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Abstract.

Nowadays, drinking water utilities need an acute comprehension of the water demand on their distribution network, in order

to efficiently operate the optimization of resources, the management of billing and to propose new customer services. With the

emergence of smart grids, based on Automated Meter Reading (AMR), a better understanding of the consumption modes is now

accessible for smart cities with more granularities. In this context, this paper evaluates a novel methodology for identifying5

relevant usage profiles from the water consumption data produced by smart meters. The methodology is fully data-driven

using the consumption time series which are seen as functions or curves observed with an hourly time step. First, a Fourier-

based additive time series decomposition model is introduced to extract seasonal patterns from time series. These patterns are

intended to represent the customer habits in terms of water consumption. Two functional clustering approaches are then used

to classify the extracted seasonal patterns: the functional version of K-means, and the Fourier REgression Mixture (FReMix)10

model. The K-means approach produces a hard segmentation and K representative prototypes. On the other hand, the FReMix

is a generative model and produces also K profiles as well as a soft segmentation based on the posterior probabilities. The

proposed approach is applied to a smart grid deployed on the largest Water Distribution Network (WDN) in France. The two

clustering strategies are evaluated and compared. Finally, a realistic interpretation of the consumption habits is given for each

cluster. The extensive experiments and the qualitative interpretation of the resulting clusters allow to highlight the effectiveness15

of the proposed methodology.

1 Introduction

All modern cities need to deal with increasing populations and climate change, while maintaining adequate water services

for consumers. Here, the climate change is only mentioned to emphasize the systemic changes inherent in any smart city.

Until now, the water or energy consumption reading were traditionally collected once or twice a year on large territories (for20

example, regions or nations). With the arrival of smart grid meters, this situation has changed and indexes can now be collected

automatically with more granularities. The management of smart cities (Giffinger et al., 2007; Nam and Pardo, 2011) is based

on automated electronic meters that are deployed on the distribution network and are used to handle billing and customer
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services. The first researches performed in the area of demand patterns classification belong to the electricity network fields

(Irwin et al., 1986; Hernández et al., 2012). Most of the research in water field is focused on demand forecasting (Donkor et al.,

2012). Several approaches have been proposed for this purpose, including statistical prevision models (Adamowski, 2008;

Blokker et al., 2009). The emergence of smart meters shifts this research to classification of water demand (Aksela and Aksela,

2010). McKenna et al. (2014) proposed a procedure for classification of water demands recorded from smart meters using a5

Gaussian mixture model for feature selection then the classical K-means algorithm for clustering (MacQueen et al., 1967).

In various applications, the data to be analyzed are not multivariate observations, but these can be seen as functions or curves

either continuous or discrete, namely functional data. Such studies usually refer to Functional Data Analysis (FDA) when data

are varying in a continuum and potentially infinite dimensional (Ramsay, 2006; Wang et al., 2015). Example of functional

data encompass longitudinal data, responses in medical treatments and objects in video sequences. In the current case of smart10

meters, each signal is seen as a temporal function and collected intermittently at discrete time points. Analyzing smart meter

consumption is useful for water utilities in order to develop innovative capabilities in terms of grid management, planning

and customer services. Functional clustering aggregates data mining techniques, which aims to identify homogeneous groups

among functional data without using prior knowledge about their group labels (unknown cluster membership). Aiming to

analyze household consumption, Cardell-Oliver (2013) introduces a methodology to cluster daily water use signature patterns15

based on expert rules and a classical K-means. Many functional clustering methods have been developed over the last decade.

These methods can usually be separated into two categories: nonparametric methods using specific distances or dissimilarities

between curves (Dabo-Niang et al., 2007), and mixture-model-based methods (Samé et al., 2011; Jacques and Preda, 2014).

The collected curves can be multivariate leading to a large representation space like in (Cheifetz et al., 2013) for change-point

detection based on a specific curve modeling. The approach of the regression mixture model proposed by Gaffney and Smyth20

(2003) motivated the focus of this article.

This paper is organized as follows: the overall methodology is described in section 2. This methodology is decomposed

in two consecutive steps that is to say the extraction of seasonal patterns from time series in section 3, and the identification

of clusters with their profiles in section 4 based on two clustering strategies: a functional version of K-means and a dedicated

Expectation Maximization (EM) algorithm. The section 5 introduces the experimental data set, and an analysis of the clustering25

results is given. Finally, the article ends with a conclusion and some perspectives.

2 General Methodology

The aim of this paper is to identify automatically the major water usage patterns in a set of time series recorded by smart water

meters. A multi-step methodology is formulated to address this problematic, as illustrated in Figure 1. The first step consists

in extracting the seasonal part of each time series, which represents the habits of water consumption for each meter, using a30

Fourier-based time series decomposition. Then, these seasonal components are normalized and used as input data by clustering

algorithms. Two algorithms are used to classify the functional data into various water usage clusters. The first one consists

in using the K-means jointly with the Functional Principal Component Analysis (FPCA) method and the second one is based
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on a Fourier regression mixture model recently introduced by Samé et al. (2016). Both the seasonal extraction and clustering

approaches are described in the next sections.
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Figure 1. Block diagram describing the global methodology.

3 Extracting seasonal patterns from time series

Let (y1, . . . ,yn) denote n time series, where each one of them yi = (yi1, . . . ,yiT ) corresponds to hourly consumptions recorded

by a single water meter, that is to say yi is a univariate time series and yit is a real valued scalar. It is implicitly assumed that5

all the series are recorded over the same time grid indexed by the ordered times {1, . . . ,T} for all n curves.

3.1 Fourier-based time series decomposition

The methodology developed in this paper is based on the following classical additive decomposition:

yit = fit+xit+ dit+ εit, (1)

where10

– fit is the global trend of the time series which is modeled in a non parametric way using moving averages (Gourieroux

et al., 1997).

– xit is the seasonal component. As the studied water consumption time series are subject to daily and weekly seasonality,

a Fourier basis decomposition (De Livera et al., 2011) is formulated:

xit =

q1∑
j=1

[
α
(1)
j cos

(
2πjt

24

)
+α

(2)
j sin

(
2πjt

24

)]
+

q2∑
j=1

[
α
(3)
j cos

(
2πjt

168

)
+α

(4)
j sin

(
2πjt

168

)]
, (2)15

where q1 and q2 are the respective numbers of trigonometric terms used to handle the daily and weekly seasonality, and

the α(1)
j , α(2)

j , α(3)
j , α(4)

j are the coefficients to be estimated. This trigonometric modeling has the advantage of requiring

considerably less parameters compared to an approach based on dummy variables (De Livera et al., 2011).

– dit is a component devoted to capture the effect of exceptional public non-working days in France (eg. January 1st, May

1st, Christmas Day . . . ). The following decomposition is used: dit =
∑24
j=1 γjδtj , where δtj = 1 if t corresponds to the20

hour j of a non-working day and δtj = 0 otherwise.
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– εit is a centered Gaussian noise.

For compliance with the additivity and gaussianity assumptions of this decomposition model, each time series (yit)t=1,...,T was

replaced by (log(yit+λ))t=1,...,T , where λ is a small positive number preventing degeneracy caused by null consumptions.

Note that this transformation is used in the same way as the well known Box-Cox transformation (Box and Cox, 1964).

3.2 Parameters estimation and practical use of the model5

Given a time series yi recorded by a smart meter, the trend fi is estimated using a simple moving average (Gourieroux et al.,

1997; Shumway and Stoffer, 2010). As the daily and weekly periodicities (24 and 168) should be removed from the univariate

time series, a centered moving average of order 168 is performed.

After estimating the trend and given a couple (q1, q2), the coefficients α1j , α2j , α3j , α4j and γj are simultaneously identified

by performing a multiple linear regression of (yit−fit) over the variables cos
(
2πjt
24

)
, sin

(
2πjt
24

)
, cos

(
2πjt
168

)
, sin

(
2πjt
168

)
and δtj .10

Selecting the couple (q1, q2) remains a sensible point which can ideally be addressed by choosing the couple which optimizes

a model selection criterion such as the Akaike information criterion (AIC) introduced by Akaike (1974) or the Bayesian

information criterion (BIC) introduced by Schwarz et al. (1978). In this paper, several combinations of (q1, q2) were tested

and the couple (4,24) has been selected leading to a good compromise between visual representation of seasonal patterns and

modeling accuracy. An example of decomposition of a time series is shown in Figure 2. The trend is displayed together with15

the complete time series while the seasonal component is displayed with the weekly sub-series.
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Figure 2. Extraction of periodic seasonal patterns using Fourier-based time series decomposition. The trend is displayed with the complete

time series (a) and the seasonal component is displayed with the weekly time series (b).
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From each time series yi, the model parameters defined by Equation (1) are thus identified, and the periodic seasonal

pattern defined by xi = (xi1, . . . ,xim), with m= 168, is extracted. Due to the periodicity of the series (xit, . . . ,xiT ) defined

by Equation (2), it should be noted that the first terms m= 168 are sufficient to characterize the time series. Then, the set of

seasonal patterns (x1, . . . ,xn) are standardized as suggested by Gaffney (2004) xit←
xit− (1/m)

∑m
j=1xij

σ(xi)
,∀i, t, where

σ(xi) is the standard deviation of xi. The set of normalized seasonal patterns is used as input data for the clustering step which5

will be described in the following section. It is worth noting that the proposed decomposition can also be used to fill missing

values that may occur along the time series. The reconstruction formula is ŷit = f̂it+ x̂it+ d̂it, where f̂it, x̂it, d̂it are the

estimated components.

4 Clustering seasonal profiles

In order to extract relevant usage profiles from water consumption time series, two functional data clustering approaches are10

considered in this paper: the first one is the functional version of the K-means algorithm and the second one is based on a

specific Fourier regression mixture model.

4.1 Functional clustering based on FPCA

In this subsection, the clustering method (Peng and Müller, 2008; Sood et al., 2009) is inspired by functional data analysis

(Ramsay and Silverman, 2005; Wang et al., 2015) which assumes that data are functions or curves. This clustering approach is15

mainly based on Functional Principal Component Analysis (FPCA) and can be summarized into the following two consecutive

steps:

1. Smoothing and dimension reduction: this step consists in converting the n time series (x1, . . . ,xn) into functional objects

(x1(t), . . . ,xn(t)), and then applying the classical PCA on the multivariate data obtained by discretizing the functions

xi(t) over the temporal grid {1, . . . ,m}. In this paper, the PCA is directly performed on the seasonal patterns (x1, . . . ,xn)20

that are based on trigonometric (smooth) functions, and the principal components are selected such as 95% of the data

variance is explained.

2. Clustering: in this step consists, a classical clustering method is performed on the principal component scores estimated

previously. The well-known K-means algorithm (MacQueen et al., 1967) is applied using several random initializations

and the partition with the lowest intra-cluster inertia is selected.25

The resulting functional clustering strategy is called FPCA-KM. The number of cluster K has been selected by minimizing

the BIC-like penalized criterion BIC(K) = C + νK log(n), where C is the intra-cluster inertia optimized by the K-means

algorithm and νK =Kq is the number of parameters to be estimated with q the number of selected principal components.

The general idea of PCA is to create a small number of uncorrelated variables with maximal variance. The extension of this

technique for functional data is proposed in the work of Ramsay and Silverman (2005); Ferraty and Vieu (2006). The FPCA is30

an efficient tool providing common functional components explaining the structures of individual trajectories.
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4.2 Fourier regression mixture model

Inspired by the polynomial regression mixture model formulated by Gaffney and Smyth (1999), this subsection introduces

a Fourier regression mixture model, called the FReMix model. The Fourier regression mixture was preferred to polynomial

and spline regression mixtures, for its compliance with the modeling adopted in the first step (seasonal pattern extraction).

Moreover, Fourier polynomial is a universal approximator of functions and remains a good candidate in modeling clusters5

whose prototypes are non linear and potentially periodic functions.

4.2.1 Model definition

Unlike standard vector-based mixture models, the density of each component of the FReMix model is represented by a trigono-

metric prototype function that is parameterized by regression coefficients and a noise variance. The prototype functions repre-

sent the class conditional expectations of xi. The Fourier regression mixture model therefore assumes that each time series xi10

is distributed according to the following density

f(xi;θ) =

K∑
k=1

πkN
(
xi;Uβk,σ

2
kI
)
, (3)

where θ = (π1, . . . ,πK ,β1, . . . ,βK ,σ
2
1 , . . . ,σ

2
K) is the complete parameter vector. The probabilities πk are the proportions of

the mixture satisfying
∑K
k=1πk = 1, βk = (βk,1, . . . ,βk,2(q1+q2))

′ ∈R2(q1+q2) is the coefficient vector of the k-th regression

model and σ2
k > 0 is the associated noise variance. The matrix U = [u1, . . . ,um]′ is a regression matrix of size m×2(q1+q2),15

where the vector ut ∈R2(q1+q2) is defined by (∀t= 1, . . . ,m)

ut =

[
cos

(
2πt

24

)
sin

(
2πt

24

)
· · · cos

(
2πq1t

24

)
sin

(
2πq1t

24

)
cos

(
2πt

168

)
sin

(
2πt

168

)
· · · cos

(
2πq2t

168

)
sin

(
2πq2t

168

)]′
,

andN (·;µ,Σ) is the Gaussian density with mean vector µ and covariance matrix Σ. This specific mixture model corresponds

to the class-specific prototype functions gk(t) = β′kut which is also given by

gk(t) =

q1∑
j=1

[
βk,2j−1 cos

(
2πjt

24

)
+βk,2j sin

(
2πjt

24

)]
+

q2∑
j=1

[
βk,2q1+2j−1 cos

(
2πjt

168

)
+βk,2q1+2j sin

(
2πjt

168

)]
. (4)20

4.2.2 EM algorithm and practical issues

Assuming that the n seasonal time series (x1, . . . ,xn) are independent, the parameter vector θ is estimated in the same

way as for the classical Gaussian mixture model (McLachlan and Krishnan, 2007) and the polynomial regression mixture

model (Gaffney and Smyth, 1999), by maximizing the log-likelihood L(θ) =
∑n
i=1 log

∑K
k=1πkN

(
xi;Uβk,σ

2
kI
)
, via the

Expectation-Maximization (EM) procedure (Dempster et al., 1977; Gaffney and Smyth, 1999; McLachlan and Krishnan, 2007).25

The pseudo-code can be found in the paper proposed by Samé et al. (2016). As a reminder, the couple (q1, q2) = (4,24) is se-

lected in the seasonal pattern extraction step (cf. subsection 3.2). The algorithm is initialized as follows: the initial regression

coefficients and variances are obtained by performing a Fourier regression separately on K seasonal series randomly drawn
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into the data set (x1, . . . ,xn) and the initial proportions of the latent classes are set to πk = 1
K . This process is repeated 20

times and the parameters with the highest log-likelihood are selected. The number of clusters is selected through the BIC

criterion (Schwarz et al., 1978) defined by BIC(K) =−2L(θ̂)+νK log(n), where θ̂ is the parameter vector estimated by the

EM algorithm, and νK is the number of free parameters of the model: νK = 2K(q1 + q2 +1)− 1.

After estimated the parameter vector θ, a time series partition is obtained by assigning each series xi to the cluster having5

the highest posterior probability τik =
πkN(xi;Uβk,σ

2
kI)∑K

`=1 π`N(xi;Uβ`,σ
2
` I)
·

5 Experimental study using real data

5.1 Description of the data set

The experimental data set represents the water consumption recorded by a few smart meters deployed on the network of

Syndicat des Eaux d’Ile-de-France (SEDIF). The SEDIF is a large association including 150 municipalities which provides10

drinking water for more than 4 million inhabitants of suburban Paris. This is the largest drinking WDN in France with about

8,000 km of pipes and more than 750,000 m3 of water produced each day. The consumption is measured hourly (in liter) by

10,233 meters during 15 months (from Nov-2013 to Mar-2015). The resulting data set is then made of univariate time series

(y1, . . . ,yn), where n= 10,233 and the length of each time series yi is T = 11,016. After the extraction of periodic seasonal

patterns (cf. section 3), a new set of time series (x1, . . . ,xn) is built where the length of each seasonal patterns xi is m= 168.15

These series are used as input data for the clustering algorithms.

5.2 Selecting the number of clusters

The number of clusters for the two methods was selected by running the algorithms with several values ofK and then choosing

the value which minimizes the BIC criterion. Figure 3 shows the evolution of this criteria for the two clustering algorithms

in relation to the number of clusters. For both methods, the BIC criterion exhibits a decrease continuously while the K value20

increases. Nevertheless, it can be seen that the variation of BIC is not significant when the number of clusters is above 8.

Therefore, the number of clusters is selected such as K = 8.
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Figure 3. Evolution of the BIC criteria according to the number of clusters.
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5.3 Results interpretation and discussion

The seasonal time series are classified into K = 8 clusters, using functional K-means (FPCA-KM strategy) and Fourier re-

gression mixture (FReMix model) as illustrated respectively by Figures 4a and 4b. For each cluster, the weekly prototype is

displayed in orange (sub-figures on the left). Moreover, the right plots of Figures 4a and 4b display the cluster profiles using a

daily representation, the colors (from blue to red) indicating the day of the week (from Monday to Sunday). The percentage of5

input time series belonging to each cluster is also provided.
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Figure 4. Clustering results obtained with the FPCA-KM (4a) and the FReMix (4b). For each side, the subfigures on the left represent a

weekly view of the clusters with their prototypes displayed in orange. The subfigures on the right are daily prototypes resulting from the

segmentation of the weekly orange curves and colors (from blue to yellow to red) indicate the day of the week (from Monday to Sunday).

It can be observed that the consumption profiles are quite similar for the two methods, despite the diffences of the cluster

percentages. As no socio-demographic data about customers was available at this stage of the study, a qualitative evaluation of

the results is performed and the pattern repartition shown in Figure 4 can be explained by the following realistic categories:

– Office or industrial use: cluster 1. One can observe an active water consumption from Monday to Friday (workdays)10

during the business hours, and a very low consumption during the weekend.
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– Residential use: clusters 3,4,5. The temporal dynamic of these clusters corresponds to customers who wake up between

6 AM and 8 AM, take a shower and then go to work. This habit is characterized by a consumption peak around 10 AM in

the morning. The other peak, observed in the evening at around 20 PM, corresponds to the return at home. The minimum

consumption level between these two peaks can be attributed to persons in households who stay at home during working

hours.5

– Commercial use: clusters 6,7,8. This category corresponds to a set of customers whose consumption habits are the

same during working days and weekends. It may correspond, for example, to small businesses or medical centers that

stay open every day and have the same daily consumption profile. It should be noticed that clusters 6,7 differ from the

other clusters by their smaller evening peak.

– Noise cluster: cluster 2. This cluster, which has the largest variance, groups a set of atypical patterns which does not10

match with the other clusters. It can be considered as a noise cluster.

Note that a functional clustering scheme is adopted because this is suitable to deal with the analysis of our consumption

curves. Indeed, these real-valued data can be seen as the realizations of a one-dimensional stochastic process, recorded on the

same time grid (hourly spaced) of ordered times. In practice, data frames are frequently sent by modules which are physically

connected to the meters ; each consumption time series can be re-constructed based on a sequence of the data frames. Exoge-15

nous variables (e.g. weather inputs or meter localization) are not considered in this work due to a non-significant improvement

in the results but might be used in a future work. In other words, the time series xi have a length of 168 due to the trigonometric

modeling of the chosen Fourier basis decomposition. The Fourier coefficients are identified performing a multiple linear re-

gression on the global time series yi detrended which limits the effect of a long seasonality. Finally, our sample has a duration

of 15 months (with 5 seasons at most) and we are more interested about identifying the major mode of consumption than20

estimating water demand profiles with local changes and a fine granularity.

However, we wanted to integrate some prior knowledge about day/week seasonality and exceptional public non-working

days. A Fourier-based decomposition has the capacity to easily take into account this prior knowledge and this decomposition

is consistent with our probabilistic FReMix model definition. A wavelet-based analysis could also be used for decomposition

(keeping some local properties along temporal patterns) but integrating such prior knowledge might not be straightforward25

and the number of parameters in this case should be not be reduced significantly. In this article, we evaluate a probabilistic

method and a geometrical approach. This second method is based on a Kmeans and minimizes the intra-cluster inertia which

can be seen as an aggregated distance over the water time series. As our knowledge, the complexity of time series distances

(e.g. dynamic time warping) can be prohibitive with a large time series dataset.

This paper deals with an unsupervised classification problem based on water consumption time series. Water demand fore-30

casting is not the issue in this paper ; nevertheless, the resulting segmentation of water consumption time series can be used

for several scientific problems including sequential detection, predictive classification or demand forecasting. We assume no

supervision in our setting due to a partial and uncertain knowledge of the usage labels ; users do not inform systematically
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their water utilities when businesses change or people come in / leave a home. This is why there is no quantitative accuracy

about clustering. Each log-consumption time series is standardized before clustering which leads to a discrimination in term

of seasonal patterns and not based on water volume. This explains why we entitled the cluster 1 as “’office and industrial

usage”. Of course, industrial usage might produce erratic water patterns which would be classified in cluster 2. Partitioning

the 8 clusters in 4 categories would suggest non negligible variations in residential use as well as commercial use, and extra5

investigations about the users which should not be underestimated in term of time and cost. The EM algorithm used to fit the

Fourier REgression Mixture (FReMix) model is flexible and can be reformulated in a future work with a semi-supervision (by

fixing a set of posterior probabilities) or a partial supervision (e.g. using belief functions).

Identifying the major usage profiles from water consumption is an interesting topic to water utilities. Indeed, the resulting

segmentation helps the water companies to gain a better knowledge about users consuming the distributed water. The user10

is having a better experience with the tools developed by their water utility. For instance, users at Veolia Eau d’Ile de France

(Paris area in France) can already monitor their water index / consumption on a dedicated website for free. Using our clustering

results, people could compare with similar patterns and adapt their consumptions according to their needs. In addition, the

resulting clusters are used by an early warning system which alerts the user when a leakage occurs into the private network. An

erratic water pattern (like in cluster 2) can be the sign of a leakage and might initiate a corrective action. Concerning the grid15

management, each prototype can be used to represent the water behavior of users belonging to the same cluster. Sampling a

large amount of water meters is useful for several topics (e.g. tracking the meter metrology, estimating the global consumption

modes based on a limited number of meters) ; such sampling analysis is straightforward using our meter segmentation.

6 Conclusions and perspectives

A general methodology is introduced in this paper for automatically discriminating several water usages and extracting relevant20

water consumption profiles from time series recorded by smart meters. Considering that the consumption habits are of interest

and not the consumption levels, the first step of the method consists in extracting the seasonal part of time series using an

additive classical decomposition model. This modeling of the seasonal component is based on a specific Fourier expansion

which takes into account daily and weekly periodicities. As this study aims to identify relevant water usage profiles, two

functional clustering techniques are used to classify the seasonal patterns extracted from the water consumption time series:25

a functional variant of the K-means algorithm and a specific EM algorithm based on a Fourier regression mixture model

(FReMix). The FReMix model is richer than the other clustering approach in that the Fourier basis decomposition is fully

integrated in the modeling and each cluster is described by its first two moments while the K-means only extracts the mean

curves. Furthermore, the K-means produces a hard segmentation while the FReMix creates a soft partition where each cluster

membership is weighted by a posterior probability. Eight clusters are then identified for the two clustering methods. The30

resulting prototypes are quite similar for the two approaches and a realistic category is given each cluster. More investigations

are in progress with the water utility Veolia Eau d’Ile de France in order to refine the clustering results and the proposed

methodology is also being applied to a new large scale database.
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