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We are interested in adapting standard model reduction techniques to hyperbolic problems. More precisely, this paper proposes a calibration procedure that allows to use standard ROM techniques to solve the two dimensional Euler equation around an airfoil. We propose a complete framework. First, an offline calibration procedure that reduces the Kolmogorov n-width of the solution manifold studied. Then a cheap reduced scheme approximating the truth solver. It uses L1-norm minimization and uses the calibrated manifold constructed in the offline phase. We discuss it's computational complexity. Finally, we present numerical simulations that illustrate the overall feasability of the method.

Introduction

Fast reliable solutions to many queries parametric Partial Differential Equations (PDE) have many applications among which real time systems, optimization problems and optimal control. Many different methods for reducing the complexity of the computations when such many queries are required have blossomed for answering this specific need. One of the approaches that have emerged is reduced order modeling (ROM). Methods in this category have been developed and are now well understood and set on firm grounds, both for steady cases or time dependent problems where time can be considered as another parameter.

The reduced basis method, which is the method that we focus in on this paper, enters in this frame and consists in: i) defining a sequence of low dimensional spaces for the approximation of the whole set of the solutions to the parametric PDE when the parameters vary (called hereafter the solution manifold associated to our problem); ii) once such a sequence of low dimensional spaces (known as reduced basis spaces) is determined, an approximate solution is sought in such a chosen reduced space to the PDE for the values of the parameter we are interested in. The approximation is often based on a Galerkin formulation. For such reduced basis methods, both the variety of applications and the theory are now quite sound. For instance, reliable algorithms with a priori estimates and certified a posteriori errors have been developed for elliptic and parabolic problems, with or without the so-called affine parameter dependence, see e.g.the two recent books on the subject [START_REF] Hesthaven | Certified Reduced Basis Methods for Parametrized Partial Differential Equations[END_REF] and [START_REF] Quarteroni | Reduced Basis Methods for Partial Differential Equations[END_REF] and, of course, the publications therein.

Reduced basis methods, classically, consider the solution manifold associated to the parametrized problem as outlined above and are appropriate if this manifold can be approximated accurately by a sequence of finite dimensional spaces. The mathematical frame for this is inherently linked to the notion of Kolmogorov width of solution manifolds, i.e. how well the solution manifold can be approached by a finite dimensional linear space. More precisely, let M be a manifold embedded in some normed linear space X. The Kolmogorov n-width of M is defined as:

d n (M, X) = inf En sup f ∈M inf g∈En f -g X , (1) 
the first infimum being taken over all linear subspaces E n of dimension n embedded in X.

Even if, from the practical point of view, there are various ways for checking that M can be approximated by a series of reduced spaced with small dimension, the first natural mathematical question is to provide an estimation of the Kolmogorov n-width of M. Second, the question of an applied mathematician is if one can actually build an optimal, or close to optimal sequence of basis sets for these spaces?

Of course, in the vast majority of real cases, there is no analytical expression for this dimension but there are some papers giving bounds for some restricted classes of problems in the literature. For instance, in [START_REF] Melenk | On n-widths for elliptic problems[END_REF], bounds on d n are found for solution manifolds corresponding to regular elliptic problems and where the parameter dependence is on the forcing term. More general cases can be handled using the results in [START_REF] Cohen | Kolmogorov widths under holomorphic mappings[END_REF]. The hypothesis therein is on the regularity of the solution with respect to the parameter dependence and it is proven that, under analyticity assumption on the behavior of the parameters in the PDE, the small Kolmogorov n-width of the manifold of parameters D (≤ cn -t , t > 1) implies the smallness of the Kolmogorov n-width of the associated solutions manifold M D (≤ cn -s , s ≤ t -1).

In practice, instead of the "optimal" linear subspace of dimension n in the sense described earlier, we build a "good" linear subspace. In the literature, the two most classical algorithms are the greedy method based on a certified (or at least fair enough) a posteriori estimator, and the Proper Orthogonal Decomposition (POD). We proceed assuming that the chosen algorithm has given a "good" basis "close" to the optimal one, that is, we assume that our reduced family of spaces {X n } n satisfies:

d n (M, X) ≈ sup f ∈M inf g∈Xn f -g X (2) 
A first paper on this subject is [START_REF] Maday | A priori convergence theory for reduced-basis approximations of single-parameter elliptic partial differential equations[END_REF], where the authors derived error bounds of the error for the Reduced Basis Method (RBM) approximation in case of a single parameter dependent elliptic PDE. More general results have been obtained more recently for the greedy approach of the RBM [START_REF] Binev | Convergence rates for greedy algorithms in reduced basis methods[END_REF][START_REF] Devore | Greedy algorithms for reduced bases in banach spaces[END_REF]. The optimality considered in the case of POD is slightly different. The POD focuses on minimizing the average error (parameter wise), in some norm. More precisely, we have the well known relation

D u(µ) -Π P OD u(µ) 2 dµ = i>N P OD λ i , (3) 
where Π P OD is the orthogonal projection onto the POD reduced space of dimension N P OD and the λ i 's are the eigenvalues of the associated correlation operator, in decreasing order. The faster the decay of the eigenvalues, the fewer modes are needed for a good (in average) reconstruction of the solution manifold.

Up to now, most of the literature on the subject, deals with problems where one can expect/check/prove/ or hope, that the solution manifold M D has a small Kolmogorov n-width. There are however cases where the plain approach does not work and some transformation of M D needs to be done.

An example is for instance the use of the Piola transform in the processing of the velocity field when the PDE is the Stokes or Navier Stokes problem and the parameter includes the geometry of the computational problem (see e.g. [START_REF] Løvgren | The Reduced Basis Element Method for Fluid Flows[END_REF]). The choice of the Piola transform indeed provides better reduction than a simple change of variables.

A lot of convection dominated problems also suffer the same characteristics. A freezing method, dealing with this issue was developed in [START_REF] Beyn | Freezing solutions of equivariant evolution equations[END_REF][START_REF] Ohlberger | Nonlinear reduced basis approximation of parameterized evolution equations via the method of freezing[END_REF], and later adapted in [START_REF] Cagniart | Model order reduction for problems with large convection effects[END_REF]. Both methods rely on the notion of calibration. That is, they start with a "preconditioning" step where they target a family of (smooth) invertible mappings

F D = F : Ω → Ω , (4) 
in which there exists well chosen applications

[0, T ] × D → F D (t, µ) → F t;µ (5) 
such that the corresponding preconditioned solution manifold, defined as:

M F ,D := u(F -1 t;µ (•), t; µ), µ ∈ D, t ∈ [0, T ] (6) 
has a smaller Kolmogorov n-width than M D . Behind this abstract formulation is the generalization of a simple idea. For periodic convection dominated problems, translation is a trivial calibration. In [START_REF] Cagniart | Model order reduction for problems with large convection effects[END_REF] is developed a full online reduced scheme.

The objective of this paper is to apply this abstract calibration idea to more realistic problems than the one dimensional Burgers equation. We have decided to focus on the steady two dimensional Euler equation around an airfoil. The precise setting will be discussed in Section 2. To motivate the calibration idea in this specific setting, we show in Figure 1 the shock positions for various pair of parameters: Mach number and angle of attacks (AoA). It is obvious that this example suffers the same problem as the one dimensional Burgers case. Because of the moving shock, the Kolmogorov n-width of the raw data set M D will not have the good decay properties required for standard ROM. We thus need a preconditioning step, and will propose a calibration.

The choice in this note is to follow the steps of [START_REF] Cagniart | Model order reduction for problems with large convection effects[END_REF], for this 2D hyperbolic problem. That is, we want to:

• calibrate the offline computed solution, to get a reduced basis as small as possible;

• have an online scheme that builds a "calibrated problem", which can use the calibrated reduced basis.

We highlight in here the differences:

• they were solving Burgers' equation in 1D with one propagating front i.e, there was only one calibration parameter. The shock's position shape might require more calibration parameters; • they use periodic boundary conditions, so no matching with exterior domain was needed. As a result, the calibrated problem was just a translated version of the initial problem;

• their problem was a parabolic problem. We will see that dealing with discontinuous solutions adds complexity to the online section;

• the fine computations were done with an upwind finite volume scheme, but a raw Galerkin reduced scheme gave decent results. We have no guarantee in here that a reduced scheme with no stabilization nor upwinding will work. We will discuss these issues in the next sections.

In the first section of this paper, we will completely described the problem we want to solve. We will give details on the 'truth' scheme we are using. In the second section, we describe our choice of family of mappings F, as well as one possible choice for µ → F µ . We use this to perform the 'offline phase'. We will make sure that the calibration reduces the Kolmogorov n-width of the solution manifold. In the third section, we propose a cheap 'online' algorithm. This is the central part of this paper, as most related work simply perform the offline calibration, and do not propose any numerical scheme actually using the calibrated manifold M F ,D (see [START_REF] Iollo | Advection modes by optimal mass transfer[END_REF][START_REF] Welper | Interpolation of functions with parameter dependent jumps by transformed snapshots[END_REF][START_REF] Rim | Transport reversal for model reduction of hyperbolic partial differential equations[END_REF]). We will also discuss the methods described in the online phase in terms of L1 minimization as it was advised in [START_REF] Abgrall | Robust model reduction by L1-norm minimization and approximation via dictionaries: application to nonlinear hyperbolic problems[END_REF] and we will use ideas close to Hyper-Reduction. In Section 5, we propose an optimization procedure in order to derive the minimization coefficients and the relative mapping. The final section is devoted to numerical experiments where we present different mappings and we show the importance of the smoothness of the mappings in F. In the end, we will conclude our paper and we will present some ideas that can be further investigated and implemented.

2 Problem setting

Naca0012 test case

We have chosen to perform our calibration ideas on the following well documented external flow test-case: the two-dimensional, inviscid, transonic flow past the NACA 0012 airfoil. The explicit form of the wing is given as:

y = w(x) := 0.6 • 0.2969 • √ x -0.1260 • x -0.3516 • x 2 + 0.2843 • x 3 -0.1015 • x 4 . (7) 
We are using subsonic boundary conditions on the outside boundary and slip boundary conditions on the wing. The last Neumann type boundary condition imposes that the velocity of the fluid is tangent to the wing. It is commonly known, that from a certain threshold of Mach number, a shock appears. The position and the form of the shock depends on many parameters among which the Mach number and the angle of attack (AoA), i.e the inflow mean direction.

2 dimensional Euler equation

We are interested in the numerical approximation of the two dimensional Euler equations. Let Ω some domain around the airfoil described in the previous section, W the state vector of conserved variables and f = (f x , f y ) the flux:

W =(ρ, ρu, ρv, E) T f x (W ) =(ρu, ρu 2 + p, ρuv, u(E + p)) T f y (W ) =(ρv, ρuv, ρv 2 + p, v(E + p)) T ,
ρ is the density, u and v are the components of the velocity, E = ρ + 1 2 ρ(u 2 + v 2 ) is the total energy and is the specific internal energy. The system is closed by the equation of state relating the pressure p to the conserved variables:

p = (γ -1) E - 1 2 ρ(u 2 + v 2 ) = (γ -1)ρ ,
where the ratio of the specific heats γ is constant, with γ = 1.4 in our applications. We are trying to solve the following conservation law :

∂W ∂t + divf (W ) = 0, t > 0, x ∈ Ω W (x, 0) = W 0 (x), x ∈ Ω.
supplemented with the boundary conditions specified in the previous section. We will give a quick glance to the method we are using, the Residual Distribution (RD) scheme. It is a second order oscillation free method. A complete description of this method for steady problems can be found, for example, in [START_REF] Abgrall | Residual distribution schemes: current status and future trends[END_REF][START_REF] Deconinck | Residual distribution schemes: foundations and analysis[END_REF].

Remark 1. Reduced Order Modeling does not necessarily require a deep understanding of the underlying truth solver. We give these details about the CFD code because we intend to use it as part of our online scheme.

Residual distribution scheme

We are concerned with the construction of algorithms for the approximation of solutions (8) on a conformal mesh whose elements are triangles in 2D. We will denote with T some generic element in the mesh, and by M a generic vertex.

In the RD schemes, the data are stored at the vertices. Denote W i an approximation of W (M i ) and (f (W )) h an approximation of the flux f (W ). We consider the solution of the steady limit of [START_REF] Løvgren | The Reduced Basis Element Method for Fluid Flows[END_REF]. Based on [START_REF] Deconinck | Residual distribution schemes: foundations and analysis[END_REF], a Residual Distribution scheme is defined as follows:

Definition 1. Let some current state W i . Denote (f (W )) h a continuous approximation of the flux. Evolve the nodal values of W i toward a steady solution of the problem as follows:

1. ∀T compute the residual

Φ T = T div((f (W )) h )dx = ∂T (f (W )) h • n dx. ( 8 
)
2. ∀M i ∈ T distribute the functions of Φ T to each node of T . Denoting by Φ T i the local nodal residual for the node M i ∈ T , by construction one must have

Mi∈T Φ T i = Φ T . (9) 
Equivalently, denoting by β T i the distribution coefficient of node M i :

β T i = Φ T i Φ T (10) 
with

Mi∈T β T i = 1. ( 11 
)
3. Assemble the contribution ∀M i ∈ T and evolve W i in time by integrating the ODE:

Mi∈T Φ T i = 0. ( 12 
)
The last sum has the role of an iterative process in order to get to the steady solution of (8). In other words, we seek for an approximation of the unsteady Euler equation when the time goes to infinity. This is a very general formulation . Many classical schemes can be formulated within this framework. This variability hides mostly in how the residual of each triangle is distributed among nodes, that is, on the choice of the β i . For instance, distributing it evenly among nodes corresponds to a Lax-Friedriech type of scheme, whereas schemes with upwinding would take into account the direction of the information. We have chosen the Lax-Friedriech type of scheme. This, as we will see in the online section, makes our online scheme easier.

Similarly to most CFD schemes, one can add 'numerical dissipation' in order to enforce the stability. The CFD code we have chosen to use, uses an SUPG type stabilization. That is, instead of Φ T i in equation [START_REF] Ohlberger | Nonlinear reduced basis approximation of parameterized evolution equations via the method of freezing[END_REF], one uses

Φ T i ← Φ T i + h T T (∇ W f (W h ) • ∇V h i )τ (∇ W f (W h ) • ∇W h )dx, ( 13 
)
where W h is the continuous piece-wise linear interpolant of (W h i ) i=1,•••ns , V h is any continuous piece-wise linear test function and τ > 0 is in practice set to

τ = ( i max(∇ W f ( W h )∇V h i , 0)) -1 .
The used CFD mesh has 4510 grid points which corresponds to a total of 18040 unknowns. Snapshots in this solution manifold can be visualized in Figure 2. We have identified a range of parameters, for which the sensitivity of the shock position to Mach and AoA is high :

D := Mach ∈ [0.81, 0.83] AoA ∈ [0.0 • , 3.0 • ].
The positions of the shock for these specific parameters can be seen in Figure 1. This problem has been already studied in [START_REF] Abgrall | Robust model reduction by L1-norm minimization and approximation via dictionaries: application to nonlinear hyperbolic problems[END_REF] in the context of model reduction using L1-norm minimization. It has been shown that when shock exists, discrepancies in the reduced solution are appearing. As a consequence, something else has to be done, namely calibration of the shock.

In the rest of this paper, we will denote u a generic component of the state vector W . For instance, one component of the output of the CFD code for parameter µ will be denoted u(•; µ). This choice of notation is not made to confuse the reader, but rather to match the standard notation in the ROM community.

Offline phase

As we will use a POD method to construct a reduced basis, we first need to select a (moderate) but representative snapshot set inside M D . We have chosen the following set of cardinal 12 :

Mach ∈ {0.81, 0.82, 0.83} AoA ∈ {0.0 • , 1.0 • , 2.0 • , 3.0 • }.
The snapshots are presented on Figure 2.

The first objective of this section is to propose a calibration procedure, namely a family of mappings F as well as µ → F µ . We will show that the Kolmogorov n-width of the calibrated set is decaying faster than the one of the original set.

By plotting some POD basis of the original data set (see Figure 4), one can observe that just as in the 1D Burgers' case, in order to take into account the variability of the shocks' position and shape, the reduced basis tends to oscillate. This behaviour is even clearer when looking at the restriction of the POD basis at the wing, see Figure 3.

As mentioned in the introduction, calibration starts with some a priori knowledge on the solution manifold. By analogy with the first dimensional Burgers' case, we choose the following calibration 

•; µ) • F -1 µ is discontinuous ⊂ {(x 0 , ŷ)}
To put it in other words, with this choice of calibration, the solutions in the calibrated solution manifold M F ,D := u F -1 µ (•); µ , µ ∈ D have vertical shocks, at position x0 . Again, with analogy with the one dimensional Burgers case, we should have

d n (M F ,D ) ≤ d n (M D )
How do we achieve this calibration ? The first task is to locate the position of the shock. We have chosen the following simple strategy: first find the boundary element (on the wing) where the quantity of interest has the highest gradient. Then look at neighboring elements and pick the one with the highest gradient. Iterate until the end of the shock (i.e some condition on the gradient) or until one reaches some predefined distance to the wing. One can use other methods in order to locate more precisely the shock. For instance, in [START_REF] Siddiqi | Geometric shock-capturing eno schemes for subpixel interpolation, computation, and curve evolution[END_REF], they use ENO related ideas to locate the inter cell position of the shock.

We denote as x = s(y; µ), µ ∈ D the true shape of the shock and we will make the following assumption :

∃k small , ∀µ ∈ D, ∃P µ ∈ P k (R), s(y; µ) = P µ (y). (14) 
That is, the shock can be represented by a low order polynomial. All numerical experiments presented in this paper have been done using a one degree polynomial of form:

P µ (y) = a 0 (µ) + a 1 (µ) * y. (15) 
In Figure 1, the colored lines are the barycenters of the control volumes with the highest gradient. In black, is the fitted polynomial, characterized by two parameters.

Second step now, we need to construct the family F. The global picture is presented on figure 5. We decompose Ω into three subdomains : Ω 0 where we will use the identity mapping. The calibration is going to be done in Ω L and Ω R . We have chosen to use a Gordon-Hall (G-H) [START_REF] Gordon | Transfinite element methods: blending-function interpolation over arbitrary curved element domains[END_REF] type mapping. Their accuracy and stability have been studied in [START_REF] Løvgren | Global c1 maps on general domains[END_REF]. Examples in fluid dynamics have been numerically studied in [START_REF] Løvgren | The Reduced Basis Element Method for Fluid Flows[END_REF]. There are multiple reasons for this choice. For the offline part, what is important is its simplicity and its flexibility. Indeed, what is presented in the following section is not dependent on the shape of the shock nor on the shape of the wing. We will give computational cost related arguments in the online section below. The rest of this section will detail the application of the Gordon-Hall method onto Ω L . Similar work has to be performed on the right subdomain.

The reference domain Ω has to be a rectangle in the original G-H algorithm (we refer to Section 6.2 for another choice). This fits in our framework, as we want the calibrated shock to be a vertical line. The situation is depicted in Figure 6.

One possible instance of F -1 µ ( Ω) is presented on Figure 7. Contrary to most examples using Gordon-Hall type method in the literature, our domain of interest is embedded in a bigger domain. The G-H method is conceptually easy to understand. We denote with Γ i the edges of Ω L where i is the number of edges and we choose a clockwise numbering, starting from the left boundary. Their counterparts on ΩL are denoted Γi . The steps are the following: 

• map each edge of ΩL onto its counterpart on Ω L . That is define f such that : ∀i, f µ | Γi = Γ i • define the weights functions φ i : Ω → [0, 1] (x, ŷ) → φ i Ω 0 Ω L Ω R Figure 5: Physical domain Ω (x1, ŷ1) (x3, ŷ1) (x3, ŷ2) (x1, ŷ2) (x2, ŷ2) (x2, ŷ1)
∀i, φ i + φ i+2 = 1 ∀i, φ i | Γi = 1
These functions represent the relative positioning between the opposing edges. As such, in order to have a well behaved mapping, these need to be ' pas delirante '.

• define the projection functions 

π i ; Ω → [0, 1] (x, ŷ) → π i (x1, y2) (x3, y2) (x1, y1) (x3, y1) (s(y2; µ), y2) (s(y3; µ), y3)
   ∀i, π i | Γi+1 = 1 ∀i, π i | Γi-1 = 0 ∀i, π i | Γi = [0, 1]
these functions define a new coordinate system in Ω. As the φ's, they also need not be 'delirante'.

• for any point (x, ŷ) on Ω, compute the projection on each edge π i (x, ŷ). Then, use a weighted combination of the f µ (π i (x, ŷ))

As a first easy step, we have chosen the following parametrization of the edges:

f µ | Γ1 : (x 1 , ŷ) → (x 1 , ŷ) f µ | Γ2 : (x, ŷ2 ) → (x 1 + x • (s(y 2 ; µ) -x 1 ), y 2 ) f µ | Γ3 : (x 2 , ŷ) → (s(y 2 + ŷ • (y 3 -y 2 ); µ), y 2 + ŷ • (y 3 -y 2 )) f µ | Γ4 : (x, ŷ1 ) → (s(y 3 ; µ) + x • (x 1 -s(y 3 ; µ)), w(s(y 3 ; µ) + x • (x 1 -s(y 3 ; µ))). (16) 
For example, take the left edge Γ1 of the reference domain. It is le lieu des {(x, ŷ), s.t ŷ ∈ [ŷ 1 , ŷ2 ] and x = x1 }.

The vector valued function f µ | Γ1 will be one possible parametrization of Γ 1 .

We have chosen, at first, the same weight functions and the same projection functions as in the original G-H formulation:

φ 1 = ŷ -ŷ1 ŷ2 -ŷ1 φ 3 = 1 - ŷ -ŷ1 ŷ2 -ŷ1 φ 2 = x -x1 x2 -x1 φ 4 = 1 - x -x1 x2 -x1 . and π 1 (x, ŷ) = x -x1 x2 -x1 π 3 (x, ŷ) = ŷ -ŷ2 ŷ3 -ŷ2 π 2 (x, ŷ) = x -x2 x3 -x2 π 4 (x, ŷ) = x3 - x x3 -x1 .
We insist that this method is flexible. Other choices will be presented in Section 6.2.

We will highlight the parameter dependency by using µ as a subscript. The Gordon-Hall mapping is given by :

GH(x, ŷ; µ) = φ 1 (x, ŷ) • f µ (x 1 , ŷ) + φ 2 (x, ŷ) • f µ (x, ŷ2 ) + φ 3 (x, ŷ) • f µ (x 2 , ŷ) + φ 4 (x, ŷ) • f µ (x, ŷ1 ) - 4 i=1 φ i (x, ŷ) • φ i+1 (x, ŷ) • f i;µ , (17) 
where f i;µ is the value of f µ in the corner between Γ i and Γ i+1 . Here, we have

f 1;µ = (x 1 , y 1 ), f 2;µ = (x 1 , y 2 )
f 3;µ = (x 3 , y 2 ), f 4;µ = (x 3 , y 1 ).
We will use, in the course of this paper, the following notation :

R 2 → F (a 0 , a 1 ) → GH(•; a 0 , a 1 )
That is, the application takes as argument a shock position, and returns the corresponding G-H mapping.

Remark 2. It is important to know that the π's, the φ's and f µ can be chosen independently from each other. This will be made clearer in Section 6.2 when we try to improve the method. Remark 3. We remind the reader that from the Gordon-Hall formulation, the mapping ( 17) is depending only on the coefficients of the low order polynomial P µ (y) defined in [START_REF] Abgrall | Robust model reduction by L1-norm minimization and approximation via dictionaries: application to nonlinear hyperbolic problems[END_REF], namely a 0 (µ) and a 1 (µ). Moreover, we can generalize and to consider a polynomial of any order:

P n µ (y) = a 0 (µ) + a 1 (µ) * y + a 2 (µ) * y 2 + • • • + a n (µ) * y n . ( 18 
)
This change will not affect the construction of the mapping.

It is clear that this mapping suffers from major drawbacks :

• this mapping is continuous at the boundary, but has discontinuous derivatives;

• this mapping linearly stretches the domain; this is not the best choice to diminish the Kolmogorov n-width;

• we have not taken into account the curvature of the wing;

• in x 1 and x 3 , the boundary ∂ Ω is not C 1 .

We will fix these issues in the numerical section 6.2. We will nevertheless numerically illustrate the usefulness of calibration using this rough mapping. We have computed separate POD basis on ΩL and ΩR . We present on Figure 8 the counterpart of Figure 3, that is, the x component of the velocity at the wing. As one can see, using calibration we got rid of the oscillations. We present in Figure 9 the first, third and fifth POD basis in the calibrated case, as a counterpart of Figure 4. As expected, the calibrated POD captures most of the information in the first 4 basis. The 5th basis only contains numerical noise.

We will present in the next section a reduced scheme. This scheme should be cheap, i.e it should not have a computational complexity depending on the size of the truth problem. This scheme will use the calibrated basis that we have just constructed. 

Online phase

Now we enter the difficult section. Can we fit the previous pieces together to build a fully functioning reduced scheme? Three different methods will be mentioned here. We can think of them as increasing in difficulty. The first two will use some existing CFD codes. The last method describes a fully reduced scheme.

For the rest of this section, we will drop out the µ dependency, as we are focused on reducing one particular simulation. It will reappear in the offline/online decomposition section. Throughout this section, we will use the following notation :

• t n is the pseudo time stepping, to reach steady state;

• ŵi a generic control volume on the reference mesh Ω;

• w i a generic control volumes on Ω;

• F n the mapping chosen at time step n. It maps Ω onto Ω. The inverse mapping will be denoted F -1 n ; • {φ i } some reduced basis on the reference mesh, of cardinal N red . The one construted in section 3.

We will denote by u n the solution at pseudo time step t n and ûn it's counterpart on the reference mesh. That is, we have

ûn = u n • F -1 n on Ω
• The easiest method we can think of is the following :

-Suppose we have some reduced solution at iteration n, ûn , defined on the reference domain Ω, and a "well chosen" mapping F n ;

-Map this reduced solution onto the real mesh, using F n ;

-Use the CFD code, on Ω, using ûn • F n as initial condition, to get u n+1 ;

-Map u n+1 back onto Ω, find a "good" (in some sense) mapping F n+1 , and the corresponding reduced coordinates. • The second method is smarter, and more in the spirit of what has been done in the 1D Burgers' case in [START_REF] Cagniart | Model order reduction for problems with large convection effects[END_REF].

-Just as for the first method, suppose we have some reduced solution at iteration n, ûn , defined on the reference domain Ω, and a "well chosen" mapping F n ;

-Use the CFD code on Ω using ûn as initial condition. This time, modify the parameters of the problem to make this problem equivalent to the original one. The objective is to be as little intrusive into the CFD code as possible. We will show that we fulfill the objective modifying only the flux and the boundary conditions. Denote ũn+1 the output.

By construction, we have :

ũn+1 ≈ u(•, t n ) • F -1 n ;
deduce a new "relative" mapping : F n+1 • F -1 n best suited to represent ũn+1 . From this, compute a better calibrated solution ûn+1 and the corresponding mapping

F n+1 such that u(•, t n+1 ) ≈ ûn+1 • F n+1 ;
• The third method is the ultimate goal to all reduce basis models. We want to construct a self sufficient reduced scheme, i.e we do not want to use the black box CFD code. Two paths can be taken. One idea is that since we are working with reduced basis, we do not need stability ingredients as smart as the ones used for the fine scheme. This argument has been studied in [START_REF] Maday | An online intrinsic stabilization strategy for the reduced basis approximation of parametrized advection-dominated problems[END_REF]. In our case, the fine scheme is using the advanced "Residual Distributed scheme" with SUPG type stabilization described in Section 2. The goal would be to use a simple scheme, say a raw Lax-Friedrichs method, which has no local components such as stabilization or "upwinding". A rectification step is then used to go from the reduced solution to the 'truth' original solution. The underlying idea is that the two stabilization methods, even if they arrive to different solutions, still represent the same underlying solution. Another direction is to assume that using calibration makes the complicated local components manageable by ROM.

For instance, to ensure the TVD property, schemes often involve some gradient limiter near shocks. Can this be handled by standard ROM? Denote by d n (∇ lim ) it's Kolmogorov n-width, for some norm. Suppose that the shocks are order one polynomials, whose coefficients vary in

A 0 := [a min 0 , a max 0 ], A 1 := [a min 1 , a max 1 ]. That is, ∀µ, ∃(a 0 (µ), a 1 (µ)) ∈ A 0 × A 1 , s.t, s(y; µ) = a 0 (µ) + a 1 (µ) * y
We can estimate d n (∇ lim ). Let h some characteristic size of the mesh.

d n (∇ lim ) ≈ mes(A 0 ) * mes(A 1 )
h 2 There is no hope in trying to handle this term using the Empirical Interpolation Method (EIM).

As calibration reduces the geometric variability of the shock position, the coefficients in the calibrated problem Â0 and Â1 will both be of order h. This drastically diminishing the Kolmogorov n-width of d n (∇ lim ). The same kind of arguments could be used for upwinding type of terms.

The first method will not be further discussed here, as the numerous mesh interpolations imply very high computational costs, as well as numerical errors. The third method is out of the scope of this paper. It is discussed in chapter 5 of the thesis [22]. We will focus on the second method.

Second method

This method assumes the existence of a fully functioning CFD code. In the lines of what has been done [START_REF] Carlberg | Efficient non-linear model reduction via a leastsquares petrovgalerkin projection and compressive tensor approximations[END_REF], the idea is to keep the stability and accuracy properties of the truth scheme by running the same code. The computational savings are obtained by using EIM/hyper reduction ideas.

The objective is to recast the original problem defined on Ω, onto an equivalent problem defined on Ω. We start with a step common to Finite Volume schemes and Residual Distribution schemes. Let w i one control volume in Ω. Integrate the conservation law in space and time. Again, u is any the state variable. 

u(w, t n+1 )dw - wi u(w, t n )dw + wi t n+1 t n ∇ • f (u)dtdw = 0 ( 19 
)
We will handle the boundary condition later.

What is usually done in the elliptic or parabolic communities [START_REF] Quarteroni | Numerical solution of parametrized navier-stokes equations by reduced basis methods[END_REF][START_REF] Løvgren | The reduced basis element method: Offline-online decomposition in the nonconforming, nonaffine case[END_REF] is to transform the original problem, into a problem defined on the reference mesh. Let ŵ = F n (w). We use the standard change of variable and assume smoothness properties on the mapping. For F ∈ F, we denote J F the Jacobian of the transformation.

ŵi ûn+1 |J F -1 n |d ŵ - ŵi ûn |J F -1 n |d ŵ + ŵi t n+1 t n û(f ∇û)|J F -1 n |dtd ŵ = 0
The proof can be found in the references given above. There are two issues with this approach. The first one is that this derivation is not rigorous in the case of hyperbolic problems as some of the quantities ( ∇u ) lose meaning when shock appear. Also, this formulation is not suited for our purpose. In the literature it has only been used for Galerkin type methods. Our intent is still to be as little intrusive as possible into a CFD code. We would like to find modified flux and boundary conditions such that the problem on the reference mesh is still casted as a finite volume problem. Using arguments that are detailed in the appendix, we can show that solving the initial problem ( 19) is equivalent to solving the following :

ŵi û( ŵ, t n+1 )|J F -1 n |d ŵ - ŵi û( ŵ, t n )|J F -1 n |d ŵ + ŵi t n+1 t n ∇ ŵ • (N T n f (û))dtd ŵ = 0
where the { ŵi } i form a partition of Ω and where N T n f is the correct modified flux with

N T n = (J F -1 n ) 22 -(J F -1 n ) 12 -(J F -1 n ) 21 (J F -1 n ) 11 n
.

We will make the following assumption : the determinant of the Jacobian is sufficiently smooth and the mesh is fine enough so that we can consider it constant per element. The approximation error will not be investigated in this paper.

Remark 4. Some more rigorous approaches could be developed, but would lead to more intrusion into the CFD code. In [START_REF] Colella | High-order, finite-volume methods in mapped coordinates[END_REF] for instance, they choose to work with û|J F -1 n | instead of û. We are arriving then to the following equation in each control volume ŵi . 

û( ŵ, t n+1 )d ŵ - ŵi û( ŵ, t n )d ŵ + 1 |J F -1 n | i ŵi t n+1 t n ∇ ŵ • (N T n f (û))dtd ŵ = 0
We have all the ingredients to feed the CFD code :

• a mesh : here it is the reference mesh, over Ω;

• the average of the solution over control volumes :

ûi = 1 mes( ŵi ) ŵi û( ŵ, t n )
• a flux, in a closed form: with the Piola transform, here it just amounts to N T n f where the N T term will depend on the time step and is not constant over Ω. We will see in Section 5.1 that using G-H type mapping allows offline/online decomposition.

• boundary conditions: we do not need to worry about the outside boundary conditions, as they will not be affected by the mapping. The slip boundary conditions for the original problem are weakly imposed boundary conditions and are given by u • n = 0 on the wing.

In our case, these are imposed as follows : treat the boundary nodes as any other node. Add the correct quantity to impose the slip boundary condition. More precisely, let n = (n 1 , n 2 ) the norm at the boundary . The following flux is computed at nodes on the boundary :

(f x , f y ) • n =         ρ (u, v) • n ρu (u, v) • n + pn 1 ρv (u, v) • n + pn 2 (u, v) • n (E + p)        
We enforce the slip boundary condition by subtracting the following quantity :

( fx , fy ) • n =         ρ (u, v) • n ρu (u, v) • n ρv (u, v) • n (u, v) • n (E + p)        
We can use the Piola transform again for these terms. In the original transformation, the following quantity is subtracted from the residual at boundary elements :

∂K ( fx (u h ), fy (u h )) • n,
and formulated in terms of reference variables as,

∂ K ( fx (û h ), fy (û h )) • (N T • n).
The conclusion from this analysis is the following : under the assumption that the determinant of the Jacobian is constant per element, changing the normals in the CFD code is enough to compute the residual in each triangle. As mentioned in the offline section, the CFD codes is of Lax-Friedriechs type, that is we distribute the residual evenly among nodes inside each element. Thus, the distribution procedure is done independently of the mesh, or of the solution. For an upwinding scheme, this is a much more difficult problem to tackle, not in the scope of this paper. As mentioned in section 2.3, the truth scheme uses SUPG type stabilization. We have not studied in this paper how to modify this term in order to have an equivalent stabilization procedure on û. We will discuss this approximation in the numerical experiment section.

We now assume that we have performed the n + 1 iteration with the CFD code. That is, we have ũn+1 • F n ≈ u n+1 . We are looking simultaneously for :

• a better suited mapping F n+1

• the corresponding coordinates {α n+1 k } k .

Following [START_REF] Cagniart | Model order reduction for problems with large convection effects[END_REF], define the following objective function, for p ∈ {1, 2} :

J p : F × R N red → R F, {α k } k → ũn+1 • F n -k α k φ k • F L p (20) 
We will see in the next section that we need to modify the objective function before performing any standard optimization algorithm. Indeed, because of the discontinuity at the shock, J p is non differentiable. We will propose one (of the many) possible options to solve this problem.

Remark 5. In [START_REF] Cagniart | Model order reduction for problems with large convection effects[END_REF], the authors were studying the viscous Burgers equation. Thus, they did not have this specific issue.

Coordinates

We first propose an optimization procedure when the mapping is assumed to be known. We will then see how to find it. Let F ∈ F. Define J p F as :

J p F : R N red → R {α k } k → ũn+1 • F n -k α k φ k • F L p (Ω) (21) 
L 2 minimization, standard Galerkin projection

J 2 F = ũn+1 • F n - k α k φ k • F L 2 (Ω)
First order optimality condition gives us the αs. Attention, the basis {φ k • F } k will most probably not be an orthogonal basis.

     α 1 α 2 . . . α N red      = A      < ũn+1 • F n , φ 1 • F > X < ũn+1 • F n , φ 2 • F > X . . . < ũn+1 • F n , φ N red • F > X      where A i,j :=< φ i • F, φ j • F > X ∈ R N red . Define δ F := F • F -1 n . We have < ũn+1 • F n , φ k • F > X = Ω ũn+1 φ k • δ F |J F -1 n | < φ i • F, φ j • F > X = Ω φ i φ j |J F -1 |
We will see in section 5.1 how to achieve efficient offline/online decomposition.

L1 minimization ∀α ∈ R N red , J 1 F (α) = i ŵi ũn+1 • F n - k α k φ k • F .
Once again, standard change of variable :

∀α ∈ R N red , J 1 F (α) = i ŵi ũn+1 • δ -1 F - k α k φ k |J F -1 | (22) 
We use some quadrature formula. Denote the quadrature points xi,l and the weights γ i,l . We have :

J 1 F (α) = i l γ i,l ũn+1 (δ -1 F (x i,l )) - k α k φ k (x i,l ) |J F -1 (x i,l )| . ( 23 
)
This is handled as in [START_REF] Abgrall | Robust model reduction by L1-norm minimization and approximation via dictionaries: application to nonlinear hyperbolic problems[END_REF] by recasting it as a linear programming problem. For now, the size of the problem is of order N , the number of degrees of freedom of the truth space. We will see in section 5.1 how to reduce the computational cost.

How do we find this relative mapping? One important assumption is to have smoothness in the choice of mappings. This just amounts to saying that the shock has not moved a lot from pseudo time step t n to pseudo time step t n+1 . This can be justified by Rankine-Hugoniot conditions. Let Â0 and Â1 the maximum values for the relative variation in the position of the shock. These can easily be deduced from RK conditions. Âi = (t n+1 -t n ) * maximum shock speed Define the following neighborhood of the identity in F :

F rel := G-H(â 0 , â1 ), âi ∈ Âi Let u ∈ M D .
It is clear that for solutions with shocks, the following application is not smooth.

F rel → X δ F → u(δ F (•))
More precisely, the derivative in the sense of distributions we will have a Dirac mass at the shock.

We give here a formal proof, and refer to [START_REF] Bardos | Derivatives and control in the presence of shocks[END_REF][START_REF] Allahverdi | Numerical aspects of large-time optimal control of burgers equation[END_REF] for a rigorous one. Decompose the solution into a smooth part and one discontinuity. Denote Σ(u

) = {(x, ŷ), u is discontinuous } and v → [v] the standard jump operator. ∀u ∈ M D , u = u smooth + [u j ]| Σ(u) u -u • δ F = u smooth -u smooth • δF + [u j ]| Σ(u) -[u j • F ]| Σ(u•F )
At first order, the derivative in the sense of distributions is given by :

u -u • δ F = ∂u smooth + δ| Σ(u) ∂Σ δF
where δ| Σ(u) is the Dirac mass at Σ(u).

We propose a method for p = 1. Suppose that we pick the xi,l sufficiently far from the shock, so that ∀δ F ∈ F rel , δ F (x i,l ) is on the same side of the shock as xi,l

Then, the following application will be differentiable :

F rel → R N * N quad δ F → {ũ n+1 (δ F (x i,l ))} i,l
The same idea can be applied to the case p = 2. We will denote Ωd the subdomain of Ω where we have removed some neighborhood of the shock. We denote Ω d it's counterpart in the physical domain. Remark 6. For the L 1 norm, the overall problem as presented is not differentiable. This can be solved using Huber type minimization instead of the raw L 1 [START_REF] Abgrall | Robust model reduction by L1-norm minimization and approximation via dictionaries: application to nonlinear hyperbolic problems[END_REF]. Remark 7. For L 2 , we must not forget to normalize, as φ k L 2 (Ω d ) are not of unit norm. This is a Gappy-POD type of algorithm, see [START_REF] Everson | Karhunen-loeve procedure for gappy data[END_REF].

From now on, we define a 'smaller' but differentiable objective function. For all Ω sub subdomains of Ω, define the following J Ω sub :

J p Ω sub ,F (α) = ũn+1 • F n - k α k φ k • F L p (Ω sub )
.

The differentiable issue leads us to replace the original problem J p F by J p Ω d ,F . This smoothness issue being solved, we can now perform standard optimization algorithm to get the desired mapping δ F . Indeed, we know that the following function is smooth:

Â0 × Â1 × R N red → R â0 , â1 , {α k } → J Ω d ,G-H(â0,â1) (α) ( 24 
)
This is of course computationally not reasonable. We present in the next section one method to make the whole thing computationally tractable.

Online/offline decomposition

We will first show how to perform in practice the otpimization of the quantity defined in [START_REF] Quarteroni | Numerical solution of parametrized navier-stokes equations by reduced basis methods[END_REF]. Discretize the set Â0 and Â1 : {â k 0 } and {â k 1 }. Define the following set of mappings :

Ψ F rel := {G-H(â k 0 , âp 1 )} k,p
This space if is discretized version of F rel and is also embedded in F.

Compute the coordinates for all mappings in Ψ F rel . Compute the corresponding value of the objective function :

∀δ F ∈ Ψ F rel , inf α J Ω d ,δ F (α)
Interpolate to get an approximation of âopt 0 and âopt 1 . Compute the reduced coordinates on G-H(â opt 0 , âopt 1 )

Remark 8. Other ideas to find F n+1 can be implemented. They are however less natural in our framework.

• Shock fitting: close to what has been described in the offline section. Find the highest gradient elements, fit a polynomial. This is made computationally efficient because we do not need to look for highest gradient all over Ω. Once again, the smoothness of t → s(µ; t), for all µ means that we only need to look in the restricted domain.

• RK condition: enforce Rankine-Hugoniot type conditions at the shock.

We have not yet discussed the computational complexity of our full algorithm. For now, at each time step, we need full run of the CFD code, to get ũn+1 over Ω. Until we manage to build a full reduced scheme, see method three described in section 4 , this computational time is not easily reducible. The only ideas available in the literature are hyper reduction [START_REF] Ryckelynck | Hyper-reduction of mechanical models involving internal variables[END_REF].

In the previous section, we have restricted the problem from Ω to Ω d for smoothness reasons. Here, we replace J p Ω d by an even smaller, denoted generically J p Ω sub because of computational cost. How does one pick a 'good' Ω sub ? This is what hyper reduction is. To put it simply, we are looking for Ω sub such that :

∀û ∈ M F ,D , ∀F ∈ Ψ F rel , arginf α J p Ω sub ,F (α) ≈ arginf α J p Ω d ,F (α).
That is, the optimization is not affected too much by the reduction of the size of the problem. Of course, we do not now the continuous set M F ,D . Denote Ξ M F ,D some samples. We will assume that they are good representative of the continuous set.

We then perform the following greedy algorithm. Let some threshold.

Data: Ξ M F ,D ,{φ k } k Result: Ω hyper ,N hyper Initialize Ω hyper := i∈Iini ŵi ; while convergence do ∀û ∈ Ξ M F ,D , {α k } k = arginf α J p Ω hyper ,F truth (α); i := argsup p k α k φ k -û L p ( ŵp) ; Ω hyper := Ω hyper ŵi end N hyper := card(Ω hyper );
Algorithm 1: One possible choice to pick a good Ω sub The idea of hyper reduction is that on the solution manifold there is a one to one correspondence between the restriction of the solution on Ω hyper and the full solution, for a specific quantity. The domain Ω hyper depends of course on the quantity that is beeing studied. The accuracy of the overall process can be estimated but not guaranteed. Indeed, the greedy algorithm is performed on sampled spaces : Ξ M F ,D instead of M F ,D and Ψ F rel instead of F rel . One possible output of the algorithm is illustrated in Figure 10, where Ω hyper is the reunion of black elements.

What the calibration has achieved, at the same time as it has reduced the Kolmogorov n-width of the solution set, is to localize spatially the interesting part of the solution.

Remark 9. These two properties are equivalent for discontinuous solutions. This is not true for smooth solutions. We can thus anticipate that the control volumes chosen will be accumulated around the calibrated shock, as depicted in Figure 11. In the non calibrated case, to retrieve the information Also, the method used to enforce the differentiability of J p would not be applicable.

Implementation details?

For our choice of online implementation, the computation of the N T terms is not a pressing issue, as these are only required in a moderate number of cells, denoted by N hyper . We will nevertheless emphasize that this terms, because of the choice of Gordon-Hall type mapping, would not be a computational problem even with no hyper reduction. To put it in the ROM framework, we will simply highlight the fact that these terms are trivially affinely decomposable. We need to show that µ → N T (µ) is affinely decomposable, which is equivalent to saying that the entris of the Jacobian are affinely decomposable. This is a consequence of the structure of the G-H mapping, see [START_REF] Deconinck | Residual distribution schemes: foundations and analysis[END_REF]. The weights and the projection functions are not parameter dependent. We have

µ → ψ i ,
with ψ i for i ∈ 1, 2, 3 linear function in µ. Because of the square root in the definition of NACA airfoil, we have something not affinely decomposable for ψ 4 . This will be taken care by using the modifications to the G-H method described in section 6.2. We will enforce F = Id in a neighborhood of Γ 1 , thus removing the issue. The rest of the wing can be approximated by a polynomial.

6 Numerical Experiments

Mapping on a flat domain

The first thing we will do is a necessary step. We will try to reproduce a simple test case using the mapping presented in the offline Section 3 and the second method presented in section 4. We will consider that we know the correct mapping from the begining of the simulation. That is, we perform the whole CFD code with the same transformed flux N T f where N T corresponds to the correct, truth mapping. We will not try to quantify the results for now, but rather to check that the global calibration idea fits in this framework. We are running the CFD code for Mach = 0.81 and AoA = 3.0 • . The truth solution that we are trying to recover is presented in Figure 12. We first perform a 'control sample' test. That is, we run the CFD code using the identity mapping. The output solution is presented in Figure 13. As expected, the output is not comparable with the truth solution. We present in Figure 14 the solution for the mapping described in equation [START_REF] Deconinck | Residual distribution schemes: foundations and analysis[END_REF]. One can observe that the general behaviour is correct. The shock is more or less located at the correct position and it has been straightened. Nevertheless, we can see that we have some non physical behaviour close to the wing. This could have been anticipated, as the mapping constructed in Section 3 suffers major issues. The biggest problem at the wing seems to be a consequence of the high gradient at the bottom left corner of the domain of ΩL . From this preliminary analysis, we conclude that we need a smoother (more than continuous) mapping. the smoothness of the mapping issue, we have decided to use a more advanced mapping than the raw Gordon-Hall. We will use a mapping from a curved domain to a curved domain (see Figure 15,[START_REF] Abgrall | Residual distribution schemes: current status and future trends[END_REF]. For this, we have to build a more advanced G-H type mapping. For that, we are following the same steps as in [START_REF] Løvgren | Global c1 maps on general domains[END_REF]. Again, as in the case presented in section 3, we consider here that x 1 = x1 , x 2 = x2 , x 4 = x4 , x 5 = x5 , y 1 = ŷ1 and y 2 = ŷ2 . In this case, the new G-H mapping or the generalized transfinite extension is described as follows:

GH(x, ŷ) = n i=1 [φ i (x, ŷ)ψ i (π i (x, ŷ), µ) -φ i (x, ŷ)φ i+1 (x, ŷ)ψ i (1, µ)], ( 25 
)
where n is the number of the sides of the domain (in our case n = 4). If we denote with Γi , i = 1, • • • , n the sides numbered clockwise, we associate to each side a weight function φ i and a projection function π i , both defined over the reference domain Ω. We also assume that the value of f along Γi may be determined by the parametrization ψ i (t, µ) : [0, 1] × D → R, where t is the normalized arc-length of Γi .

(x1, y1) (x2, y2) (x5, y1) (x4, y2) (s(y2; µ), y2) (s(y3; µ), y3)
We will first present the original version proposed in [START_REF] Løvgren | Global c1 maps on general domains[END_REF]. This was done in a very general case, and the focus was put on the smoothness of the overall mapping. We will see why some ingredients need to be modified to match our objectives. The weights functions are taken as the solutions of the following Laplace problems :

       ∆φ i = 0 in Ω φ = 1 on Γi φ = 0 on Γi+2 ∂φ ∂n = 0 on Γi-1 ∪ Γi+1 . (26) 
We also need the projection from the interior onto each side Γi . On a general domain, we compute the projection function π i onto the side Γi , by solving the Laplace problem (for more details, see [START_REF] Løvgren | Global c1 maps on general domains[END_REF]): 

             ∆π i = 0 in Ω π = t
We will now deal with the issues mentioned in Section 3 one by one. Firstly, we solve the smoothness of ∂ Ω: we had noticed in our rough flat approximation that not taking into account the curvature of the wing was a too big approximation and as a consequence, the projection π 4 onto the wing had a non desired behaviour. The proper way of dealing with this curved boundary is to use the standard arclength definition as a projection function on the wing :

π 4 | Γ4 : (x, ŷ) → x 0 1 + ∂w ∂ x 2 .
We also need to be closer to the identity mapping on the left boundary. In the original formulation, homogeneous Neumann boundary conditions are imposed on neighboring edges when computing the projection function. This choice is not the right one for our particular problem. We present in Figure 17 on the left, the projection function π 3 in the transfinite version of [START_REF] Løvgren | Global c1 maps on general domains[END_REF] described above. Remember, π 3 is the projection onto the edge Γ3 and this deforms the coordinate system. We could have anticipated that with this choice, our mapping will not match the outside boundary (where we have the identity mapping). The right picture in Figure 17 presents the solution for an alternative Neumann boundary condition, tailored for this specific Ω. Denote with H(x) some smoothed Heaviside step function and write it for ψ 2 . The same could be done for ψ 4 . We pick the following :

ψ2 (x, ŷ, µ) = π 2 (x, ŷ)• x3 -x2 s(y 2 ; µ) -x 2 •(1-H(π 2 (x, ŷ)))+ 1 + (π 2 (x, ŷ) -1) • x3 -x2 s(y 2 ; µ) -x 2 •H(π 2 (x, ŷ)).
That is, we want no stretching for π 2 (x, ŷ) ≈ 0 or 1. A numerical example is presented in Figure 18 for an hypothetical stretching of 4/3, where the dashed red lines correspond to a non stretched mapping.

We need to modify one more ingredient. We take steeper weight functions for boundaries 1 and 3. For instance, we can pick: φ1 (x, ŷ) = H (φ 1 (x, ŷ)) .

What this achieves is that close to left and right boundaries, the slopes are the same as the outside boundaries. Finally, we choose the following ψ functions :

On Γ1 : ψ 1 (π 1 (x, ŷ), µ) = x 1 + π 1 (x, ŷ) • (x 2 -x 1 ), y 1 + π 1 (x, ŷ) • (y 2 -y 1 )
On Γ2 :

ψ 2 (π 2 (x, ŷ), µ) = x 2 + π 2 (x, ŷ) • (s(y 2 ; µ) -x 2 ), y 2 On Γ3 : ψ 3 (π 3 (x, ŷ), µ) = s(y 2 + π 3 (x, ŷ) • (y 3 -y 2 ); µ), y 2 + π 3 (x, ŷ) • (y 3 -y 2 )
On Γ4 : ψ 4 (π 4 (x, ŷ), µ) = arclen -1 (π 4 (x, ŷ)), y 3

Remark 10. The offline/online decomposition of the global method will strongly depend on the way we pick the set of φ i 's, π i 's and ψ i 's.

Remark 11. This 'smarter' choice of functions not only makes the G-H mapping smoother but it also makes D → F µ → F µ smoother. This can be an interesting property in a optimal control context (see [22]).

We test this new mapping. We present the results in Figure 19. This has to be compared with the truth solution, presented in Figure 12. We can see that we are still straightening the shock. Also we have removed the non physical behavior at the boundary that we had in the raw G-H scenario (see Figure 14). Remark 12. One must not forget that this case is no different from the flat boundary scenario of subsection 6.1. The fact that the reference domain has the same body as the physical domain was just needed for smoothness of the mapping purposes.

Before a more involved test run, with a more quantitive analysis of the results, we present yet another type of mapping. This goes one step further in building a smooth at boundaries mapping. One recent development on transfinite maps is defined in [START_REF] Jäggli | An improvement on geometrical parameterizations by transfinite maps[END_REF] and is called boundary displacement dependent transfinite map (BDD TM). The idea is not to construct the whole mapping, but to construct a relative displacement with respect to the identity. Most of the method is the same, the only difference is that instead of ψ i function, which represent the position on the physical domain, a new function d i : [0, 1] × D → R is introduced and it will represent the displacement:

d i (t, µ) = ψ i (t, µ) -ψi (t),
where each of the boundaries in the reference domain is parametrized by ψi : [0, 1] → R. Like this, the mapping will keep into account the original positions of the points in the reference domain Ω and will move them by weighting only the difference between the original boundaries and the deformed ones. Now, if (x, ŷ) is a point in the reference domain Ω, the idea of BDD TM is to displace it through the quantity (x, ŷ) + n i=1 φ i (x, ŷ)d i (π i (x, ŷ), µ). In the end, the BDD transfinite mapping is defined as:

GH BDDT M (x, ŷ) = (x, ŷ) + n i=1 φ i (x, ŷ)d i (π i (x, ŷ), µ) -φ i (x, ŷ)φ i+1 (x, ŷ)d i (1, µ) (28) 
This has one major effect, on the left boundary for instance, where we want zero displacement. The resulting mapping restricted to a neighborhood of this boundary will be the identity, which guarantees the matching with the outside domain.

Remark 13. The ameliorations on φ's and ψ's presented above will still apply to the BDD TM.

We will illustrate numerically the gain from these ameliorations. We present in Figure 20 the comparaison between the original method and the final one, taylored for our specific application. We show the entry of N T that varies the most, i.e x

x .

(a) (b)

Figure 20: One of the entries of the Jacobian matrix, namely (J F -1 n ) 11 . Left : with no additional smoothing ingredients; Right : with some smoothing ingredients

Final experiment

A full implementation of the method described so far is out of the scope of this paper. We will instead present numerical evidence on the new aspect of this method, which is the resolution of a CFD problem on a mapped mesh. We will show in this section, that by playing with the coefficients of the mapping, we can put the shock anywhere we want inside Ω. More precisely, we will construct several mappings G-H(a k 0 , a k 1 ) and launch the modified CFD code. We insist that the mapping will be constant throughout each simulation.

We can then compare the recovered position of the shock with the mapped 'truth' solution. That is, we compare u truth • G-H(a k 0 , a k 1 ) -1 with the output of our algorithm using the modified flux. Some results are presented in Figure 21. Blue represents the truth solution mapped onto the reference domain. Red is the output of the CFD code. Green is the original position of the shock.

We have fitted one degree polynomials through each shock. The differences between our result and the mapped truth scheme can be due to many factors:

• numerical errors on the computation of the N T terms;

• the SUPG stabilization has not been touched, to avoid too much intrusion in the code. This means that we are not using the same stabilization procedure as the truth scheme. We refer to [START_REF] Maday | An online intrinsic stabilization strategy for the reduced basis approximation of parametrized advection-dominated problems[END_REF] for a study of this situation. They advise using an a posteriori procedure, called rectification;

• our method to locate the shock is basic. We would need something more involved to quantify the error

Conclusion

The purpose of this paper was to propose a complete calibration procedure to make standard ROM methods fitted for solving the two dimensional Euler equation around an airfoil. We have proposed The computational complexity and the optimization procedures have been theoretically studied. We have finally developed numerical experiments that serve as a proof of concept for the global method.

Most of the stages in this paper can be further investigated. Future work could involve :

• a deeper study of the offline calibration and it's effect on the Kolmogorov n-width. We have proposed online some advanced mappings, where we impose no stretching in the vicinity of a shock. A numerical investigation can be done.

• a fully reduced scheme, with the procedure advised in Section 4 has to be constructed. This could lead to an interesting comparison between L 1 and L 2 minimization. Also, the optimization procedure can be studied. The differentiability issues can be also tested.

• the hyper reduction procedure can be numerically investigated. The conjectures made on the resulting Ωhyper , namely that the interesting control volumes are close to the shock, which is fixed in Ω can be tested as the subject of a future work.

• the smoothness of the entries of the N T matrix has to be studied. All the smoothing ingredients proposed in section 6 could be further investigated.

• a more long term objective could be to use this method to try new airfoils shapes. As mentioned, the G-H is a very flexible algorithm. We could use the NACA 00012 as reference domain, but use fantasist choices for physical domain. This is a very well fitted framework for optimal control (for more details, see Chapter 5 of [22]).

• F n ∇ ŵ • f • F n on Ω
where as usual, J F denotes the Jacobian of a the mapping F . Here

J F -1 n ( ŵ) = ∂x ∂ x ∂x ∂ ŷ ∂y ∂ x ∂y ∂ ŷ .
We will first compute the representation of f in terms of curvilinear coordinates and the frame

ρ 1 ( ŵ) = ∂x ∂ x , ∂y ∂ x , ρ 2 ( ŵ) = ∂x ∂ ŷ ,
∂y ∂ ŷ associated with them. Thus, we treat the vector field f (w) by first expressing it in the form: f • F -1 n ( ŵ) = f1 ( ŵ)ρ 1 + f2 ( ŵ)ρ 2 . On the other side, we know that the fluxes are f (w) = (f 1 , f 2 ). Then,

⇒ f 1 • F -1 n f 2 • F -1 n = ∂x ∂ x ∂x ∂ ŷ ∂y ∂ x ∂y ∂ ŷ f1 f2
Solving the system of equations, we obtain the following values for f1 and f2 :

f1 ( ŵ) = 1 ∂x ∂ x ∂y ∂ ŷ -∂x ∂ ŷ ∂y ∂ x ( ∂y ∂ ŷ f 1 • F -1 n - ∂x ∂ ŷ f 2 • F -1 n ) f2 ( ŵ) = 1 ∂x ∂ x ∂y ∂ ŷ -∂x ∂ ŷ ∂y ∂ x (- ∂y ∂ x f 1 • F -1 n + ∂x ∂ x f 2 • F -1 n )
We have

∇ w • f 1 f 2 = ∇ w • ( f1 • F n ρ 1 • F n ) + ∇ w • ( f2 • F n ρ 2 • F n ) Let i ∈ {1, 2}. ∇ w • ( fi • F n ρ i • F n ) = ∇ w J F -1 n • F n fi • F n • 1 J F -1 n •Fn ρ i • F n + J F -1 n • F n fi • F n ∇ w • 1 J F -1 n •Fn ρ i • F n
The second operand is zero. We will sketch the proof and refer to [START_REF] Colella | High-order, finite-volume methods in mapped coordinates[END_REF] for a rigorous one. We will consider φ smooth real valued test functions with compact support in Ω. We want to show the following :

∀φ ∈ D(Ω), Ω φ(w)∇ w • ( 1 J F -1 n • F n ρ i • F n )dw = 0
For this, use product rule :

∀φ ∈ D(Ω), Ω φ(w)∇ w • (

1 J F -1 n •Fn ρ i • F n )dw = Ω ∇ w • (φ(w) 1 J F -1 n •Fn ρ i • F n dw) -Ω 1 J F -1 n •Fn (ρ i • F n ) • ∇ w φ(w)dw
We have one easy equality :

Ω ∇ w • φ(w) 1 J F -1 n • F n ρ i • F n dw = 0
This uses the divergence theorem and the fact that φ has a compact support in Ω. The other equality requires more attention :

Ω 1 J F -1 n •Fn ρ i • F n (w) • ∇ w φ(w) = Ω 1 J F -1 n ρ i • ∇ w φ • F -1 n ( ŵ)|J F -1 n |d ŵ = ± Ω ρ i • ∇ w φ • F -1 n ( ŵ)d ŵ
We will use the following equality two times :

∀ψ ∈ D( Ω), ∇ w ψ • ρ 1 = ∂ψ ∂x ∂x ∂ x + ∂ψ ∂y ∂y ∂ x = ∂ψ ∂ x ( 29 
)
This is precisely the reason why we have defined the ρ i in the first place. The previous equality becomes :

Ω 1 J -1 n • F n ρ 1 • F n (w) • ∇ w φ(w) = Ω ∂(φ • F -1 n ) ∂ x ( ŵ)d ŵ
We conclude using the fact that φ • F -1 n has compact support in Ω. We finally have the annouced result :

∀i ∈ {1, 2}, ∇ w • ( fi • F n ρ i • F n ) = 1 J F -1 n • F n ∇ w J F -1 n • F n fi • F n • (ρ i • F n )
Using the same argument as in (29), we have

2 i=1 ∇ w • ( fi • F n ρ i • F n ) = 1 J F -1 n • F n ∇ ŵ J F -1 n fi • F n We conclude ∇ w • f = 1 J F -1 n • F n ∇ ŵ • N T f • F n
We have found our transformed flux function: f := N T • f , where

N T = (J F -1 n ) 22 -(J F -1 n ) 12 -(J F -1 n ) 21 (J F -1 n ) 11 .
In the end, we obtain the following finite volume formulation (also known as Piola transformation [START_REF] Løvgren | The Reduced Basis Element Method for Fluid Flows[END_REF]):
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 1 Figure 1: Position of the shock for various AoA and Mach numbers

  (a) Mach=0.81,AoA=0.0 • (b) Mach=0.81,AoA=1.0 • (c) Mach=0.81,AoA=2.0 • (d) Mach=0.81,AoA=3.0 • (e) Mach=0.82,AoA=0.0 • (f) Mach=0.82,AoA=1.0 • (g) Mach=0.82,AoA=2.0 • (h) Mach=0.82,AoA=3.0 • (i) Mach=0.83,AoA=0.0 • (j) Mach=0.83,AoA=1.0 • (k) Mach=0.83,AoA=2.0 • (l) Mach=0.83,AoA=3.0 •
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 2 Figure 2: The solutions of the problem for AoA={0.0 • , 1.0 • , 2.0 • , 3.0 • } and Mach={0.81, 0.82, 0.83 }
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 3 Figure 3: The x velocity component at the wing in the uncalibrated case : a few POD basis
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 4 Figure 4: 1st, 3th and 5th POD basis at the wing in the uncalibrated case for the full domain Ω
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 6 Figure 6: Reference domain Ω
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 7 Figure 7: Physical domain Ω
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 8 Figure 8: The x velocity component at the wing in the calibrated case : a few POD basis
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 9 Figure 9: 1st, 3th and 5th POD basis in the calibrated case for the left subdomain
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 10 Figure 10: One possible output of algorithm 1
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 11 Figure 11: A more realistic output of algorithm 1
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 121314 Figure 12: Truth solution for velocity component with Mach=0.81 and AoA=3.0 •
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 15 Figure 15: Reference domain Ω
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 16 Figure 16: Physical domain Ω
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 17 Figure 17: Homogeneous Neumann boundary condition is not always the correct choice
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 18 Figure 18: We want to be closer to the identity mapping on Γ1 and Γ3
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 19 Figure 19: The mapped solution for velocity component on a curved domain

Figure 21 :

 21 Figure 21: Comparaison of the outputs

Appendix

Let's formulate a problem in a general setting. Let two domains Ω and Ω and F n some smooth mapping between them. ŵ = F n (w) ⇒ w = F -1 n ( ŵ). We have some generic smooth flux defined on Ω, denoted f : Ω → R 2 . The objective is to prove that there exists a vector field f : Ω → R 2 , function of f and of F n such that

t n ∇ ŵ • (N T f ( ŵ))dtd ŵ = 0