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Selection of Parity Check Equations for the Iterative
Message-Passing Detection of M-Sequences

M. des Noes, V. Savin, L. Ros and J.M. Brossier

Abstract—We consider the joint detection and decoding of m-
sequences. The receiver has to decide whether an m-sequence
is received and possibly to decode its initial state. To do so,
it implements an iterative message-passing decoding algorithm
that operates on a parity check matrix, built upon a number
of reference parity-check equations satisfied by the m-sequence.
This matrix concatenates several elementary parity check ma-
trices which are derived from reference equations. Unlike the
conventional decoding case, the detection problem imposes to
consider false alarms that may occur when the decoder is only
fed with noise. While absorbing sets are known to be responsible
for the error floor phenomenon of iterative message-passing
decoders, we show that they may have a beneficial effect on
the detection performance, in that they may prevent the decoder
to produce false alarms. We further compute the number of
hybrid cycles of length 6 and 8 in the Tanner graph of the
decoder and use the minimization of this number as criterion
to derive an algorithm for selecting the reference parity check
equations. This algorithm was found to be efficient for minimizing
the probability of false alarm and decreases also the probability
of wrong detection in the very small SNR region. This has been
achieved at the cost of a reduction of the probability of correct
detection.

I. INTRODUCTION

Maximum length sequences (m-sequences) form a family
of binary sequences with excellent correlation properties [1],
widely used in wireless communications and positioning sys-
tems for synchronization, channel estimation or transmission
in multipath channels [2][3][4].
The conventional method to synchronize with an m-sequence
is to correlate the received signal with a replica of the searched
sequence [5]. If a correlation peak is observed and is above a
given threshold, the receiver is synchronized. An alternative
method consists of performing detection by decoding the
received signal. In fact, an m-sequence is a codeword of a
cyclic linear code C defined by the characteristic polynomial
p(x) of the m-sequence [6]. It is thus possible to detect a
transmitted sequence using a suitable decoder. This solution
was originally proposed in cryptography for fast correla-
tion attacks on stream ciphers [7][8][9]. It has been applied
more recently in wireless communications and localization
domains [10][11][12][13][14][15]. The task of the decoder is
to simultaneously decide whether an m-sequence is received,
and if so, to decode its initial state [16]. This corresponds
to a joint detection and decoding problem [17]. Exploiting
the parity check equations satisfied by the m-sequence, an
iterative message-passing algorithm can be implemented to
decode the received signal [18]. More specifically, [19] and
[20] propose an iterative message passing algorithm based
on a redundant graphical model (RGM) for the decoding
of m-sequences or Gold sequences. The parity check matrix

E concatenates K elementary parity check matrices. Each
elementary matrix is generated by consecutive cyclic shifts
of one parity check equation, referred to as the reference
parity check equation. In order to ensure good error correction
capabilities, the Hamming weight of this equation (number of
non-zero coefficients), denoted by t, must be low. Indeed, it
is known that the probability of correct decoding decreases
with increasing t [7]. Consequently, one wants to use reference
parity check equations having the smallest weight. We note
that a parity check equation corresponds to a codeword of the
dual code C⊥. In case of an m-sequence, the dual code is the
Hamming code H generated by the characteristic polynomial
p(x), and is known to contain many codewords of weight t=3
[21]. As a result, we will only consider parity check equations
of weight t = 3 because it is the most favorable for decoding
performance. Eventually, the properties of E depend solely on
the K reference parity check equations.
In this article, we address the following problem : given a
set of reference parity check equations of weight t = 3, how
to select the K ones that will give the “best performance”
? The “best performance” corresponds in an ideal situation
to a maximal probability of correct detection PCD, and a
minimal probability of wrong detection (PWD) and false alarm
PFA. These performance criteria are defined in Section II-B.
Unfortunately this objective is impossible to reach [22], one
has to make a trade-off between these 3 parameters. In our
study, we focus on a strategy aiming at minimizing PFA.
To the authors’ best knowledge, this problem has not been
addressed in the literature yet. Our strategy is motivated by
the decisive impact of PFA on the mean acquisition time of
direct sequence spread spectrum systems [5]. A false alarm
occurs if the decoder finds a codeword while there is only
noise at the input. For instance this situation may happen if the
sequence is transmitted occasionally (e.g. TDMA system) or
when attempting to detect the scrambling code of the UMTS-
FDD system [14].
Based on preliminary simulation results, we have observed that
PFA may range from 0.1 to 10−6 according to the selected
parity check equations for the decoding of an m-sequence.
This has a huge impact on the mean acquisition time. These
surprising observations motivated us to provide an explanation.
We found that absorbing sets [23] are responsible for these
results. These topological structures of the decoding graph
are already known to be responsible for error floors of LDPC
codes [24][25]. They are fixed points of Gallager B decoding
algorithm and prevent the decoder to converge in certain
circumstances. When the decoder is only fed with noise, it
shall not converge to a codeword otherwise it produces a
false alarm. This non-convergence is obtained if the decoder is
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trapped by an absorbing set. This situation is likely to happen
if the Tanner graph contains many small absorbing sets. Since
the selected parity check equations define the properties of
the decoding graph, the existence of small absorbing sets
depends on this selection. More precisely, some configurations
may generate “hybrid” cycles that are responsible for the
destruction of small absorbing sets and hence increase the
occurrence of false alarms. The definition of a hybrid cycle
is given in Section III-C. The identification of the small
absorbing sets and the hybrid cycles allows us to derive an
algorithm for selecting reference parity check equations. Its
goal is the elimination of these hybrid cycles. The first step
of the algorithm requires to count the number of cycles of
length 6 and 8. To do so, we implemented the method proposed
by Halford and Chugg in [26] to derive analytical formulas.
Then, lower bounds on the number of cycles of length 6 and 8
are determined. The difference between the actual number of
cycles and the lower bounds gives an evaluation of the number
of hybrid cycles of length 6 and 8. The selection of the K
reference parity check equations is based on the minimization
of these numbers.
The paper is organized as follows. Section II details the gener-
ation of m-sequences, recalls some of their coding properties
and describes the iterative message passing algorithm used to
decode them. Section III presents a method for identifying
small absorbing sets according to the reference parity check
equations. Section IV details the proposed algorithm for the
selection of parity check polynomials. The number of cycles
of length 6 and 8 are evaluated as a function of the system
parameters (K and t) and the parity check matrix. Using
these expressions, a selection algorithm is derived. Section V
shows the impact of the selected parity check polynomials on
the detection performance and the benefit of our algorithm.
Eventually, Section VI concludes this paper.
Notation: the index of a sequence is computed modulo its
length N : y(k) = y(k mod N). The modulo 2 binary
addition is noted with symbol ⊕. The notation A = B \ C
means A is the set of elements of B that are not in C. ET is
the transpose of matrix E and tr(L) is the trace of the square
matrix L.

II. ITERATIVE DECODING OF M-SEQUENCES

In this section, we first define maximum length sequences,
and then explain how they can be regarded as codewords of
an error correcting code.

A. Generation of m-sequences

An m-sequence is generated by using a linear feedback shift
register (LFSR) sequence generator such as depicted in Fig. 1.
The feedback taps are given by the characteristic polynomial
p(x) =

∑r
k=0 pkx

k, with p0 = pr = 1. Moreover, for an m-
sequence, p(x) is a primitive polynomial of degree r, in which
case the period of the generated sequence y is N = 2r − 1
[27].
Let uy(i) be the content of the ith shift-register of sequence
y = (y(0), · · · , y(N−1)). The state of sequence y is the vector

uy = (uy(0) · · ·uy(r − 1)). There are 2 types of LFSR gener-
ators: Galois and Fibonacci feedback generator [27]. Both can
be used to generate the same m-sequence. Using the Fibonacci
generator of Fig. 1, the initial state of a sequence y is given
by its first r chips: uy(0) = y(0), · · · , uy(r − 1) = y(r − 1).

D D D D D

pr-1
pr-2p1

++++

p2

y(k)
uy(0)uy(1)uy(r-1) uy(r-2)

Figure 1. Fibonacci feedback generator.

The Fibonacci feedback generator of Fig. 1 can be seen as a
linear encoding operation that encodes the information word
uy into the codeword y. Hence, the set of all the m-sequences
generated by p(x) forms a linear code S of dimension r
and length N . The r information bits are loaded into the
registers of Fig. 1. The generator is run N times to produce the
codeword y. A parity check matrix of the code S is a matrix
E such that EyT = 0, for any m-sequence y. Hence, any row
of E, say g = (g0, ..., gN−1), is a codeword of the dual code
of S, which is known to be the Hamming (cyclic) code H of
dimension N−r and length N , generated by p(x) [6]. We refer
to g as a parity check equation of S, or by a slight abuse of
language, as a parity check equation of the m-sequence. Using
the polynomial notation g(x) = g0 + g1x+ · · ·+ gN−1x

N−1,
it follows that g(x) is a parity check equation of S if and only
if g(x) is a multiple of p(x) modulo xN − 1.

A reference parity check equation is a parity check equation
g(x) with constant term equal to 1 (g0 = 1). We define Υt

as the set of reference parity check equations g(x) having
weight t. Let us also define Kt = card(Υt) the number
of these equations. Other parity check equations are derived
by cyclic shifts (xg(x), · · · , xN−1g(x)) of reference parity
check equations. Kt is obtained by enumerating the number
of codewords of the Hamming code H having weight t and a
constant term equal to 1. The decoding performance is very
sensitive to the weight of the parity check equations [7]. It is
thus advisable to exploit only equations having a small weight
t. For t = 3, we have K3 = 2r−1 − 1 [21]. The number of
reference parity check equations is fortunately very large for
practical configurations. As a result, there is no need to search
for equations with t > 3 since they will degrade the decoding
performance. In the sequel, we will only consider the decoding
of m-sequences using parity check equations of weight t = 3.
In addition, the problem of finding parity check polynomials
of weight t = 3 is not addressed in this paper as it has been
deeply analyzed in cryptography for the implementation of
fast correlation attacks [28][29]. It is assumed the receiver
has already computed the set Υ3 collecting such polynomials.
They are referred to as trinomials throughout the rest of the
paper.
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B. Iterative message-passing detection

The goal is to implement a receiver capable to simultane-
ously detect the presence of an m-sequence y and estimate
its initial state. To do so, it has to decide for one of the two
following hypothesis:

H1 : R(i) = (−1)y(i) + w(i)
H0 : R(i) = w(i)

(1)

R = (R(0), · · · , R(M−1)) is the received signal and M is the
number of samples used by the decoding process. If M < N ,
this corresponds to an incomplete observation of sequence y.
The additive noise w(i) is real zero mean white gaussian with
variance σ2.
Under hypothesis H1, the receiver observes the m-sequence
y with additive noise, while it only receives noise under
H0. This situation may happen if the sequence is transmit-
ted occasionally (e.g. TDMA system) or when attempting
to detect the uplink scrambling code of the UMTS-FDD
[14] or CDMA2000 [13] system. Under hypothesis H1, the
receiver is assumed to be synchronized with the time frame.
Hypothesis H0 applies otherwise. The decision for one of
the two hypothesis is based on the result of decoding the
vector (R(0), · · · , R(M − 1)) [16]. The receiver decides for
hypothesis H1 if the decoder finds a valid codeword and
H0 otherwise. The codeword also gives the initial state of
sequence y.
The principle for the decoding of an m-sequence is to build
a sparse parity check matrix E and then to apply an iterative
message passing decoding algorithm on the induced bipartite
graph [10][18]. For practical reasons, the decoder implements
a Min-Sum algorithm (MS) [30] which provides an approxi-
mation of the maximum likelihood decoding of the sequence.
It does not require the estimation of the noise variance σ2.
Let G = (V ∪ F,Ξ) be the bipartite graph derived from the
parity check matrix E. The set of variable nodes is noted V , F
is the set of check nodes and Ξ is the set of edges connecting
variables and check nodes. A check node is a parity check
equation defined by a row of matrix E. A variable is connected
to a check node if it is used by the corresponding equation. In
order to improve the decoding performance, an usual design
strategy is to consider redundant graphical models [11][19].
An augmented parity check matrix is built by concatenating
K elementary parity check matrices:

E =
[
ET

0 ET
1 · · ·ET

K−1
]T

(2)

The Tanner graph of the decoder is modified by the concatena-
tion of these elementary matrices and so are the performances.
If the combination of elementary matrices is well chosen,
the number of small absorbing sets defined in Section III is
reduced, and the probability of correct decoding is increased.
Each matrix Ea is generated with a reference parity check
polynomial ga(x) =

∑ra
k=0 ga,kx

k (a = 0, · · · ,K − 1):

Ea =



ga,0 · · · · · · ga,ra 0 · · · · · · 0
0 ga,0 · · · · · · ga,ra 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
. . . 0

0 · · · · · · 0 ga,0 · · · · · · ga,ra
ga,ra · · · · · · · · · 0 ga,0 · · · ga,ra−1

...
. . . · · · · · · 0

. . .
. . .

...
ga,1 · · · ga,ra 0 · · · · · · 0 ga,0


(3)

ga(x) belongs to Υ3, hence Ea has a row weight equals to t =
3. It is assumed that the receiver observes the sequence over
its entire length M = N . As a consequence, Ea is circulant.
This assumption will be helpful to derive the algorithm for
selecting the K parity check polynomials. Simulation results
will show that the algorithm provides also very good results
when only a part of the sequence is observed (M < N ).
E is thus a KN × N sparse matrix. The concatenation of
K elementary matrices defines the overall bipartite graph
on which the decoding algorithm is applied. While the row
weight remains unchanged (t = 3), the K reference polyno-
mials g0(x), · · · , gK−1(x) determine the structure of cycles
appearing in the graph G, as well as specific topological
configurations, named absorbing sets, which are known to have
a significant impact on the decoding performance. This will
be detailed in the next section.
The overall decoding operation is modeled as a function dec(.)
that produces a status indicator Ic and the estimated initial state
ûy:

{Ic, ûy} = dec(R(0), R(1), · · · , R(M − 1)) (4)

Ic is the indicator function of the decoder. It outputs a 1 if
the decoder finds a valid codeword y, i.e. EyT = 0. If the
decoding is successful (i.e. Ic = 1), according to the Fibonacci
representation of Fig. 1, the first r bits of the codeword
represent the content of the shift registers at initialization. This
produces the vector ûy .
The performance of the decoder is measured by the probability
of correct detection PCD, missed detection PND, wrong
detection PWD and false alarm PFA defined as follows :

PCD = P (Ic = 1 and ûy = uy|H1)
PWD = P (Ic = 1 and ûy 6= uy|H1)
PND = P (Ic = 0|H1)
PFA = P (Ic = 1|H0)

(5)

One notes that PCD, PND and PWD satisfy the following
relation: PCD + PND + PWD = 1. As a result, we will only
measure PCD and PWD.
Our goal is to define a rule for the selection of the K
trinomials that will minimize PFA. Indeed this parameter has
a determinant impact on the mean acquisition time in a serial
search [5]. A false alarm induces a penalty corresponding to
the amount of time needed to discover the acquisition error.
We found that absorbing sets [23] have a decisive impact
on false alarms. These topological structures of the decoding
graph are fixed points of Gallager B decoding algorithm
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and prevent the decoder to converge if some conditions are
satisfied. When the decoder is only fed with noise, it shall not
converge to a codeword otherwise it produces a false alarm.
This non-convergence is obtained if the decoder is trapped
by an absorbing set. This situation is likely to happen if the
Tanner graph contains many small absorbing sets. Since the
selected parity check equations define the properties of the
decoding graph, the existence of small absorbing sets depends
on this selection. We will first propose a method for identifying
absorbing sets as a function of the selected parity check trino-
mials used by the decoder. This method is then used to explain
how these absorbing sets simultaneously reduce PFA and
increase the probability of error Pe = PND+PWD = 1−PCD.
Finally we will derive our algorithm for selecting parity check
polynomials.

III. ABSORBING SETS

Absorbing sets have been introduced to explain error floors
observed at high Signal to Noise Ratio (SNR) when decoding
some LPDC codes over the AWGN channel [25]. They cor-
respond to specific topological structures which characterize
the behavior of the algorithm when it does not converge to a
codeword.

Definition 1 ([31]): For a subset D of V , let O(D) (resp.
E(D)) be the set of neighboring vertices of D in F with odd
(resp. even) degree with respect to D. Given an integer pair
(a, b), an (a, b) absorbing set is a subset D of V such that:

1) D contains a variables and O(D) contains b check
nodes.

2) Every variable in D has strictly more neighbors in E(D)
than in O(D).

Definition 2 ([31]): We say that an (a, b) absorbing set
D is a fully absorbing set, if in addition, all variable nodes
in V \ D have strictly more neighbors in F \ O(D) than in
O(D).
A fully absorbing set is a special type of trapping sets
[24][32][33], and is a fixed point of the Gallager B decoding
algorithm [34]. For instance, if the all zero codeword is sent
and the bits corresponding to the variables of the absorbing
set are erroneous (’1’ instead of ’0’), the decoder will not be
able to correct them and thus will not converge. It is widely
recognized that small fully absorbing sets are responsible
for error floors in the decoding of LDPC codes [31][35]. In
conventional situations, one wants to eliminate these absorbing
sets in order to lower the error floor. In our context, we take
the opposite direction, we want to ensure the presence of fully
absorbing sets to avoid false alarms. In fact, when the decoder
is only fed with noise (hypothesis H0), one does not want
the decoder to converge to a valid codeword. This desired
situation happens if it is trapped by a fully absorbing set. This
configuration occurs if all parity check equations of E(D)
are satisfied while those of O(D) are not. If the number
of fully absorbing sets is sufficiently large, the probability
to be trapped becomes large when the input vector is large.
On the other hand, when there is a valid codeword at the
input, these absorbing sets may block the decoder and the
probability of detection will decrease. This corresponds to

the usual trade-off between probability of detection and false
alarm in conventional detection theory [22].
We will first describe a method for constructing small absorb-
ing sets corresponding to the parity check matrix defined by
(2). Then we will validate by means of simulations that our
assumption about the impact of absorbing sets on false alarms
is correct. We will eventually explain how the selected parity
check trinomials may destroy these absorbing sets, and thus
allow the advent of false alarms.

A. Construction of absorbing sets

Let us first consider a circulant parity check matrix gener-
ated by the trinomial ga(x) = 1 + xia + xra . Fig. 2 illustrates
a cycle of length 6 connecting variables y(k), y(k + ia) and
y(k+ia−ra). Parity check equation Fa(k) corresponds to the
kth row of matrix Ea: Fa(k) : y(k)⊕y(k+ia)⊕y(k+ra) = 0.
According to the preceding definition, (y(k), y(k+ ia), y(k−
ra + ia)) is a (3, 3) absorbing set. Each variable is connected
to two check nodes belonging to E(D) and one in O(D). If
two variables connected to O(D) coincide, it is no longer a
fully absorbing set. This leads to the following proposition.

Proposition 1: The absorbing set described by Fig. 2 is a
fully absorbing set if ra 6= 3ia and ra 6= 3ia/2.
Knowing that ra > ia, there are only two possibilities for two
variables to coincide. If ra = 3ia then y(k−ia+ra) coincides
with y(k+2ia). If ra = 3ia/2 then y(k+2ia−2ra) coincides
with y(k − ia).
Two other absorbing sets are obtained by changing k by k−ia
or k+ra−ia. As a result, each parity check matrix Ea contains
a total of N (3, 3) absorbing sets. They are fully absorbing
sets if ra 6= 3ia and ra 6= 3ia/2.

) ( aa riky −+ ) ( aiky +

) ( aa rkF −

) (a aa irkF +−

)(kFa

)(ky

)(a aikF −

) (a aikF +) 2 (a aa irkF +−

) ( aiky −) ( aa riky +−

)2 ( aa riky −+

)2 2 ( aa riky −+

)( aa riky ++

)2 ( aiky +

) ( arky +

) ( arky −

)2 ( aa riky −+

Figure 2. Cycle of length 6

Let us now consider a row circulant parity check matrix
E generated with K trinomials according to (2) and (3).
The method for constructing small absorbing sets is based
on an incremental process. They are built upon initial (3, 3)
absorbing sets such as the one depicted in Fig. 2. Let DK(k)
be an absorbing set obtained when using K parity check
trinomials. Index k indicates that variable y(k) belongs to
DK(k). Other absorbing sets are obtained by a cyclic shift
of index k. The absorbing set DK+1(k) is built upon DK(k)
as it will be detailed now. The proposed construction method
also assumes that every parity check equation connecting two
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variables of DK(k) is not connected with a third variable of
DK(k). The violation of this assumption leads to a destruction
of the absorbing sets, as it will be detailed in Section III-C.
Two configurations are distinguished whether K is even or
odd. If K is even (K = 2Q for some integer Q), each variable
of DK(k) is connected to 6Q parity check nodes and must be
connected to strictly more parity checks of E(DK(k)) than
O(DK(k)). As a result, it must be connected to at least 3Q+
1 parity check nodes belonging to E(DK(k)). For the same
reason, if K is odd (K = 2Q + 1), each variable must be
connected to 3Q+ 2 parity check equations of E(DK(k)).
Let us denote DK(k) = {y(k), y(k+α1), · · · , y(k+αaK−1)}
the constructed absorbing set with K trinomials. It contains
aK variables, including y(k). If we add a new elementary
parity check matrix defined by trinomial gc(x) = 1+xic +xrc

to the decoder, matrix Ec contains cycles of length 6 such
as the one depicted in Figure 2. The variables of this cycle
are {y(k), y(k + βc), y(k + γc)}, where (βc, γc) ∈ {(ic, ic −
rc); (−ic,−rc); (rc − ic, rc)}. We will now expose our con-
struction method.

Theorem 1: If D2Q+1(k) is an absorbing set, then
D2Q+2(k) defined by:

D2Q+2(k) = D2Q+1(k) ∪D2Q+1(k + βc) ∪D2Q+1(k + γc)
(6)

is an absorbing set.
Proof: If we want D2Q+2(k) to be an absorbing set, one

must add 2 connections in E(D2Q+2(k)) to each variable
belonging to D2Q+1(k). This is obtained by the duplication
and translation of D2Q+1(k) defined by (6). We have to
check that every variable in D2Q+2(k) has strictly more
neighbors in E(D2Q+2(k)) than in O(D2Q+2(k)). To do so,
we will enumerate the number of connections of y(k) in
E(D2Q+2(k)). Since y(k) ∈ D2Q+1(k), y(k) has at least
3Q+2 connections in E(D2Q+1(k)). In addition, y(k) belongs
to the cycle of length 6 {y(k), y(k + βc), y(k + γc)}, which
adds 2 connections to E(D2Q+2(k)). As a consequence, y(k)
has at least 3Q + 2 + 2 = 3(Q + 1) + 1 connections in
E(D2Q+2(k)) which is strictly larger than the number of
connections to O(D2Q+2(k)). As a result, D2Q+2(k) is an
absorbing set.

Theorem 2: Let us define parameter δc ∈
{ic,−ic, rc,−rc, rc − ic, ic − rc} as any index of one
of the 6 variables y(k + δc) connected to y(k) by a parity
check equation of matrix Ec.
If D2Q(k) is an absorbing set, then D2Q+1(k) defined by:

D2Q+1(k) = D2Q(k) ∪D2Q(k + δc) (7)

is an absorbing set.
Proof: If we want D2Q+1(k) to be an absorbing set,

one must add only one connection in E(D2Q+1)(k)) to
each variable belonging to D2Q(k). This is obtained by the
duplication and translation of D2Q(k) defined by (7). Since
y(k) ∈ D2Q(k), y(k) has at least 3Q + 1 connections in
E(D2Q(k)). In addition, y(k) is connected to y(k + δc) by
a the parity check equation of the form Fc(k + ...). As a
consequence, y(k) has 3Q + 2 connections in E(D2Q+1(k))
which is strictly larger than the number of connections to

O(D2Q+1(k)). As a result, D2Q+1(k) is an absorbing set.

Absorbing sets are constructed by the alternative application
of Theorems 1 and 2. The initial (3, 3) absorbing set D1(k) is
generated according to Fig. 2. Fig. 3 shows an example of the
construction of D2Q+2(k) with βc = rc− ic and γc = rc. Fig.
4 shows an example of the construction of D2Q+1(k) with
δc = ic.

D2Q+1(k)
D2Q+1(k+rc)

)(kFc

)(ky )( crky +

D2Q+1(k+rc -ic)

)( cc irky −+

)( ccc irkF −+)( cc ikF −

Figure 3. Construction of D2Q+2(k) upon D2Q+1(k)

D2Q(k)
D2Q(k+ic)

)(kFc

)(ky )( ciky +

)( α+kFc

)( α+ky )( ciky ++α

Figure 4. Construction of D2Q+1(k) upon D2Q(k)

Fig. 5 illustrates a (9, 18) absorbing set constructed from the
initial cycle of Fig.2, according to (6). When K = 2, there are
2 parity check trinomials : ga(x) = 1+xia +xra and gb(x) =
1+xib +xrb . The 3 triangles colored in red identify the initial
cycle of length 6 D1(k) = {y(k), y(k + ia), y(k + ia − ra)}
and its 2 shifted versions D1(k + rb) and D1(k + rb − ib).
The black lines show the connections between variables of
D2(k) with parity check equations of the form Fb(k + ...).
Each variable is connected to 4 check nodes of degree 2 and 2
check nodes of degree 1. In Fig. 5, check nodes of degree 1 are
not displayed since they do not connect variables belonging to
the absorbing set. We validated by computer simulations that
there is no smaller absorbing sets. There are 3 absorbing sets
of size (9, 18) derived from each cycle of length 6 containing
variable y(k). Since there are 3 possible cycles of length 6,
there is eventually a total of 9 absorbing sets of size (9, 18)
containing y(k). Since each one contains 9 variables, there are
N such (9, 18) absorbing set in the graph.
The size of the constructed absorbing sets is computed iter-
atively. First, we observe that a2Q = 3a2Q−1 and a2Q+1 =
2a2Q. Since a1 = 3, one obtains:

a2Q = 2Q−13Q+1

a2Q+1 = 2Q3Q+1 (8)



6

) ( aiky +

)(kFa
) - ( aa rkF

) - ( aaa irkF +

)(ky

) - ( aa riky +

) ( brky + ) ( ba riky ++) ( ba rkF +

)- ( baa rriky ++

)- ( aba rrkF +
) - (a baa rrikF ++

) - ( bb irky +

) - ( bba iriky ++

)--( bbaa irriky ++

) - (a bb irkF +

) - - (a abb rirkF +)irrikF bbaa - - (a ++

)(b kF
) - (b bikF

) - (b bb irkF +

) (b aikF +

) - (b ba iikF +

) - - (b baa irikF +

) - (b aa rikF +

) -- (b bbaa irrikF ++

) - (b bba irikF ++

Figure 5. Absorbing set for K = 2 parity check polynomials

B. Influence of absorbing sets on false alarms

The variables of a fully absorbing set DK(k) are blocked
if parity check equations belonging to E(DK(k)) are satisfied
while those of O(DK(k)) are not [25]. As shown by (8), the
size of the smallest absorbing set aK increases exponentially
with the number of elementary parity check matrices. Thus, it
will be more difficult to satisfy this constraint as K increases
and the decoder will be blocked less frequently. As a result, the
decoder improves its correction capability and PCD increases.
Unfortunately, PWD increases as well.
We also observed experimentally that the presence of small
absorbing sets leads to a decrease of PFA. This hypothesis
has been validated by analyzing the evolution of parity check
equations during the different steps of the iterative decoding.
We have applied the same method as Richardson for the study
of trapping sets [24]. A vector of N random binary chips is
generated, and then decoded with Gallager B algorithm [34].
The decoder uses only one elementary parity check matrix Ea

generated with trinomial ga(x) = 1 + xia + xra , according
to (3). The values of parameters ia and ra depend on the m-
sequence’s characteristic polynomial. They are given in Table
?? for m-sequences with characteristic polynomial 2415 and
4445 in octal notation.
We observed the decoder was systematically blocked when it
reaches the maximum number of iterations, set to 50. Then we
identified the fully absorbing sets corresponding to Fig. 2 that
were blocked at the 50th iteration. Eventually, we measured
the probability that one of theses absorbing set was already
blocked at the Qth iteration. It is denoted Pblock(Q). Table
I and II show the simulation results for m-sequence 2415
and 4445, and different trinomials ga(x). The decoder cannot
converge towards a codeword and thus does not produce a false
alarm. This example demonstrates the impact of absorbing sets
on the decoder’s performance. This will be even more visible
with simulation results presented in Section V.

C. Influence of hybrid cycles

The construction method proposed in this paper assumes
every parity check equation connecting 2 variables of DK(k)
is not connected to a third variables of DK(k). If this happens,
this parity check equation does not belong to E(DK) but to

Table I
ABSORBING SET BLOCKING PROBABILITY - M-SEQUENCE 2415.

ia = 25, ra = 49 ia = 34, ra = 65 ia = 37, ra = 76
Q Pblock(Q) Q Pblock(Q) Q Pblock(Q)
0 0.012 0 0.01 0 0.015
1 0.686 1 0.66 1 0.685
2 1 2 1 2 1
3 1 3 1 3 1

Table II
ABSORBING SET BLOCKING PROBABILITY - M-SEQUENCE 4445.

ia = 4, ra = 49 ia = 22, ra = 73 ia = 56, ra = 93
Q Pblock(Q) Q Pblock(Q) Q Pblock(Q)
0 0.0 0 0.0 0 0.002
1 0.452 1 0.484 1 0.492
2 0.999 2 1 2 0.999
3 1 3 1 3 1

O(DK). As a consequence, the variables connected to this
node have more connections with O(DK) than with E(DK)
and DK(k) is not an absorbing set any more. We will now
show that this situation may occur if there exists ’hybrid’
cycles in the graph.
Let us assume DK(k) is an absorbing set. According to the
construction method, DK+1(k) is obtained by a duplication
and a translation of DK(k). The translated sets are connected
with parity check nodes belonging to the added elementary
parity check matrix. If for instance K = 2Q + 1, variables
of D2Q(k) and D2Q(k + δc) of the new absorbing set
D2Q+1(k) = D2Q(k) ∪ D2Q(k + δc) are connected with
parity check equations such as Fc(k + α + δc), where α is
any index of a variable belonging to D2Q(k) (Fig. 4). Let us
assume the node Fc(k+ δc), which links y(k) and y(k+ δc),
is also connected to a third variable y(k + α) belonging to
D2Q+1(k). We also assume that y(k + α) ∈ D2Q(k). If
y(k + α) ∈ D2Q(k + δc), the explanation that will be given
now is also valid by replacing k by k + δc.
If variable y(k + α) ∈ D2Q(k), there exists already a path
between y(k) and y(k + α) in the graph induced by the
variables of D2Q(k) and the parity check nodes connecting
the variables of D2Q(k). This property is easily proven by
induction. This path does not contain parity check nodes like
Fc(k + ...) which depends on parameters ic and rc. As a
consequence, if Fc(k + δc) connects y(k) and y(k + α), this
creates a cycle in the graph. This cycle contains parity check
nodes belonging to different elementary parity check matrices.
It is referred as “hybrid”. In addition, Fc(k + δc) is no more
in E(D2Q+1(k)) and y(k) is connected to more check nodes
belonging to O(D2Q+1(k)). As a result, D2Q+1(k) is not an
absorbing set.
We will now give an example corresponding to the decoding
of the m-sequence defined by the following characteristic
polynomial: p(x) = 1 + x2 + x3 + x8 + x10. Let us consider
K = 3 parity check trinomials of this m-sequence: ga(x) =
1+x34+x65, gb(x) = 1+x37+x76 and gc(x) = 1+x72+x77.
A (18, 72) absorbing set D3(k) is constructed with the method
proposed in the previous section: D3(k) = D2(k)∪D2(k+rc)
. Figure 6 shows the connections of variable y(k+rb−ib+rc)
(in the center of the figure). When there is no hybrid cycle,
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each variable is connected to 5 nodes belonging to E(D3(k))
and 4 to O(D3(k)). It is thus an absorbing set. In this situation,
variable y(k + rb − ib + ic) (colored in red in the figure)
does not belong to D3(k). On the other hand, the 3 selected
trinomials give birth to a hybrid cycle, depicted in Figure 7.
This is due to the following equality: ic + rb − ib = ia + rc
(72+76−37 = 34+77). This adds a new connection between
the node Fc(k + rb − ib) and variable y(k + ia + rc). Since
y(k + ia + rc) already belongs to D2(k) and thus to D3(k),
the node Fc(k + rb − ib) is now connected to 3 variables
in D3(k) and belongs to O(D3(k)). As a result, variables
y(k + rb − ib + rc), y(k + rb − ib) and y(k + ia + rc) have
more neighbors in O(D3(k)) than in E(D3(k)) and D3(k) is
not an absorbing set anymore. This means, the decoder will
be able to correct errors in this set and this increases its ability
to converge to a valid codeword. In this case, the probability
of false alarm will increase.
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Figure 6. Destruction of a fully absorbing set with a cycle of length 6
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Figure 7. Hybrid cycle of length 6

IV. SELECTION OF PARITY CHECK TRINOMIALS

The impact of hybrid cycles gave us the idea to derive
an algorithm for selecting the parity check trinomials used
for decoding. If one seeks to minimize the probability of
false alarm, it is necessary to select trinomials that do not
destroy absorbing sets. One way to achieve this goal is to
select trinomials that minimize the number of hybrid cycles.
A prerequisite is that there is no cycle of length 4 in the

graph. Then, we choose to minimize the number of hybrid
cycles of length 6 and 8 which are mostly encountered. While
the impact of cycles of length 6 has been deeply analyzed in
the previous section, cycles of length 8 will have the same
effects on detection performance. To do so, it is required to
compute the number of cycles of length 6 and 8: I6 and I8.
This will provide a measure of the number of hybrid cycles.
Indeed, there exists native cycles of length 6 and 8 which can
be enumerated. These native cycles exist whatever the selected
trinomials. This is for example the cycles of length 6 and 8
depicted in Fig. 2 and 8. Subtracting the number of native
cycles of length 6 and 8 from the actual number of cycles
gives a measure of the number of hybrid cycles, which can
then be used to derive an algorithm for selecting trinomials.

A. Detection of cycles of length 4

A cycle of length 4 exists if it is possible to draw a
square in the parity check matrix. This happens if the dot
product between two distinct rows is strictly larger than 1.
Let us consider the possibility to have such a cycle between 2
matrices Ea and Eb. Assuming rb ≥ ra and using the circulant
structure of each matrix, a cycle of length 4 exists if and only
if one of the following conditions is satisfied:

rb − ib = ia; rb − ib = ra; rb − ib = ra − ia; ra − ia = ib (9)

This property is easily proven by enumerating the theoretical
possibilities. If there is only one elementary parity check
matrix (a = b), the only possibility is ra = 2ia. The trinomials
are selected so that none of the equalities defined in (9) is
satisfied.

B. Number of cycles of length 6 and 8

In order to compute I6, we apply the method proposed by
Halford and Chugg in [26]. Let us define the following matrix
notations:

Y = X − λ = [y(i, j)] y(i, j) = x(i, j)− λ
Y = max(X, 0) = [y(i, j)] y(i, j) = max(x(i, j), 0)
U = X ◦ Y = [u(i, j)] u(i, j) = x(i, j)y(i, j)
Z(X) = X −X ◦ I

(10)

I is the identity matrix having the same size as matrix X .
The operator that sets the diagonal elements of matrix X to
zero is denoted Z(X).
Let us also define A = EET , B = ETE, Ã = A ◦ I , B̃ =
B ◦I , B̃m = max(B̃−1, 0) and Ãm = max(Ã−1, 0), where
E is the parity check matrix defined by (2) and (3). Applying
the method described in [26], we obtain:

I6 =
1

6
tr(L)

L = Z(A)A2 − EB̃mBE
T − Z(AÃm)A

−EZ(BB̃m)ET + ÃmEB̃mE
T

(11)

We assume each elementary parity check matrix Ea is circu-
lant. This assumption is valid when the receiver observes the
sequence over its entire length M = N . This greatly simplifies
the computation of I6. It will be shown in Section V that the
derived selection procedure will also be efficient when the
receiver observes only a portion of the sequence (M < N ).
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Theorem 3: Let E be a row circulant parity check matrix
built with K parity check polynomials of weight t in accor-
dance with (2) and (3). The number of cycles of length 6 of
E is:

I6 =
1

6
(tr
(
A3
)
−KNt((K2 + 3K + 1)t2

−3(K + 1)t+ 2))
(12)

Proof: The evaluation of tr(L) is detailed in Appendix
A.
Since t, K and N are fixed parameters, the minimization of
I6 is equivalent to minimizing tr(A3). This can be done by
selecting the set of trinomials leading to the smallest value of
I6, according to (12). The complexity of computing tr

(
A3
)

could be reduced. This can be done by exploiting the structure
of matrix A, and the circulant property of its sub-matrices.
The same method is applied to compute the number of cycles
of length 8 (I8).

Theorem 4: Let us reuse the definition of the row cir-
culant matrix E from Theorem 3. The number of cycles of
length 8 of E is defined by:

I8 =
1

8
(tr(A4)− 4(Kt+ t− 2)tr(A3)

+(3K3 + 10K2 + 10K + 3)NKt4

−(14K2 + 32K+14)NKt3

+22(K + 1)NKt2 − 11NKt)

(13)

Proof: The proof is detailed in Appendix B.
The results provided by (12) and (13) have been successfully
cross-checked with the software library developed by Halford
and Chugg [26]. It used to be downloadable, but this is
unfortunately no longer the case.

C. Algorithm
The selection algorithm relies on the minimization of hybrid

cycles of length 6 and 8. This maximizes the number of
absorbing sets and thus minimizes the probabilities of false
alarm and wrong decoding. Subtracting the number of native
cycles of length 6 and 8 from the actual number of native
cycles gives a measure of the number of hybrid cycles. I6
and I8 are given by (12) and (13). We will now evaluate the
number of native cycles.
Within each matrix Ea, there are 3 cycles of length 6 contain-
ing variable y(k). This is illustrated by Fig. 2 for one cycle.
The 2 others are obtained by exchanging k by k − ia and
k+ ra − ia. Since there are 3 variables per cycle of length 6,
I6 is lower bounded by:

I6,min = NK (14)

Fig. 8 shows the 6 cycles of length 8 containing variables
y(k) and y(k+ ia) and check nodes of two elementary parity
check matrices Ea and Eb. Since y(k) is connected to 6 other
variables through the 3 parity check equations of Ea, there are
6 figures equivalent to Fig. 8. As a result, there are 36 cycles
of length 8 containing y(k). If K > 1 trinomials are used,
there are C2

K pairs of polynomials, and each pair gives birth
to 36N/4 = 9N cycles of length 8. As a result, I8 is lower
bounded by:

I8,min = 9NC2
K = 9NK(K − 1)/2 (15)
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Figure 8. Cycles of length 8 containing y(k) and y(k + ia)

The algorithm looks for the combination of parity check
trinomials that minimizes the number of hybrid cycles of
length 6 and 8. These numbers are given by the differences
I6 − I6,min and I8 − I8,min. Simulation results have shown
that trinomials configurations satisfying I6 = I6,min are
systematically found. On the other hand, this is not the case
for I8 − I8,min. As a consequence, the algorithm looks for
a configuration (g0(x), · · · , gK−1(x)) satisfying I6 = I6,min

and minimizing I8 − I8,min. The algorithm is detailed below.
The loop is stopped after Ns iterations to avoid an endless
search.

Algorithm Selection of K parity check trinomials - Mini-
mization of I6 and I8
q = 0 and min = +∞
while q < Ns do

Select K distinct trinomials g0(x), · · · , gK−1(x) with-
out cycles of length 4.

Compute I6 according to (12)
if I6 == NK then compute I8 according to (13)

if (I8 < min) then save configuration
(g0(x), · · · , gK−1(x)) and min ← I8

end if
end if

end while

V. PERFORMANCE

In this section, the performance of the algorithm for select-
ing parity check trinomials is presented. The receiver observes
M samples R(0), · · · , R(M − 1), according to the model of
(1) and try to decode an m-sequence y the characteristic poly-
nomial of which is p(x) = 1+x2 +x5 +x8 +x11. Trinomials
have then been derived from p(x) using an exhaustive search.
The parity check matrix E used by the decoder concatenates
K = 5 elementary matrices, according to (2). For practical
reasons, the decoder implements a Min-Sum (MS) algorithm
[30] since it does not require the estimation of the noise
variance unlike the Sum-Product algorithm [18].
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The decoder is modeled as a function decy(.) defined by (4).
It stops when either all the parity check equations are satisfied
or the maximum number of iteration Niter = 60 is reached.
Its performances (PCD, PWD, and PFA) are defined by (5).
Parity check trinomials are noted ga(x) = 1 + xia + xra . The
values of ia and ra are listed in Table V of Appendix C.
Table III shows PFA for different configurations of selected
trinomials detailed in Table IV. The measurements are inde-
pendent from the input gaussian noise variance: it is due to
a known property of the MS algorithm. It is insensitive to a
uniform scaling of input variables R(i)’s [30]. Consequently,
the decoder will have the same performance if the input
variables are gaussian with variance 1 or σ2. We observe that
PFA ranges from 0.77 to 10−6 depending on the selected
configuration. This is a huge variation. The lower bound on the
number of cycles of length 6 is I6,min = 2047× 5 = 10235.
The probability of false alarm is reduced from 0.77 to 10−2

when I6 drops from 38893 cycles (configuration ’a’) to the
lower bound (configuration ’e’). Reducing the number of
cycles of length 8 improve dramatically the performance.
PFA drops to 10−6 when I6 = I6,min and I8 is reduced to
196512 cycles (configuration ’g’). These results validate our
interpretation of the effect of absorbing sets on the false alarm
rate, described in Section III-B. When the number of cycles is
reduced, small absorbing sets are preserved which favors the
blocking of the decoder and hence prevents false alarms. If we
denote Pt = P (“at least one absorbing set is blocked”), then
we have PFA = 1 − Pt. When the number of absorbing sets
is large, we have Pt → 1 but Pt 6= 1.
Table IV also shows PFA when the sequence is not observed
over its entire length. The signal processed by the decoder
is trunked from M = 2047 to M = 1023 chips. With
this configuration, the elementary matrix Ea reduces to the
submatrix determined by the first M − ra rows and the first
M columns (where ra is the degree of the trinomial generating
Ea), corresponding to the M − ra parity check equations on
the observed sequence of length M . Since the effective Ea

matrices are no longer circulant, the evaluation of the number
of cycles with (12) and (13) is no longer valid and the selection
algorithm relies on a wrong assumption. Nevertheless, one
observes that PFA is not sensitive to this truncation. In fact,
the algorithm will reduce the number of hybrid cycles even if
the size of the effective parity check matrix is reduced. This
explains why it remains efficient.
Fig. 9 shows the error probability Pe = 1 − PCD = PND +
PWD as a function of the input SNR for configurations ’a’,
’e’ and ’g’. Pe is the Frame Error Rate (FER) measured
when decoding conventional error correcting schemes. One
observes that Pe is sensitive to the number of hybrid cycles.
When I6 and I8 are large (configurations ’a’ and ’e’), there
are many hybrid cycles that destroy absorbing sets and thus
improve the error correction capability of the decoder. On
the other hand, when I6 reaches its lower bound and I8 is
minimized (configuration ’g’), Pe increases noticeably. The
SNR required to reach the target point Pe = 10−2 is increased
by almost 2.5 dB between configurations ’a’ and ’g’. The curve
denoted ’a+verif’ shows Pe for configuration ’a’ followed
by a verification phase, i.e. the initial state estimated by the

decoder is used to generate the corresponding m-sequence
which is then correlated with the input signal. A detection
threshold is set so that PFA ≈ 10−6. We observe a gain of
1.5dB compared to configuration ’g’ for a similar probability
of false alarm. On the other hand, this method requires the
implementation of a correlation over a long integration length
that increases the complexity of the receiver.
Fig. 10 shows the probability of wrong detection PWD as a
function of the input SNR for configurations ’a’, ’c’ and ’e’.
We observe that PWD follows the same trends as PFA in the
very small SNR region. The elimination of hybrid cycles of
length 6 reduces PWD from 0.7 to 10−2, which is the same
reduction as the one observed for false alarms. If, in addition,
the number of cycles of length 8 is minimized, there is almost
no hybrid cycles and the decoder is blocked when the SNR is
very small. This eliminates wrong detection. For instance, we
did not observe any wrong detections with configuration ’g’.

Table III
PROBABILITY OF FALSE ALARM FOR THE CONFIGURATIONS OF K = 5

PARITY CHECK TRINOMIALS.

Reference PFA (M = N = 2047) PFA (M = 1023 and N = 2047)
a 0.77 0.68
b 0.297 -
c 0.17 -
d 0.094 0.086
e 0.0159 -
f 5.2 10−4 4.3 10−4

g 1.0 10−6 -

Table IV
NUMBER OF CYCLES OF LENGTH 6 AND 8 FOR THE CONFIGURATIONS OF

K = 5 PARITY CHECK TRINOMIALS.

Reference configuration I6 I8
a (g1, g2, g3, g4, g6) 38893 589536
b (g1, g2, g3, g4, g9) 24564 442152
c (g1, g2, g3, g4, g11) 20470 350037
d (g1, g2, g3, g5, g7) 16376 419635
e (g1, g2, g3, g5, g8) 10235 450340
f (g1, g2, g3, g8, g10) 10235 337755
g (g1, g2, g3, g12, g13) 10235 196512

VI. CONCLUSION

The iterative message-passing detection is an interesting
solution for searching long m-sequences. The goal is to
implement a receiver capable to simultaneously detect the
presence of an m-sequence y and estimate its initial state.
To achieve this task, the receiver implements a decoder that
tries to detect m-sequences as codewords of a linear code. The
principle for the decoding of an m-sequence is to build a sparse
parity check matrix E and then to apply an iterative message
passing decoding algorithm on the induced bipartite graph.
The parity check matrix E concatenates K elementary parity
check matrices, each being generated by a single reference
parity check equation of weight t.
We have first proposed a method for identifying small ab-
sorbing sets in the Tanner graph induced by E when t = 3.
The presence of absorbing sets tends to favor the blocking of
the decoder when it is only fed by noise. This avoids false
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Figure 10. Probability of wrong detection (PWD)

alarms and also minimizes wrong detection in the very small
SNR region. Then we have shown how absorbing sets can
be destroyed by hybrid cycles. These specific cycles contain
parity check nodes belonging to different elementary parity
check matrices.
Then, we have proposed an algorithm for selecting these
reference parity check equations of weight t = 3. It minimizes
the number of hybrid cycles in the Tanner graph of the decoder
in order to reduce significantly the probabilities of false alarm
and wrong detection. To do so, we computed the number of
cycles of length 6 and 8 for a redundant parity check matrix
concatenating K circulant elementary parity check matrices of
row weight t. Then lower bounds on the number of cycles of
length 6 and 8 have been derived for t = 3. The difference
between the actual number of cycles and the lower bounds
gives a measure of the number of hybrid cycles of length 6 and
8. The proposed algorithm selects a combination of reference
equations that minimize these measures. It was found to be
very efficient for almost eliminating false alarms and wrong
detections. This was obtained at a cost of a degradation of the
probability of correct detection.
In this paper, we proved our method identifies small absorbing
sets in the Tanner graph. Unfortunately, we did not prove they
are fully absorbing sets and hence cannot claim they are fixed
points of the Gallager B decoding algorithm applied to the
parity check matrix E. We strongly believed the fully attribute

is related to the absence of hybrid cycles but this remains to
be validated. Eventually, the principle of our algorithm could
be extended to other cyclic codes having a weight larger than
t = 3.

APPENDIX

A. Computation of tr(Lmod)

Using the trace property (tr(AB) = tr(BA)) and expend-
ing terms of the form Z(X), (11) can be rearranged as follows
:

I6 =
1

6
tr(Lmod)

Lmod = A3 − ÃA2 − 2B̃mB
2 − ÃmA

2

+(AÃm ◦ I)A+ (BB̃m ◦ I)B

+ÃmEB̃mE
T

(16)

Ã is the matrix formed with the diagonal elements of A.
As a consequence, we have Ã = tI and Ãm = (t − 1)I ,
where I is identity matrix having the same size as matrix A.
Similarly, B̃ = KtI and B̃m = (Kt − 1)IM . In addition,
invoking the commutative property of the trace, we have
tr(A) = tr(EET ) = tr(ETE) = tr(B) = KNt and
tr(B2) = tr(A2). Inserting all these results in (16), one
obtains :

tr(Lmod) = tr
(
A3
)
− (2(K + 1)t− 3)tr

(
A2
)

+KNt
(
(K2 +K + 1)t2 − 2(K + 1)t+ 1

)
(17)

tr
(
A2
)

can also be evaluated using the circulant property of
sub-matrices Ea. Let us define matrix Fab = EaE

T
b , then

tr
(
A2
)

can be written as follows :

tr
(
A2
)

=

K−1∑
i=0

K−1∑
j=0

N−1∑
u=0

N−1∑
v=0

(
Fij(u, v)2

)
(18)

Since Ea and Eb are circulant, this property also holds for
Fab. As a consequence :

Si,j =

N−1∑
u=0

N−1∑
v=0

Fij(u, v)2 = N

N−1∑
v=0

Fij(0, v)2 (19)

Moreover, we have Fba = FT
ab, thus Sj,i = Si,j

tr
(
A2
)

=

K−1∑
i=0

Si,i +

K−1∑
i=0

i−1∑
j=0

Si,j +

K−1∑
j=i+1

Si,j

 (20)

If i 6= j, Fij(0, v) is either equal to 0 or 1. Since there is
no cycle of length 4, it is not possible to have more than one
coincidence position between polynomials ga(x) and gb(x).
As a result, there are t2 elements equal to 1 when i 6= j. If
i = j, Fii(0, 0) = t and Fii(0, v) is also either equal to 0 or
1 for v > 0. There are t2 − t elements equal to 1 and one
element equal to t2. As a consequence, we have :

Si,j = Nt2 if i 6= j
Si,i = N(2t2 − t) (21)

Inserting (21) in (20), one obtains :

tr
(
A2
)

= NKt((K + 1)t− 1) (22)

This result is inserted in (17) to give (12).
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B. Computation of I8
As for the computation of I6, we apply the method proposed

in [26] for the evaluation of I8 the number of cycles of length
8. The girth of the decoding graph is g = 6. As a result, I8 is
given by :

I8 =
1

8
tr(L8)

L8 = PU
5 E

TA− LU
(0,6)A− L

U
(4,2)A− L

U
(1,6)E

T

−LU
(5,2)E

T

(23)

where P5, LU
(0,6), L

U
(4,2), L

U
(1,6) and LU

(5,2) are matrices defined
in [26], and A = EET . The trace of these matrices can be
computed, as it has been done in the Appendix A for I6:

I8 =
1

8

(
tr(A4) + α3tr(A

3) + α2tr(A
2) + α1tr(A)

)
α3 = 4(2−Kt− t)
α2 = (5K2 + 8K + 5)t2 − 17(K + 1)t+ 15
α1 = −(2K3 + 3K2 + 3K + 2)t3 + 2(4K2 + 5K + 4)t2

−10(K + 1)t+ 4

(24)

tr(A) = KNt and tr(A2) is given by (22). These results
are integrated in (23) to give (13).

C. List of trinomials

The coefficients of the parity check trinomials ga(x) = 1 +
xia +xra that have been used for the performance assessment
are given in Table V. For each trinomial, we have checked the
associated elementary parity check matrix Ea defined by (3)
has full rank (N − r).

Table V
PARITY CHECK TRINOMIALS FOR THE M-SEQUENCE GENERATED BY

p(x) = 1 + x2 + x5 + x8 + x11 .

rl il
g1 49 4
g2 73 22
g3 93 56
g4 98 8
g5 114 83
g6 146 44
g7 186 112
g8 196 16
g9 228 166
g10 261 80
g11 372 224
g12 465 136
g13 866 339
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