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Abstract 

This paper addresses the topic of long-term characterisation and probabilistic modelling 
of chloride ingress into reinforced concrete (RC) structures. Since the corrosion initiation 
stage may cover various decades, normal tests which simulate chloride penetration into 
concrete in laboratory conditions as the same as natural conditions, will require 
significant experimental times. Hence, long-term lifetime assessment of RC structures 
under chloride attack remains still a challenge. In practice this problem is solved through 
the use of accelerated tests which speed up the chloride ingress rate and provide valuable 
mid- and long-term information on the chloride penetration process. Nevertheless, this 
information cannot be directly used for parameter statistical characterisation if the 
equivalent times required in natural conditions to reach the same chloride concentrations 
in the accelerated tests are unknown. Consequently, this study proposes a novel iterative 
approach based on Bayesian network updating to estimate chloride ingress model 
parameters from the data obtained under accelerated laboratory conditions. The Bayesian 
Network structure and iterative approach are first tested with numerical evidences. 
Thereafter, the complete proposed methodology is verified with results from real 
experimental measurements. The results indicate that combining data from normal and 
accelerated tests significantly reduces the statistical characterisation error of model 
parameters. 

Keywords: Accelerated Test; Reinforced Concrete; Corrosion; Bayesian 
Network; Statistical Characterisation; Random Variable 

1. Introduction 
Chloride ions have been frequently considered as the main cause of deterioration of 
various types of reinforced concrete (RC) structures located in marine environments or 
in contact with de-icing salts (Salta, Melo, Ricardo, & Póvoa, 2012; Shekarchi, Moradi-
Marani, & Pargar, 2011). Reinforcement corrosion induced by penetrating chlorides 
will result in loss of bond between steel and concrete, concrete cracking and concrete 
delamination and eventually in a reduction of the loading capacity of structures through 
the loss of reinforcement cross-section. Consequently, planning maintenance strategies 
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that minimise the impacts of corrosion becomes an essential task for minimising costs, 
failure risks and environmental impact (Bastidas-Arteaga & Schoefs, 2015; Faustino, 
Chastre, Nunes, & Brás, 2016; Lounis & Daigle, 2013).  

In the management of deteriorating RC structures generally a distinction can be 
made between inspection and decision making (do nothing, repair or replacement). 
Inspection data provide valuable information on the damage condition of RC structures 
under chloride attack. Based on these data, appropriate repair actions may be 
undertaken at allowed deterioration conditions. In addition, model parameters 
characterising material durability or environmental exposure could be identified from 
inspection measurements. These parameters, combined with chloride ingress models, 
are useful to: (i) update service life prediction models and costs (Samarakoon & 
Sælensminde, 2015), and (ii) optimise inspection campaigns (Bastidas-Arteaga & 
Schoefs, 2012; Sánchez-Silva & Klutke, 2016); however, long-term results of the above 
mentioned applications are often influenced by:  

(1) Uncertainties in the chloride ingress process: these uncertainties are mainly 
related to material properties and exposure conditions (Chiu, Tu, & Zhuang, 
2016; Deby, Carcasses, & Sellier, 2008; Marano, Quaranta, Sgobba, Greco, & 
Mezzina, 2010). They are also influenced by temporal and spatial variability of 
associated deterioration processes (Peng & Stewart, 2016; Schoefs, Bastidas-
Arteaga, Tran, Villain, & Derobert, 2016). 

(2) Lack of inspection data: time-consuming and expensive destructive tests are 
necessary to determine the evolution of chloride concentration in time by 
limiting the quantity of data available in each inspection campaign. Despite a 
large number of non-destructive inspection techniques have been developed to 
facilitate the assessment of risks related to reinforcement corrosion, these 
techniques are still expensive, time-consuming and require specific post-
treatment methods (Lecieux, Schoefs, Bonnet, Lecieux, & Lopes, 2015; Ploix, 
Garnier, Breysse, & Moysan, 2011; Torres-Luque, Bastidas-Arteaga, Schoefs, 
Sánchez-Silva, & Osma, 2014). If additional inspection and testing works are 
carried out to provide sufficient data for probabilistic condition assessment, the 
extra costs need to be considered (Gehlen et al., 2011). 

(3) Time-dependencies and chloride ingress kinetics: since concrete transport 
properties vary with time and the chloride ingress is slow, comprehensive mid- 
and long-term assessment should be based on late inspection times. However, 
deterioration rates will be higher at late inspection times increasing corrective 
maintenance costs.  

To deal with uncertainty related issues, Bayesian approach is a suitable tool that 
can integrate new information for updating the estimations. This kind of technique is 
proposed by Fib bulletin 59 (Gehlen et al., 2011) for updating statistical distribution 
parameters in chloride ingress and planning future inspection campaigns. For multi-
events problems, it turns in the form of Bayesian Network (BN) to model relationships 
between random variables. BN has been previously applied for probabilistic modelling 
of chloride and carbonation-induced corrosion. Deby, Carcasses, & Sellier (2008, 2012) 
have used BN for the assessment of the probabilistic distribution of random variables in 
the chloride diffusion problem. Tesfamariam & Martín-Pérez (2008) have proposed a 
Bayesian Belief Network that is able to consider qualitative and quantitative 
information for carbonation-induced corrosion assessment. These approaches seem to 
be robust when allowing the possibility to update the statistical distributions with new 
qualitative or experimental information. Hackl (2013) proposed a framework that 
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combines structural analysis and BN for reliability assessment. This combination allows 
Bayesian updating of the model with measurements, monitoring and inspection results. 
Ma, Wang, Zhang, Xiang & Liu (2014) developed a BN combining in situ load testing 
to predict the strength degradation of bridge structures subjected to chloride attack. 
Nevertheless, the abovementioned studies have not optimised the utilisation of 
inspection data, especially when the information is scarce. Tran, Bastidas-Arteaga & 
Schoefs (2016a, 2016b) proposed an approach to identify random parameters in 
chloride ingress models from limited inspection data. The robustness of this approach 
lies on taking into consideration uncertainties in a probabilistic framework from 
inspection data. However, these studies did not consider time-dependencies of material 
properties and they require inspection data measured at various exposure times to 
reduce statistical characterisation errors.  

Time-dependencies and chloride ingress kinetics issues could be answered by: 
(i) employing more advanced chloride ingress models that consider time-dependent 
model parameters, and (ii) using inspection data obtained from accelerated tests for 
parameter statistical characterisation. In general, accelerated data are obtained by 
performing experiments at higher stress levels. These data could be useful for further 
applications (reliability analysis or parameter statistical characterisation) if they can be 
translated to normal conditions. Several studies have been devoted to calibrate the 
accelerated tests and their data (Volf & Timková, 2014; Wang, Pan, Li, & Jiang, 2013) 
and to use this information for lifetime or reliability assessment (Haghighi, 2014; Liao 
& Elsayed, 2006). In specific applications on RC degradation processes, Neves, Branco, 
& De Brito (2013) established the relationship between accelerated and natural 
carbonation coefficients using a regression method. However, the limitation of this 
approach is that it did not account for the uncertainty in the carbonation process. 
Duprat, Vu & Sellier (2014) developed a probabilistic framework based on a BN 
approach to integrate the accelerated data for designing the cover of concrete structures 
under carbonation exposure. This study was based on a comprehensive carbonation 
model able to incorporate directly the accelerated data to improve lifetime assessment. 
However, it is difficult to extend this approach to other deterioration processes because 
it is not always possible to adequately model the accelerated conditions.  

Within this context, this study proposes a novel approach to derive chloride 
ingress model parameters from the data obtained in accelerated laboratory conditions. 
This approach combines BN with an iterative approach for uncertainty propagation and 
statistical characterisation purposes. Section 2 presents the BN used for modelling 
chloride ingress that accounts for concrete ageing through an age factor. Section 3 
performs a sensitivity analysis on the effect of the age factor on parameter statistical 
characterisation. Section 4 presents the construction of a BN configuration combining 
data from normal and accelerated tests for parameter statistical characterisation. Normal 
tests simulate chloride penetration into concrete as in natural conditions; accelerated 
tests speed up the chloride ingress rate and provide valuable mid- and long-term 
information on the chloride penetration process. Finally, Section 5 details the 
experimental setup and the proposed approach for statistical characterisation of model 
parameters from real data coming from normal and accelerated tests. 

2. BN for identifying chloride ingress model parameters  

2.1 Introduction to BN 
BN is Direct Acyclic Graph (DAG) consisting of a set of nodes that are connected by 
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edges to illustrate their dependencies. Nodes in BN are a graphical representation of 
objects and events that exist in the real world and can be modelled as continuous or 
discrete random variables.  To each child node with its parents is assigned a conditional 
Probability Density Function (PDF), f(X|pa(X)) or Probability Mass Function (PMF), 
p(x|pa(X)), where pa(X) are the parents of X in the DAG (Stewart, 2011). An edge may 
represent causal relationships between the variables (nodes) but this is not a 
requirement. The graphical structure of a BN encodes conditional independence 
assumption among the random variables. Hence, a BN is a compact model representing 
the joint PDF or PMF among random variables. In this study, only BNs with discrete 
random variables are considered. Figure 1 illustrates a simple BN that consists of three 
nodes representing three discrete random variables X1, X2 and X3 in which X2 and X3 are 
children of the parent node X1. For each node in the BN, its PMF defines conditional 
dependences on its parents and the joint PMF of the BN presented in Figure 1 is formed 
as a product of these conditional probabilities: 

( ) ( ) ( ) ( )1 2 3 1 2 1 3 1, , | |P X X X P X P X X P X X=  (1) 
where P(Xi|Xj) denotes the conditional probability of Xi given Xj. 

BN allows introducing new information (evidences) from the observed nodes to 
update the probabilities in the network. For example, if we have some evidences o to 
introduce to node X2 (X2 = o), this information propagates through the network and the 
joint PMF of the two other nodes can be recalculated as: 

  

P X1, X3 |ο( ) = P X1,ο, X3( )
P ο( ) =

P X1( )P ο | X1( )P X3 | X1( )
P X1( )P ο | X1( )

X1

∑  (2) 

Therefore, the a posteriori probabilities of X1 and X3 are updated and Eq. (2) 
becomes the key of parameter statistical characterisation from inspection data. It is 
assumed that the marginal probability P(X1) is the parameter of interest, then both exact 
and approximate inference algorithms are available for such computation. However, to 
illustrate the principle of exact inference which is used later in this paper, this 
probability can be derived from the joint PMF of the BN as follows: 
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=
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 (3) 

The summation operations in the third line of Eq. (3) are performed in smaller 
domains and imply node eliminations. The calculation order starts from the last term in 
the right to the left, hence X3 is the first node to eliminate followed by node X2. 
Elimination order is arbitrary and the size of the domains to handle due to elimination 
order defines the complexity of inference. Therefore, the objective of exact inference 
algorithms is to determine the elimination order that yield the smallest domains to 
handle (Jensen & Nielsen, 2007). Among exact inference algorithms, junction tree 
inference which can be seen as an extension of node elimination, can compute the a 
posteriori probabilities for all nodes in a BN simultaneously and consider multiple 
evidences cases. The junction tree algorithm is selected for inference of all BN in this 
paper.  
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2.2 Chloride ingress model  
Chloride penetration from the environment produces a chloride concentration profile in 
the concrete characterised by a high chloride concentration near the external surface that 
decreases at greater depths. In saturated concrete, Fick’s diffusion equation is generally 
used to predict the unidirectional diffusion at a distance x from the concrete surface:  

  

∂C fc

∂t
= D

∂2C fc

∂x2  (4) 

where Cfc is the concentration of chloride dissolved in pore solution, t is the time and D 
is the chloride diffusion coefficient. Let us assume that concrete is a homogeneous and 
isotropic material with the following initial conditions: (1) the chloride concentration is 
zero at time t=0 and (2) the chloride surface concentration is constant for t ≥ 0. The free 
chloride ion concentration C(x, t) at depth x after time t for a semi-infinite medium 
could therefore be expressed by an analytical solution to Fick’s equation using the error 
function (Collepardi, Marciallis, & Turriziani, 1972): 

  

C x,t( ) = Cs 1− erf
x

2 Dat

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 (5) 

where Cs is the chloride surface concentration, and Da is the apparent chloride diffusion 
coefficient and erf(.) is the error function. Eq. (5) is used to calculate the chloride 
concentration at depth x and given time t. This relation describes theoretically the 
kinetics of a non-stationary diffusion process. However, Eq. (5) is just valid when RC 
structures are completely saturated and subjected to a constant concentration of 
chlorides on the exposed surface. However, in practice these conditions are rarely 
present because concrete is a heterogeneous material that is frequently exposed to time-
variant surface chloride concentrations. Under natural conditions, chloride ingress is a 
more complex process influenced by other aspects such as: chloride binding capacity, 
concrete cracking, concrete ageing, environmental factors (temperature and humidity), 
etc. (Bastidas-Arteaga, Sánchez-Silva, Chateauneuf, & Ribas Silva, 2008; Bastidas-
Arteaga & Stewart, 2016; Nguyen, Bastidas-Arteaga, Amiri, & El Soueidy, 2017). 

Although some assumptions are oversimplified, error function models are 
widely used by practical applications due to their relatively simple mathematical 
expressions. The simplest error function model represented by Eq. (5), which treats the 
chloride diffusion coefficient as constant in time and space, has been proven to be 
conservative due to the lack of consideration of the retarding effect on the diffusion 
process resulting from chloride binding and the refinement of the pore structure over 
time (Nilsson & Carcasses, 2004). In a more advanced model, the chloride diffusion 
coefficient is modelled as time-variant following an exponential function (Tang & 
Gulikers, 2007) : 

( ) 0 '
0

DntD t D
t

−
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (6) 

where D0 is the chloride diffusion coefficient determined at time '
0t , and nD is the age 

factor that takes into consideration the time-dependency of D. Some models considering 
a time-variant chloride diffusion coefficient may lead to overestimated predictions of 
service life when the age factor is high (Tang & Gulikers, 2007). The model proposed 
by Nilsson & Carcasses, (2004) accounts for this time-dependent effect in a more 
realistic way and gives a relatively better prediction: 
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 (7) 

where '
ext  is the age of concrete at the start of exposure. This equation is valid only 

under these assumptions: (1) concrete is a homogeneous material, (2) chloride binding 
is time-independent and linearly proportional to the free chloride concentration, (3) the 
effect of co-existing ions is constant, and (4) the chloride diffusion is one-dimensional 
into a semi-infinite space. Despite some physical phenomena have been neglected, this 
model is selected for illustrative purposes. In comparison with Eq. (5), the time-
dependency of D considered by Eq. (7) is essential to introduce information from 
accelerated tests for characterising the mid- and long-term performance of the material. 
The methodology proposed in this paper could be extended for other chloride ingress 
models. 

2.3 BN for modelling chloride ingress 
In chloride ingress models, the chloride concentration C(xi, tj) at depth xi and time tj can 
be described as a general function of model parameters (Eq. (8)). The number of 
parameters involved in the right-hand side of Eq. (8) depends on the model selected to 
describe the chloride ingress. This study uses the model proposed in Nilsson & 
Carcasses, (2004) (Eq. (7)) that depends on three parameters (Cs, D0 and nD). 

( ) ( )0, , , ,...i j s DC x t f C D n=  (8) 
The BN representing the chloride ingress model given by Eq. (7) is described in Figure 
2. Three model parameters (Cs, D0 and nD ) are defined as three parent nodes (random 
variables to identify) whereas chloride concentrations C(xi, tj) at depth xi and at 
inspection time tj, which depend on the model parameters, are acting as child nodes. 
There are n child nodes C(xi, tj), 1≤ i ≤ nx, 1≤ j ≤ nt representing the discrete chloride 
concentration measurements in time and space. For a homogeneous inspection, i.e. 
when using the same protocol of inspection at each time, the number of child nodes is 
computed as: 

x tn n n=  (9) 
where nx is the total number of points in depth and nt is the total number of inspection 
times. 

Both exact and approximate inference algorithms can be used to update 
probabilities of the BN described in Figure 2. Exact inference is useful to analytically 
compute the conditional probability distribution over the variables of interest. However, 
they can only be applied to a very limited set of cases: when all nodes are discrete or 
when all nodes have a linear Gaussian distribution. In the case of complex and densely 
connected BNs, exact inference may require an extremely long computational time and 
approximate inference can then be seen as an attractive alternative. Most approximate 
algorithms are based on stochastic sampling. However, these techniques still have some 
algorithmic difficulties that provide some limitations in the rate of convergence (Bensi, 
Der Kiureghian, & Straub, 2011; Straub, 2009). In this study, chloride ingress model is 
described in an analytical form and the number of parent nodes (parameters to identify) 
is limited. Exact inference algorithms therefore could be applied here regarding their 
shortcomings. Continuous parameters are then replaced by discrete random variables. 
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The discretisation of continuous random variables generates approximation errors 
depending on the discretisation of the problem (Straub, 2009). However the effect of the 
discretisation errors is beyond the scope of this study. The probability of chloride 
concentration p(C(xi, tj)) can be calculated as follows: 

  
p C xi ,t j( )( ) = p C xi ,t j( ) | Cs , D0 ,nD( ) p Cs , D0 ,nD( )

Cs ,D0 ,nD

∑  (10) 

Assuming that Cs, D0 and nD are three independent variables, the joint 
probability of Cs, D0 and nD can be written as: p(Cs, D0, nD) = p(Cs)p(D0)p(nD). 

The BN allows updating the probabilities in the network when new information 
is available (evidences). In the BN given in Figure 2, the evidences could be computed 
from measurements of chloride concentration at given depths and times (chloride 
profiles). Let us denote Cxt1, Cxt2,…, Cxtn as n measurements obtained at depth xi and 
inspection time tj: ( )

1
1

,
x
t

i j
i n
j n

C x t
≤ ≤
≤ ≤

. The joint probability mass function of the BN presented in 

Figure 2 can be written in the form: 

  
p Cs , D0 ,nD ,Cxt1,...,Cxtn( ) = p Cxt1 | Cs , D0 ,nD( )...p Cxtn | Cs , D0 ,nD( ) p Cs( ) p D0( ) p nD( )  (11) 

where the conditional probabilities p(Cxt1|Cs, D0, nD),…, p(Cxtn|Cs, D0, nD) can be 
derived from the Conditional Probability Tables (CPT). Monte Carlo simulations are 
used to compute the CPT based on Eq. (7). Supposing that k observations: Cxt1, 
Cxt2,…,Cxtk are used to update the BN, we aim at computing the a posteriori 
distributions: p(Cs|o), p(D0|o) and p(nD|o) as: 

( ) ( ) ( ) ( )

( ) ( )
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0 0 0
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| , , | ; | , , |

and | , , |
D s D
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s s D s D
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ο ο ο ο

ο ο

= =

=
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∑
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where 

( ) ( ) ( )
( )
0 1

0 0 1
1

, , , ,...,
, , | , , | ,...,

,...,
s D k

s D s D k
k

p C D n Cxt Cxt
p C D n p C D n Cxt Cxt

p Cxt Cxt
ο = =

 

(13) 

These a posteriori distributions can be estimated by marginalising the joint 
distribution in Eq. (11) to obtain the joint distribution over the subsets of the variables: 

 

  
p Cs , D0 ,nD ,Cxt1,...,Cxtk( ) = p Cs , D0 ,nD ,Cxt1,...,Cxtn( )

Cxt j k< j≤n( )
∑  (14) 

and: 

  
p Cxt1,...,Cxtk( ) = p Cs , D0 ,nD ,Cxt1,...,Cxtn( )

Cs ,D0 ,nD ,Cxt j k< j≤n( )
∑  (15) 

To perform probabilistic inference, the computation of above probabilities is 
possible but it requires an exhaustive computational effort. A more efficient way is to 
use inference algorithms. As previously mentioned in this section, only exact inference 
algorithms (junction tree algorithm (Bensi et al., 2011)) are considered to perform 
inference. The inference is carried out by the BN Tool Box (Murphy, 2001) which is 
built on the Matlab® software. 

3. Sensitivity analysis for age factor statistical characterisation 
The age factor is a crucial parameter for characterising the time-dependency of the 
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chloride diffusion coefficient. However, according to Gulikers (2003) there are three 
main difficulties concerning its statistical characterisation: (1) the numerical approach 
to determine it is not clearly established, (2) the experimental data are limited and (3) 
the considered exposure time is short. Attari, McNally, & Richardson (2016) also 
pointed out the significant impact of age factor on lifetime assessment. Consequently, 
before focusing on the statistical characterisation of other model parameters (section 5), 
this section performs a sensitivity analysis to study the influence of the age factor on the 
statistical characterisation of the chloride diffusion coefficient. The sensitivity analysis 
considers the effects of: (1) different values of mean and standard deviation of the age 
factor (nD) on the statistical characterisation of model parameters (section 3.2), and (2) 
the selection of inspection times (section 3.3). 

 

3.1 BN description 
The BN considered in this sensitivity analysis is based on the model proposed by 
Nilsson & Carcasses (2004a) (Eq. (7)). The child nodes representing the chloride 
concentrations at 3 inspection times (T1=300 days, T2=600 days and T3=900 days) are 
introduced to combine evidences from different exposure times. The discretisation and 
the prior information for model parameters are defined in Table 1. Each node in the BN 
is discretised into a finite number of states. For parent nodes, we assume uniform 
distributions defined over upper and lower bounds. 

Depending on different test protocols for a given total inspection length, the BN 
configurations are defined based on the number of inspection points in depth (nx), the 
number of inspection times (nt), and the number of parameters to identify. The 
evaluation of the effectiveness of the statistical characterisation for a given BN 
configuration should be based on a given criterion. Preferably, it should include a larger 
amount of experimental data (chloride profiles) that can be used to estimate “real” 
probabilistic models of model parameters and consequently to test and compare various 
BN configurations. However, such a database is in practice very hard to obtain because 
chloride profiles are computed from semi-destructive tests that are expensive and time-
consuming. Therefore, in order to assess the error associated with each BN 
configuration without considering statistical bias and to provide general 
recommendations that minimise the statistical characterisation errors, this section only 
considers a large number of numerical evidences (chloride profiles) generated through 
Monte Carlo simulations. The theoretical probabilistic models given in Table 2 are used 
to generate 3,000 simulated chloride profiles for all numerical study cases. These 
theoretical values correspond to an ordinary Portland cement (OPC). We assume 
t!! = t!"! = 30 days as deterministic values. The number of child nodes in Figure 2 
depends on the discretisation of chloride profiles as described in Figure 3 for 
determining nx as well as on the number of inspection times for computing nt. We assess 
the performance of the BN configuration in terms of a ‘statistical characterisation error’ 
(Error(Z)) as the relative error of the identified parameter (Zidentified) with respect to the 
theoretical value (Ztheory): 

( ) 100%identified theory

theory

Z Z
Error Z

Z

−
= ×  (16) 

where Z represents the mean or the standard deviation of the parameter to identify – 
e.g., the mean or standard deviation of D0, Zidentified is determined from the a posteriori 
histograms of parent nodes, and Ztheory is the value of the mean or standard deviation 
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used to generate numerical evidences provided in Table 2. In practice it is unrealistic 
(almost impossible) to collect 3,000 chloride profiles. However, this larger database is 
necessary for obtaining a convergence on the error assessment. The results of this 
section focus only on the assessment of statistical characterisation errors of the chloride 
diffusion coefficient which is considered time-dependent as characterised by the age 
factor. 

The sensitivity analysis considers 5 inspection schemes that combine evidences 
from one and/or several inspection times (Table 3). Each scheme considers the same 
number of numerical profiles (3,000 simulations). The total inspection depth for each 
chloride profile is chosen equal to 21mm because beyond this depth, the chloride 
concentration is almost zero for a maximum exposure time of 900 days. This inspection 
depth is divided into various intervals with a discretisation depth Δx. This example 
considers the minimum inspection depth corresponding to the minimum grinding depth 
dg to account for the maximum available information for each chloride profile – i.e. Δx 
= dg=3 mm (Figure 3). 

3.2 Influence of different values of the mean and standard deviation on the 
statistical characterisation of nD 
This section considers two cases (Table 4) with different values for the mean and 
standard deviation of nD representative for OPC concretes in atmospheric and 
submerged environments, respectively (DuraCrete, 2000). In both cases nD follows a 
beta distribution. 

The statistical characterisation errors of D0 (Figure 4) are significantly different 
for each case. Indeed, in case 2 (µnD=0.30), the errors for all inspection schemes are 
higher than 40% and 250% for the mean and the standard deviation, respectively. Large 
errors for the statistical characterisation of the standard deviation are attributed to the 
fact that nD is an exponent. In contrast, statistical characterisation errors for case 1 are 
significantly less than 10% and 160% for the mean and standard deviation, respectively. 
These differences are related to the time-variant nature of the chloride diffusion 
coefficient illustrated in Figure 5. A higher value of nD implies that there is a strong 
reduction of D(t) at the beginning of the exposure and after D(t) decreases slowly. The 
sensitivity of different inspection times hinges on the value of nD. In case 1, after 
T1=300 days, the evolution with time of D(t) is almost constant leading to a small 
statistical characterisation errors of D0 with a single inspection time T1, T2 or T3. 
Therefore, it is important to have long-term inspection data for statistical 
characterisation. However, taking information of various inspection times after T1 does 
not provide more useful information about the evolution of D(t) with time. Hence, 
schemes that combine inspection times (T1+T2 or T1+T2+T3) could not improve 
significantly the statistical characterisation errors. In contrast, in case 2, D(t) presents a 
decreasing trend at inspection times T1, T2 and T3 (Figure 5). In this case, the 
combination of inspection data provides more information about the decreasing trend of 
D(t) diminishing statistical characterisation errors. 

The histograms plotted in Figure 6 show that the a posteriori distribution of D0 
obtained from case 1 is close to the theoretical one in comparison with case 2. This 
means that the selected times are not capturing adequately the time-dependency of the 
chloride diffusion coefficient in case 2 and introduce statistical characterisation errors. 
In the next section, other values of inspection times (T1, T2 and T3) will be selected to 
illustrate this aspect for case 2. 
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3.3 Influence of the selection of inspection times 
As previously discussed in section 3.2, for a given material characterised by an age 
factor nD the statistical characterisation errors depend on the chosen inspection times. 
This section compares two cases considering two sets of inspection times presented in 
Table 5. Case 2a has an early inspection time (100 days) in comparison with case Case 
2b. The first set of inspection times (T1’, T2’ and T3’) is denoted by a higher black line 
and the second set (T1, T2 and T3) is represented by a lower grey line. According to 
Figure 5, the variation of the chloride diffusion coefficient with inspection times in case 
2a is higher than in case 2b. In case 2a a first inspection at a relatively early exposure 
time is considered (T1’=100 days) in which the chloride diffusion coefficient is high. 
By introducing this early time, the time-dependency of the chloride diffusion coefficient 
can be described adequately. Consequently, the statistical characterisation of D0 in case 
2a reveals smaller errors as compared to case 2b (Figure 7). The combination of 
evidences in case 2a also diminishes significantly the statistical characterisation errors. 
For example, the statistical characterisation error for the mean of D0 is reduced from 
30% (scheme 1) to 8% (scheme 5) (Figure 7a). Similar trends are also observed for case 
2b, but at a lower reduction rate. The influence of the selection of inspection times is 
also illustrated for the inspection scheme 5 by comparing the a posteriori histograms of 
both cases (Figure 8). It should be noted that the shape of the a posteriori histogram of 
case 2a is close to the theoretical one. These findings highlight the importance of 
selecting appropriate inspection times for minimising statistical characterisation errors. 
In case 2a, early inspection times are very useful for describing the time-dependency of 
the chloride diffusion coefficient. Hence, in real practice, it is recommended to have 
also early inspection data for better characterisation the time-dependency of the chloride 
diffusion coefficient. 

Figure 7 also includes a case in which the age factor is fixed at a deterministic 
value (nD=0.3). In such a case, smaller errors are estimated for the mean and standard 
deviation of D0. This indicates that the statistical characterisation errors increase 
significantly when the age factor is introduced as a random variable in the BN. This is a 
well-known shortcoming when an equation is raised to the power of a random variable 
(Eq. (7)). To take advantage of this finding, sections 4 and 5 propose an approach to 
estimate a deterministic age factor in the BN.  

4. Statistical characterisation of equivalent times from accelerated test data 
Section 3.3 indicated that the statistical characterisation error increases significantly 
when the age factor is considered as a random variable and introduced in the BN as a 
parent node. Consequently, the level of uncertainty and statistical characterisation error 
can be reduced if the age factor is determined and introduced as a deterministic value in 
the BN. In parameter statistical characterisation, data from inspection campaigns 
(chloride profiles) are used for BN updating. However, the exposure times in normal 
ageing tests are often short (less than 700 days) and they cannot provide information 
about mid- and long-term performance of concrete. On the other hand, data from 
accelerated tests could provide such information. This section presents the construction 
of a BN configuration that combines data from both normal and accelerated tests to 
improve the characterisation of the chloride ingress process and analyse the influence of 
assumptions on deterministic values for the age factor on the statistical characterisation 
of equivalent times. 
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4.1 BN configuration and basic considerations 
This section considers a BN configuration that combines evidences coming from normal 
and accelerated data (Figure 9). It consists of 3 parent nodes representing for model 
parameters Cs, D0 and the equivalent time (teq) for the accelerated test. The equivalent 
time in accelerated tests could be defined as the required time in normal conditions 
(normal tests) to reach the same chloride content in accelerated tests. The child nodes 
denote inspection points in chloride profiles obtained from normal and accelerated tests. 
Chloride profiles obtained from normal tests provide information about chloride 
concentration at depth xi and real exposure time texp. In this numerical example it is 
assumed that higher chloride concentrations were measured and correspond to “a virtual 
accelerated test”. These higher concentrations (evidences) were generated by fixing 
various a priori deterministic equivalent times that are in theory unknown. Therefore, 
those virtual accelerated tests just provide information about chloride content at depth xi 
and this BN configuration aims at determining the equivalent time (teq) for accelerated 
tests.  

Theoretical values given in Table 6 are used to generate evidences for both 
normal and accelerated data with 9,000 simulations for each inspection time. Evidences 
from data obtained for normal tests are combined for 3 inspection times: T1=100 days, 
T2=300 days, and T3=600 days. Evidences from data based on accelerated tests are 
created from different equivalent times varying from 300 days to 3,000 days. The total 
inspection depth is assumed to be 30mm with a discretisation length of ∆x=dg=3mm. 
We also assume    tex

' = t0
' = 30  days in Eq. (7). 

A priori information and the discretisation of model parameters are detailed in 
Table 7 in which the three parent nodes are assumed to follow uniform distributions. 
The information provided in Table 7 is used to create the CPTs from simulations. In real 
practice, the ‘theoretical’ age factor for creating the evidences (nD,theory) is unknown and 
it is an additional model parameter to identify. In this case, the BN configuration 
(Figure 9) considers that the age factor is deterministic with an assumed value nD,assum. 
We study then different cases corresponding to various assumptions about the age factor 
(nD,assum = 0.30, 0.50, 0.65 and 0.70). Note that one of these cases considers that nD,assum 
is equal to nD,theory provided in Table 6 (reference case). 

4.2 Results 
Figure 10 presents the statistical characterisation errors for the mean of the equivalent 
time of accelerated tests (teq). It is obvious that the errors are smaller when nD,assum is 
equal to nD,theory. In both cases when this factor is under- (nD,assum=0.3) or overestimated 
(nD,assum=0.65;0.7) with respect to nD,theory, the statistical characterisation errors increase. 
Therefore, these results highlight that it is important to propose an approach for 
improving the characterisation of the age factor from experimental data. Section 5 will 
propose an iterative procedure towards this aim. 

5. Methodology for statistical characterisation of model parameters from 
normal and accelerated tests 
This section proposes an approach to determine the age factor and equivalent times 
from limited inspection data. Normal and accelerated tests are carried out under well-
defined laboratory conditions to obtain the experimental data, which are used afterwards 
for BN statistical characterisation. As previously mentioned, the combination of data 
from both normal and accelerated tests can improve the mid- and long-term assessment 
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of chloride ingress; thus the BN configuration presented in Figure 9 is used towards this 
aim. Section 5.1 describes the experimental setup used to obtain data from normal and 
accelerated tests. The proposed methodology is illustrated in section 5.2 and the results 
are presented and discussed in section 5.3. 

5.1 Experimental setup and problem definition 

5.1.1 Context and description  
The chloride penetration tests were carried out within the framework of the MAREO 
project (MAintenance and REpair of concrete coastal structure: risk based 
Optimisation) in the period 2008-2012 (Bastidas-Arteaga & Schoefs, 2015). This 
project aimed at characterising the durability performance of new commercial materials 
that could be used to repair RC components located in tidal zones by performing both 
normal and accelerated tests. The results provided mainly qualitative information (a 
comparison between three repair materials) about the durability performance after a few 
months of exposure to accelerated tests. This study would like to use the information 
from accelerated tests to characterise (quantify) the structural performance. We will 
focus on a commercial repair cement-based material whose composition was not 
provided by the factory. The name of the material is not provided to avoid any conflict 
of interest.  

In these tests, concrete slabs (50cm×50cm×15cm) are placed in a tank with salty 
water (Figure 11): University of Nantes Synthetic Seawater Tidal Test Device (UN-
SEA-NDT) (Bastidas-Arteaga, Schoefs, Chateauneuf, Sánchez-Silva, & Capra, 2010). 
To minimise the effect of hydration processes that can lead to fast decrease of the 
chloride diffusion coefficient, chloride exposure of the slabs started 300 days after 
casting. The exposure seawater salinity is within the range [30g/l, 37g/l]. This range 
corresponds to the average salinity of the North Atlantic seawater to guarantee a 
chloride ingress exposure similar to natural conditions. A protective coating applied on 
5 sides of the slab and the exposure conditions ensure chloride ingress in one direction 
from the bottom side (Figure 12) allowing to use the one dimensional penetration model 
(Eq. (7)). Tidal cycles (high and low) are simulated by varying the level of water 
(Figure 12). A daily exposure (24 hours) is divided into 12h of immersion (high tide) 
and 12h of drying (low tide). For the accelerated tests, fans are used to dry the samples 
during the low tide cycle. The drying step accelerates chloride ingress due to an increase 
of the capillarity sorption of concrete (Hong, 1998). Normal tests are subjected to the 
same tidal cycles without drying by fans. The tests are automatically controlled via a 
Labview® program. The tanks are placed inside a building and its environmental 
conditions (room temperature, water salinity and relative humidity) are recorded during 
the tests. 

5.1.2 Determination of chloride profiles from normal and accelerated tests 
At certain exposure times, slabs are cored to measure chloride profiles. The inspection 
time is defined as the exposure time of samples until they are cored from slabs. There 
are 3 concrete cores taken from each slab at 3 different inspection times. Each concrete 
core is a cylinder concrete with 10.5 cm of diameter and 12 cm in height. Table 8 
provides the times at which concrete cores are drilled from slabs for normal (9 cores) 
and accelerated (18 cores) tests. We used more cores for accelerated tests to obtain a 
better assessment of the variability of chloride ingress under this new exposure 
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condition. 

Each core is divided into grinding depth (dg) for being crushed into concrete 
powder. The grinding depth is 3mm and should not be smaller than this value due to the 
accuracy of equipment. These powders are afterwards used for filtration and titration 
tests to determine the chloride concentration at each depth point corresponding to the 
average depth of each interval. The filtration and titration tests follow the procedures 
described in (Ben Fraj, 2009; Ben Fraj, Bonnet, & Khelidj, 2012; RILEM TC 178-
TMC, 2002). Due to the short exposure time, the maximum length for each chloride 
profile is 42mm. For chloride profiles with lower chloride concentrations, the total 
length of chloride profiles might be shorter. With the same exposure times in laboratory 
conditions, chloride profiles from accelerated tests present higher chloride 
concentrations as compared with those obtained from normal tests. 

5.2 Methodology description 
This section details the proposed approach to determine the age factor and equivalent 
times of accelerated tests when the experimental data is limited. In this section, the real 
normal data comes from 3 exposure times obtained for laboratory conditions: 65 days, 
207 days, and 320 days. The accelerated data introduced in the BN represents the 
chloride concentration at a certain depth with unknown equivalent time of exposure. A 
priori information and the discretisation of model parameters are presented in Table 7. 
The age factor is considered as a deterministic value that is estimated from the 
experimental data. The total inspection length of chloride profiles is 42mm with a 
discretisation length of Δx=3mm. 

The methodology to characterise the age factor is described by the flowchart 
presented in Figure 14. Stage I implements least square fitting to determine a set of 
values of Cs and D for each chloride profile from normal tests. The mean values of D 
from normal data at different times (Table 9) are used to estimate a preliminary age 
factor by applying least square fitting from Eq. (6). Results from curve fitting are 
presented in Figure 13 with nD = 0.5705. This result is within the range of values 
presented in (DuraCrete, 2000a). This age factor is introduced in the BN to determine 
the mean value of the equivalent times for accelerated tests in the next stage. 

Stage II aims at determining the equivalent times from the BN with evidences 
from both normal and accelerated data. The accelerated data corresponds to 3 different 
exposure times in the laboratory conditions denoted teq,1, teq,2 and teq,3 (equivalent times 
to identify). This stage ends when the equivalents times teq,1, teq,2 and teq,3 are determined 
after updating the Bayesian network (Figure 9) with the data coming from accelerated 
tests.  

The equivalent times identified in Stage II allow to estimate chloride diffusion 
coefficients (D) from accelerated data at these times by using curve fitting (Stage III). 
For example, Table 9 also presents the equivalent times determined from the BN and 
the mean values of D estimated by curve fitting at each time for the first iteration. This 
new information allows re-estimating the age factor by combining new values of D at 
times teq,1, teq,2 and teq,3 with those obtained from normal data at texp,1, texp,2 and texp,3. 
Results from applying the curve fitting method in Eq. (6) are also shown in Figure 13. It 
can be seen that introducing data from accelerated tests gives a better assessment about 
long-term evolution with time of chloride diffusion coefficient that may be 
overestimated if only data from normal tests is used. A new value of the age factor is 
also obtained after fitting and it will be introduced to the BN for a new iteration until 
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convergence by repeating Stages I and II. Here the convergence criterion is defined by a 
difference smaller than 10-3 of values obtained between iterations. The final results are 
not influenced by the fitting method employed in Stage I because all parameters are 
updated after Bayesian inference. 

5.3 Results after the iterative procedure 
With real data obtained from experimental tests, the procedure to identify the age factor 
in this study is stopped after 4 iterations when values of age factor (nD) and the 
equivalent times (teq,1, teq,2 and teq,3) reach convergent values (Table 10).  

Model parameters identified after each iteration (Table 10) could be used to 
compute 5% and 95% percentiles of chloride concentration at depth x=10.5 mm at 
different times. By plotting these percentiles with real data from normal and accelerated 
tests, it can be seen in Figure 15 that the predicted 95% percentile at iterations 2 and 3 
are closer to the accelerated data than those from BN updating with only normal data or 
iteration 1. There are several data points that do not fall in the range 5% and 95% 
percentiles. This is, on the one hand, due to the limited number of experimental data 
that leads to the poor quality of information used for BN statistical characterisation. On 
the other hand, the inspection points at depth x=10.5 mm are quite close to the surface 
of structures (convection zone) where the selected model is not able to account for 
convection effects. However, in practice, it is of interest to evaluate chloride 
concentration at deeper points near the rebar. 

The exposure times considered in this study were not sufficient to allow 
significant chloride concentrations to reach the cover depth. Therefore, we select a 
second depth (x=31.5 mm) to compare the 5% and 95% percentiles of chloride 
concentration and real data (Figure 16). A similar trend as x=10.5 mm is observed for 
x=31.5 mm after iterations where predictions of 95% percentiles are closer to real data.It 
is also worth noticing that all accelerated data fall in the range of 5% and 95% 
percentage. This finding can be explained by the fact that at a depth x=31.5 mm, there is 
hardly any effect of a convection zone and the chloride ingress model is more 
appropriate to estimate chloride concentrations. Note that in both cases (x=10.5 mm and 
x=31.5 mm), the predicted 5% percentile remains almost the same after update. This is 
due to the effect of short distribution tails at 5% percentile where the updating process 
has no significant change (Figure 17). On the contrary, the updating of the right 
distribution tail is significant which is of first importance for reliability assessment. 
Moreover, it is seen that at x=31.5 mm we are able to capture the dissymmetrical 
distribution shape that has been observed (Bonnet, Schoefs, Ricardo, & Salta, 2009). 
Therefore, it can be concluded that this approach is useful for identifying the age factor 
from real data. The statistical characterisation would be improved if more experimental 
data is provided. 

6. Conclusions and perspectives 
Chloride ions are aggressive species leading to reinforcement corrosion of RC 
structures. Related parameters for modelling this process are necessary for studying 
reliability of structures and planning inspection schedules. Frequently, these parameters 
are estimated from inspection data obtained from on-site measurements after decades. 
Thus, inspection campaigns require significant time to obtain a sufficient amount of 
data for condition assessment and reliability analysis. Therefore, this study accounts for 
data from normal and accelerated tests for characterising and modelling the penetration 
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of chloride ions into concrete. This data could provide useful information for parameter 
statistical characterisation from BN updating. 

Chloride ingress models should consider the time-dependency of the chloride 
diffusion coefficient by introducing an age factor. Results from sensitivity analysis 
indicated that this factor has a significant influence on the estimation of model 
parameters. For specific concrete characteristics and exposure conditions (a given age 
factor), the inspection schemes should consider both early and long-term inspection 
times describing adequately the evolution of the chloride diffusion coefficient with 
time. Combining information coming from these inspection times improves the 
statistical characterisation of parameters. It is also worth noticing that considering the 
age factor as a random variable in BN increases uncertainty and adds errors for the 
statistical characterisation.  

This study proposed a BN framework to improve the statistical characterisation 
of parameters in chloride ingress models. The procedure estimates a priori information 
about age factor from data obtained from normal exposure tests and based on that 
determines the equivalent times for data from accelerated tests. By integrating 
information from normal and accelerated data the age factor is then re-estimated. 
Afterwards, the equivalent times are also updated from BN. A convergence trend was 
obtained when both mean equivalent times and age factor lead to constant values. In this 
procedure, the combination of data from normal and accelerated tests provides a better 
assessment of the time-dependent process of chloride diffusion coefficient that can be 
under- or overestimated if only normal data is used. This result also highlights the 
importance of data from long-term inspection for identification of nD. By comparing the 
confidence intervals estimated from probabilistic modelling of chloride ingress and real 
data, it can be concluded that this approach is useful for characterising the age factor 
and that BN is a powerful tool for analysing such a time-dependent problem.  

There are some aspects that could be considered in future works: 

• Consideration of modelling errors as new parameters to identify and to be 
determined from real data. 

• Extension of the statistical characterisation of random variables to the statistical 
characterisation of random fields.  

• Consideration of costs for recommending inspection procedures (inspection 
times, number of cores, number and positions of measures in each core, etc.) that 
provide a balance between error and cost. 

• Validation and improvement of the proposed procedure with long-term data.  
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Table 1 BN discretisation and a priori information of model parameters 

Parameter A priori information States per node 

Cs [g of Cl /kg of concrete] Uniform [10-3 – 5.5] 50 

D0×10-12 [m²/s] Uniform [0.4 – 35] 50 

nD Uniform [0 – 1] 30 

C(x ,t) [g of Cl /kg of concrete] -a 30 

aUsing different boundaries for child nodes (Tran et al., 2016a) 

 

Table 2 Theoretical values for generating simulated chloride profiles 

Parameter Distribution Mean COV Reference 

Cs [g of Cl /kg of 

concrete] 
Lognormal 1.28a 0.2 

(Bastidas-Arteaga, 

Bressolette, 

Chateauneuf, & 

Sánchez-Silva, 2009) 

D0 ×10-12 [m²/s] Lognormal 7 0.15 (Duprat, 2007) 

nD Beta [0 – 1] 0.3 0.167 (Duracrete, 2000) 

aValue estimated from a concrete density ρc = 2300 kg/m3 

 

Table 3 Description of the inspection schemes 

Inspection scheme Inspection times Simulations per inspection time 

1 T1 3,000 

2 T2 3,000 

3 T3 3,000 

4 T1+T2 1,500+1,500 

5 T1+T2+T3 1,000+1,000+1,000 

 



Table 4 Considered theoretical values of nD (Duracrete, 2000) 

 Dn   
 
µnD

 
 
σ nD

  

Case 1 0.65 0.07 

Case 2  0.3 0.05 

 

Table 5 Studied cases with different inspection times 

Cases Inspection times (days) 

Case 2a T1’=100 T2’=300 T3’=600 

Case 2b T1=300 T2=600 T3=900 

 

Table 6 Theoretical values for generating simulated evidences (Bastidas-Arteaga et al., 2009; Duprat, 

2007) 

Parameter Distribution Mean COV 

Cs [g of Cl /kg of concrete] Lognormal 1.28a 0.2 

D0×10-12 [m²/s] Lognormal 7 0.15 

nD,theory  Deterministic  0.5   

aValue estimated from a concrete density ρc = 2300 kg/m3 

 

Table 7 A priori information and discretisation of model parameters 

Parameter A priori information States per node 

Cs [g of Cl /kg of concrete] Uniform [10-3 – 5.5] 50 

D0×10-12 [m²/s] Uniform [0.4 – 35] 50 

teq [day] Uniform [0 – 3600] 100 

C(x) [g of Cl /kg of concrete] –a 30 

C(x ,t) [g of Cl /kg of concrete] –a 30 

aUsing different boundaries for child nodes according to (Tran et al., 2016a) 

 



Table 8 Times (in days) to take cores from slabs since the beginning of the exposure 

 

Accelerated test Normal test 

Slab I Slab II Slab III 

1st inspection [day] 65 65 65 

2nd inspection [day] 212 212 207 

3rd inspection [day] 436 436 320 

 

Table 9 Fitted mean values of D at each exposure time in normal and accelerated tests 

Parameters 

From normal tests data 

(3 values per time) 

From accelerated tests data 

(6 values per time) 

texp,1=65  

days 

texp,2=207  

days 

texp,3=320  

days 

teq,1=815 

days 

teq,2=939 

days 

teq,3=1069 

days 

D ×10–12[m²/s] 18.82 8.34 8.70 1.02 1.29 1.46 

 

Table 10 Evolution of model parameters after the iterative procedure 

Parameter 
Update with 

normal data 
Iter. 1 Iter. 2 Iter. 3 Iter. 4 

Mean Cs [g of Cl /kg of concrete] 0.6048 0.5912 0.5712 0.5719 0.5719 

Std Cs [g of Cl /kg of concrete] 0.0999 0.0975 0.0920 0.0923 0.0923 

Mean D0×10–12[m²/s] 12.4 12.1 16.3 16.2 16.2 

Std D0×10–12 [m²/s] 4.91 4.80 5.09 5.09 5.10 

nD 0.570 0.570 0.748 0.740 0.740 

Mean teq,1 [days] – 815 899 893 893 

Mean teq,2 [days] – 939 1036 1035 1035 

Mean teq,3 [days] – 1069 1253 1245 1245 

 



 

 

Figure 1 A Simple Bayesian Network 

 

 

 

 

Figure 2 BN for modelling chloride ingress 
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Figure 3 Discretisation for estimating chloride profiles 

 

 

Figure 4 Statistical characterisation errors of D0 for: (a) mean - (b) standard deviation 
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Figure 5 Time-variant chloride diffusion coefficient for different values of age factor 

 

 

 

 

 

 

Figure 6 A posteriori distribution of D0 for the inspection scheme 5 (T1+T2+T3) 
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Figure 7 Statistical characterisation errors of D0 for: (a) mean - (b) standard deviation 

 

 

 

 

Figure 8 A posteriori distributions of D0 for different inspection times in the inspection scheme 5 
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Figure 9 BN configuration combining data from both normal and accelerated tests 

 

 

 

 

 

Figure 10 Statistical characterisation errors for the mean of equivalent time of accelerated test (teq) 

with different assumed values of nD ( nD,assum) 
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Figure 11 Distribution of concrete slabs in the tank 

 

 

 

Figure 12 Laboratory tidal conditions  
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Figure 13 Estimation of age factor using curve fitting with normal data and combining data at 

iteration 1 

 

 

 

Figure 14 Flowchart to identify the age factor and the equivalent times 
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Figure 15  5% and 95 percentiles of chloride concentration at depth x=10.5mm 

 

 

 

 

 

Figure 16 5% and 95 percentiles of chloride concentration at depth x=31.5mm 
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Figure 17 Probability density and distribution tails with 5% and 95% percentiles at: (a) x=10.5mm 

and (b) x=31.5mm 
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