends to im-
prove the results. The selected model can be applied
to an apartment simply equipped with NetAtmo in-
door and outdoor climate stations1 which are sensors
already marketed and adressing ordinary users. Re-
sults are described in the next section.

Figure 11: Comparison between with and without con-
tact data

5 Application to a more complex case
study

The first case study defined a single-zone model for a
single room. The next step is to extend this model to
a multi-zone case study. Besides, the multi-zone case
study is a apartment, which brings a lot of differences
in terms of uses and occupation rules.

5.1 Architecture and instrumentation

The architectural plan is shown in figure 12. The
apartment is equipped with 5 NetAtmo stations, a
main device in the Living Room which providing
measurements of noise level, humidity, temperature,
pressure and CO2 concentration and three auxiliary
devices, one in each room, delivering only measure-
ments on humidity, temperature and CO2 concentra-
tion. The bathroom device will not be used in a first
time.

5.2 Modelling

In order to apply the model to a whole apartment,
a combination of the mono-zone model has been im-
plemented as illustrated in figure 13. Thereafter, the

1http://www.netatmo.com

Living Room
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Heater

Wood stove

Window
Net Atmo

Figure 12: Architectural plan of the apartment

new type of living area requires to adapt all estima-
tors of occupancy and heating since the uses are quite
different. In a first time, it is done with really sim-
ple estimators of occupancy based on level of CO2 in
each room. Indeed, according to Jiang et al. (2016),
CO2 concentration is the parameter that most closely
correlates with the number of occupants.
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5.3 Results

The ”Model4C’ was implemented for the whole apart-
ment. From here, the temperature profiles shown in
figure 15 are quite accurate: the trends are globally
well represented but still need to be improved. As
can be seen in figure 14, the CO2 profiles are less ac-
curate. The model seems to have issues representing
the CO2 peaks and while the global dynamic is well
represented, it is not so good for the fast dynamics.
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Figure 14: ”Streets” bedroom CO2

However, occupants are more sensitive to tempera-
ture accuracy than to CO2 concentration. Problems
of air quality occur when a threshold of 2000 ppm
is reached, thus peak modelling should be improved
accordingly.

6 Conclusion
This paper presented an innovative and easy way to
model different types of buildings for energy man-
agement with very few data. This method has been
applied to two case studies representative of the main
types of living areas. The proposed models are grey-
box models based on both data and prior physical
knowledge. The configuration of those models can be
done by anyone since no expert knowledge is required
but only: area of rooms, orientation, architectural
plan. In order to facilitate a further implementa-
tion, the data used have been reduced to a minimum:
indoor temperature and CO2 concentration in each
room plus nebulosity and outdoor temperature fore-
casts. Those elements make the implementation of
the energy management services accessible to a large
public. Various helpful services allowing users to bet-
ter understand their buildings can be imagined. The
results presented in the multi zone case study are a
promising first step. Further research will focus on
ways to estimate more accurately the occupancy as
well as the heating power in residential building. Fur-
ther work will be led to understand the results of the
Morris analysis by looking into the estimated param-
eters values and the cross-correlation of the parame-
ters. The results of the models without contacts data
need also to be investigated in order to either delet-
ing that information of explaining the results. It must
be understood also that deleting these data involves
diminishing the intended services regarding the open-
ings.
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(b) ”Garden” bedroom
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(c) ”Middle” bedroom
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(d) ”Streets” bedroom

Figure 15: Temperature profiles for the winter sce-
nario
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A Annexe: Structures of models

Figure 16: Model without capacitor: Model0C

Φin

TinTinTout Tn

Rout Rn

RDRW
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Ci

Τ

ζW ζD

Figure 17: Reference model

Figure 18: Model with 2 capacitors: Model2CwallTout

Figure 19: Model with 2 capacitors: Model2CwallTn

Figure 20: Model with 3 capacitors:Model3Tout

Figure 21: Model with 3 capacitors: Model3CTn

Figure 22: Model with 3 capacitors: Model3Cwalls

Figure 23: Model with 4 capacitors: Model4C


	Introduction
	Proposed approach
	First study case: Mono-zone office
	Literature review
	Models parameter estimation
	Models validation and selection methods
	Tools
	Validation method
	Selection method


	Meta optimisation
	Principle
	Limits

	Genetic algorithm
	Principle
	Training and validation dataset
	The reference model
	Validation
	Selection
	Sensitivity analysis
	Removal of sensors

	Application to a more complex case study
	Architecture and instrumentation
	Modelling
	Results

	Conclusion
	Acknowledgement
	Annexe: Structures of models

