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Lyapunov stabilization of discrete-time feedforward dynamics

Mattia Mattioni1,2, Salvatore Monaco1 and Dorothée Normand-Cyrot2

Abstract— The paper discusses stabilization of nonlinear
discrete-time dynamics in feedforward form. First it is shown
how to compute a Lyapunov function for the uncontrolled
dynamics via the computation of a suitable cross-term. Then,
stabilization is achieved in terms of u-average passivity. Several
constructive cases are analyzed.

Index Terms— Lyapunov Methods; Stability of nonlinear
systems; Algebraic/geometric methods

I. INTRODUCTION

Nonlinear discrete-time control theory has been attracting
a growing interest in the control community for its impact
into the sampled-data and, more in general, hybrid con-
texts. Although important works bridge the gap between the
continuous-time and discrete-time domains through different
methodologies (e. g., [1], [2], [3], [4], [5], [6], [7], [8],[9],
[10]), hard difficulties represent an obstacle in extending
results that are well-known and elegant in continuous time.
Those issues are essentially concerned with the generic
nonlinearity in the control variable of the dynamics and
the difficulty to settle the geometric structure underlying its
evolutions.

As a first attempt to characterize the accessibility prop-
erties of nonlinear discrete-time dynamics, the alternative
differential-difference state-space representation (or (F0,G)-
form) was introduced in [11]. In this context, a discrete-time
dynamics over Rn is described by two coupled differential-
difference equations

x+ = F(x), x+ := x+(0) (1a)
∂x+(u)

∂u
= G(x+(u),u) (1b)

where (1a) models the free evolution described by a smooth
mapping F while (1a) the variational effect of the control via
a complete vector field G(·,u); x+(u) denotes a curve in Rn

parametrized by u ∈ R. Further exploiting this differential
geometry framework, structural properties (e.g., invariance
and decoupling, [12]) have been characterized up to intro-
ducing the concept of u-average passivity [13]. This latter
notions enables to relax the necessity of a direct throughput
as the usually required by passivity of discrete-time systems.
At present, u-average passivity based controllers [14] (or
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control Lyapunov design at large) can be discussed along
these lines as exploited in the present paper with reference
to stabilization of cascade dynamics.

More precisely, asymptotic stabilization of cascade
discrete-time dynamics exhibiting an upper-triangular (or
feedforward) form is addressed. Discrete-time forwarding
design was firstly addressed in [15] via the construction
of a bounded solution to a suitable control-dependent in-
equality so overcoming the difficulty of solving the nonlin-
ear algebraic equation implicitly defining the feedback. In
[16], it was extended to discrete-time systems by exploiting
Immersion and Invariance in a quasi Lyapunov-based design
where the a-priori knowledge of a Lyapunov function for the
first-step is not required. In the present paper, we propose
a two steps procedure based on control Lyapunov design
and feedback passivation underlying the continuous-time
counterpart ([17], [18]). Considering a two block cascade
dynamics with nonlinear coupling mapping, a Lyapunov
function is firstly constructed for the uncontrolled system via
the computation of a suitable cross-term. Then, stabilization
is achieved in terms of u-average passivity. Constructive
solutions are discussed based on several specifications of the
interconnection term. As a particular case, one recovers the
case of dynamics in strict-feedforward form studied in [19]
where the construction of a cross term reduces to the one of
a coordinate transformation rendering the overall dynamics
driftless. Finally, it is shown how these cascade connected
forms intervene when representing input-delayed dynamics
through dynamical extension. In this sense, we extend control
Lyapunov design to discrete-time input delayed dynamics.
A similar approach has been developed for dynamics is-
sued from sampling [20] taking advantage of the primitive
continuous-time properties. Work is progressing regarding
multi-block cascade dynamics and analyzing the variety of
control problems involving these structures.

The paper is organized as follows: in Section II, the
existence of a cross-term is proven for uncontrolled dynamics
while in Section III it is employed for stabilizing feedforward
dynamics by means of u-average passivity. In Section IV
some cases of study related to the connection term structure
are discussed. In Section V conclusions are set.

II. LYAPUNOV CROSS TERM FOR CASCADE DYNAMICS

Consider a two block cascade dynamics of the form

zk+1 = f (zk)+ϕ(zk,ξk), ξk+1 = a(ξk). (2)

with ξ ∈ Rnξ , z ∈ Rnz ; f , ϕ and a are continuous functions
in their arguments and (z,ξ ) = (0,0) is an equilibrium state.
Assuming that:



A.1 zk+1 = f (zk) has a Globally Stable - GS - equilibrium
at the origin with continuously differentiable, positive defi-
nite, radially unbounded Lyapunov function W : Rnz → R≥0
such that W ( f (z))−W (z)≤ 0;

A.2 ξk+1 = a(ξk) has a Globally Asymptotically Stable -
GAS - and Locally Exponentially Stable -LES- equilibrium
at the origin with continuously differentiable, positive defi-
nite, radially unbounded Lyapunov function U : Rnξ → R≥0
such that U(a(ξ ))−U(ξ )< 0 for ξ 6= 0;

GS of the origin for the complete cascade cannot be a priori
concluded. For this purpose, the further assumptions below
are set so letting, in turn, to construct a Lyapunov function
V0 for the complete dynamics starting from the ones of each
subsystem; namely, we assume the following:

A.3 the function ϕ(z,ξ ) satisfies the linear growth as-
sumption; i.e. there exist K -functions1 γ1(·),γ2(·) such that

‖ϕ(z,ξ )‖ ≤ γ1(‖ξ‖)‖z‖+ γ2(‖ξ‖);

A.4 the function W (z) verifies :
• given any s(·) : Rnz →: Rnz and d(·, ·) : Rnz×Rnξ →Rnz

|W (s(z)+d(z,ξ ))−W (s(z))| ≤
∣∣∣∂W

∂ z
d(z,ξ )

∣∣∣;
• there exist c,M ∈ R>0 such that for ‖z‖> M

‖∂W
∂ z
‖‖z‖ ≤ cW (z).

By setting

V0(z,ξ ) =W (z)+U(ξ )+Ψ(z,ξ ) (3)

we aim at defining an additional continuous cross term
Ψ(z,ξ ) :Rnz×Rnξ →R to dominate the part with not definite
sign when computing the difference

∆kV0(z,ξ ) =V0(zk+1,ξk+1)−V0(zk,ξk).

It is a matter of computations to verify that

∆kV0(z,ξ ) =∆kU(ξ )+W ( f (zk))−W (zk)

+W ( f (zk)+ϕ(zk,ξk))−W ( f (zk))+∆kΨ(z,ξ )

with ∆kU(ξ )< 0 and W ( f (zk))−W (zk)≤ 0. It turns out that,
for ensuring ∆kV0(z,ξ ) ≤ 0, the cross term Ψ(z,ξ ) can be
chosen to satisfy

∆kΨ(z,ξ ) =−W ( f (zk)+ϕ(zk,ξk))+W ( f (zk)) (4)

where the right hand side represents the part in ∆kV0 whose
sign is not definite. As a consequence, Ψ(z,ξ ) is defined as

Ψ(z,ξ ) =
∞

∑
k=0

W ( f (zk)+ϕ(zk,ξk))−W ( f (zk)) (5)

along the trajectories (zk,ξk) = (z̃(k,z,ξ ), ξ̃ (k,ξ )) of (2)
starting at (z0,ξ0) = (z,ξ ). The stability of the whole system
follows from the existence of such function V0.

Theorem 2.1: Under assumptions A.1 to A.4

1A function ρ is said of class K if its continuous, strictly increasing and
ρ(0) = 0. It is said of class K∞ if it is K and it is unbounded.

(i) Ψ : Rnz ×Rnξ → R exists and is continuous;
(ii) V0 : Rnz ×Rnξ → R in (3) is positive-definite and

radially unbounded.
As a consequence the origin is a GS equilibrium of (2).

Proof: The proof is reported in Appendix.
Some constructive cases are discussed below in relation with
the connection term ϕ(z,ξ ).

A. Some particular cases

1) Strict-feedforward dynamics: Consider strict-
feedforward dynamics described by

zk+1 = Fzk +ϕ(ξk), ξk+1 = a(ξk) (6)

with ϕ(0) = 0 and F>F = I. In this case, Assumption A.1
is satisfied with W (z) = z>z and A.4 is obviated. Specifying
(4) for (6), one gets that the cross-term must satisfy

∆kΨ(z,ξ ) =−2z>k F>ϕ(ξk)−ϕ
>(ξk)ϕ(ξk). (7)

As a consequence ∆kΨ(z,ξ ) = −∆kW (z) and, according to
(5), one computes

Ψ(z,ξ ) =
∞

∑
k=0

[
z>k+1(z,ξ )zk+1(z,ξ )− z>k (z,ξ )zk(z,ξ )

]
=(z>k (z,ξ )zk(z,ξ ))∞− z>z

where (z>k (z,ξ )zk(z,ξ ))∞ = limk→∞ z>k (z,ξ )zk(z,ξ ) and
zk(z,ξ ) denotes the z-trajectory at time k starting at (z,ξ ).
According to (3), a Lyapunov function for (6) is thus

V0(z,ξ ) =U(ξ )+(z>k (z,ξ )zk(z,ξ ))∞. (8)

More in detail, in this case (6) exhibits two invariant sets: a
stable set where the evolutions are described by ξk+1 = a(ξk);
a center set where the evolutions are described by zk+1 =Fzk.
It is a matter of computations to verify that the projection
of the trajectories of (6) onto the center set are provided by
the mapping

φ(ξ ) =−
∞

∑
τ=k0

Fk0−1−τ
ϕ(ξτ) (9)

verifying

φ(ξk+1) = Fφ(ξk)+ϕ(ξk). (10)

Thus, under the coordinates change ζ = z− φ(ξ ), (6) is
transformed into the decoupled dynamics

ζk+1 =Fζk, ξk+1 = a(ξk). (11)

Hence, a Lyapunov function for the cascade is given by
Ṽ0(ζ ,ξ ) = U(ξ ) + ζ>ζ . Exploiting the strict-feedforward
form, one easily verifies that the two Lyapunov functions
Ṽ0 and Ṽ coincide up to a coordinates change.

Proposition 2.1: Let the strict-feedforward dynamics sat-
isfy Assumptions A.1. Then, the Lyapunov function
V0(z,ξ ) = Ṽ0(z+φ(ξ ),ξ ) with φ(ξ ) : Rnξ → Rnz as in (9).
As a consequence, the cross-term takes the form

Ψ(z,ξ ) = (ζ −φ(ξ ))>(ζ −φ(ξ ))− z>z. (12)



Proof: First, rewrite ζ>ζ for k0 = 0 as

(z+
∞

∑
τ=0

F−1−τ
ϕ(ξτ))

>(Fk)>Fk(z+
∞

∑
τ=0

F−1−τ
ϕ(ξτ))

= ‖zk(z,ξ )+
∞

∑
τ=0

Fk−τ−1
ϕ(ξτ)−

k−1

∑
τ=0

Fk−τ−1
ϕ(ξτ)‖2.

Because (Fk)>Fk = I and

zk(z,ξ ) = Fk−k0z+
k−1

∑
τ=k0

Fk−τ−1
ϕ(ξτ)

then, b letting k→ ∞, one gets

ζ
>

ζ = (z>k (z,ξ ))(zk(z,ξ ))∞.

Setting Ψ(z,ξ )= (z−φ(ξ ))>(z−φ(ξ ))−z>z, the cross term
verifies (7) because of the invariance equality (10).

Remark 2.1: The cross-term in (8) depends on ‖zk(z,ξ )‖2

that admits a limit for k→ ∞. This is not so in general for
the solution zk(z,ξ ), except in the particular case of nz = 1.
V0(z,ξ ) can be thus computed even if a decoupling change
of coordinates does not exist.

2) W ( f (z)) ≡W (z): Let (2) verify A.1 with Lyapunov
function W (z) such that W ( f (z))≡W (z). Then, (4) specifies
as

∆kΨ(z,ξ ) =−W ( f (zk)+ϕ(zk,ξk))+W (zk) =−∆kW (z)

so that the cross-term takes the form

Ψ(z,ξ ) =
∞

∑
k=0

[
W (zk+1)−W (zk)

]
=W∞(z,ξ )−W (z)

with W∞(z,ξ ) := limk→∞ W (zk(z,ξ )). Consequently, one gets

V0(z,ξ ) =U(ξ )+W∞(z,ξ ).

3) f (z) = z: When f (z) = z, one computes

z∞(z,ξ ) = z+ lim
N→∞

N

∑
k=0

ϕ(zk,ξk)

and thus W∞(z,ξ ) =W (z∞(z,ξ )). Accordingly, the mapping
(z,ξ ) 7→ (z∞,ξ ) defines a local coordinates change since

∂ z∞

∂ z
= I + lim

N→∞

N

∑
k=0

∂ϕ

∂ z
(zk,ξk)

and the sum vanishes at ξ = 0. When the interconnection
term ϕ(ξ ,z) does not depend on z, the above coordi-
nates change is globally defined as one recovers a strict-
feedforward form.

4) Particular structures of ϕ(ξ ): When the coupling
function ϕ(ξ ) is a finite polynomial of degree p, the cross-
term is quadratic of degree 2p; the following example
illustrates the case.

Example: Given

zk+1 = zk +
3
4

ξ
2
k , ξk+1 =

1
2

ξk.

which verifies Assumptions A.1 to A.4 with U(ξ ) = ξ 2 and
W (z) = z2, the coupling term ϕ(·) is assumed to be a finite

polynomial of degree 4. Hence, we set the cross-term in the
form of a polynomial of degree 4

Ψ(z,ξ ) = a1zξ
2 +a2ξ

4.

Accordingly, one computes a1,a2 ∈ R to solve (7) that
specialises as

a1

2
(z+

3
4

ξ
2)ξ 2 +

a2

16
ξ

4−a1zξ
2−a2ξ

4

=
1

16
ξ

4 +
1
2

ξ
2(z+

3
4

ξ
2)−ξ

4−2zξ
2.

III. STABILIZATION OF EXTENDED CASCADE DYNAMICS

In this section, the Lyapunov function V0(z,ξ ) constructed
above is exploited to show u-average passivity of the ex-
tended controlled cascade and compute the corresponding
stabilizing feedback. Without loss of generality, the problem
is set in the (F0,G) formalism (1).

A. Feedforward dynamics

Consider the two block controlled feedforward dynamics

z+ = f (z)+ϕ(z,ξ ), z+ := z+(0) (13a)
∂ z+(u)

∂u
=Gz(z+(u),ξ+(u),u) (13b)

ξ
+ =a(ξ ), ξ

+ := ξ
+(0) (13c)

∂ξ+(u)
∂u

=Bξ (ξ
+(u),u) (13d)

with uncontrolled part defined in (2) and controlled vector
fields Gz(·, ·,u) and Bξ (·,u). In a more compact way, one
writes over Rnz ×Rnξ

x+ = F(x), ,
∂x+(u)

∂u
= G(x+(u),u), x+ := x+(0)

with x = col(z,ξ ), F(x) = col( f (z) + ϕ(z,ξ ),a(ξ )) and
G(x+(u),u) = col(Gz(z+(u),Bξ (ξ

+(u)),u).

For any triplet (zk,ξk,uk), by integrating (13b)-(13d) over
[0,uk[ with initial condition (13a)-(13c), one recovers a
feedforward dynamics in the form of a map

zk+1 = f (zk)+ϕ(zk,ξk)+g(zk,ξk,uk)

ξk+1 =a(ξk)+b(ξk,uk)

where (zk+1,ξk+1) = (z+(uk),ξ
+(uk)) and

∂g(z,ξ ,u)
∂u

:= Gz(z+(u),ξ+(u),u),
∂b(ξ ,u)

∂u
:= Bξ (ξ

+(u),u).

Property 3.1: Given any C1 function S : Rnz ×Rnξ → R,
one can rewrite

S(xk+1) = S(F(xk))+
∫ uk

0
LG(·,v)S(x

+(v))dv

where LG(·,v)S(x), denotes the usual Lie derivative of the
function S along G(·,v); i.e., LG(·,v)S(x) := ∂S

∂x G(x,v). Fur-
thermore, one has∫ uk

0
LG(·,v)S(x

+(v))dv = uk

∫ 1

0
LG(·,θuk)S(x

+(θuk))dθ .



B. u-average passivity and PBC design

GAS of the equilibrium can now be achieved through u-
average passivity-based control as introduced in [14]. The
following definitions are recalled.

Definition 3.1 (u-average passivity, [14]): The dynamics
(13), with output y = H(x,u) is u-average passive with posi-
tive definite storage function S(·) if the following inequality
holds for any u ∈ R

S(x+(u))−S(x)≤
∫ u

0
H(x+(v),v)dv. (14)

Definition 3.2 (ZSD): Given (13) with output H(x,u), let
Z ⊂ Rnz ×Rnξ be the largest positively invariant set con-
tained in {x ∈ Rnz × Rnξ | H(x,0) = 0}. (13) is Zero-
State-Detectable (ZSD) if x = 0 is asymptotically stable
conditionally to Z.

Theorem 3.1: Consider (13) under A.1 to A.4, then:
• (13) is u-average passive with respect to the output

H(z,ξ ,u) = LG(·,u)V0(z,ξ ) (15)

and storage function V0(z,ξ );
• if, furthermore, (13) with output H(z,ξ ,0) is ZSD, the

feedback ud solution

ud =− 1
ud

∫ ud

0
LG(·,v)V0(z+(v),ξ+(v),v)dv (16)

achieves GAS of the equilibrium (z,ξ ) = (0,0);
• if the linear approximation of (13) is stabilizable then

(16) ensures LES of the closed-loop.
Proof: Computing ∆kV0(z,ξ ) = V0(zk+1,ξk+1) −

V0(zk,ξk) along the dynamics (13) one gets (dropping the
k-index in the right hand side)

∆kV0(z,ξ ) =U(a(ξ ))−U(ξ )+
∫ u

0
LBξ (·,v)U(ξ+(v))dv

+W ( f (z)+ϕ(z,ξ ))−W (z)+
∫ u

0
LGz(·,ξ+(v),v)W (z+(v))dv

+Ψ(F(z,ξ ))−Ψ(z,ξ )+
∫ u

0
LG(·,v)Ψ(z+(v),ξ+(v))dv.

By construction of Ψ(·) for u = 0, one concludes u-
average passivity with respect to the dummy output H(·,u) =
LG(·,u)V0 and storage function V0; i.e.

∆kV0(z,ξ )≤
∫ u

0
LG(·,v)V0(z+(v),ξ+(v))dv. (17)

Accordingly, the control u solution to (16) achieves GAS
of the closed-loop equilibrium whenever (13) is ZSD with
respect to H(·,0). LES follows from u-average passivity plus
the stabilizability of the linear approximation of (13) at the
origin.

Remark 3.1: The damping controller ud solution of the
equality (16) can equivalently be rewritten as the solution of

ud =−
∫ 1

0
LG(·,θud)V0(x+(θud))dθ . (18)

To avoid the difficult problem of solving implicit equalities,
approximate solutions can be computed. In [16], the authors

provide an explicit and exactly computable expression of the
feedback u which preserves u-average passivity and stability.
The consequent solution is bounded by a positive constant
µ ∈ R and is defined as

udap(x) =−K(x)LG(·,0)V0(x+(0))

for a suitable gain K(·)> 0.

Example: Consider the discrete-time system described by

z+ = z+ξ , ξ
+ = ξ

∂ z+(u)
∂u

=
1
2
− (ξ+(u))2,

∂ξ+(u)
∂u

= 1

or, equivalently,

zk+1 =z+ξ +u(
1
2
−ξ

2)−u2
ξ − 1

3
u3, ξk+1 = ξ +u

which verifies Assumption A.1 with W (z) = 1
2 z2 and As-

sumption A.2 with preliminary feedback u = − 2
3 ξ and

U(ξ ) = 1
2 ξ 2. The cross term Ψ(z,ξ ) = 1

2 (z+ξ + ξ 3

3 )2− 1
2 z2

verifies ∆kV0(z,ξ ) = ∆kU(ξ ) =− 4
9 ξ 2

k . Finally, the u-average
output and the consequent control are provided by

H(z,ξ ,u) = 4ξ +
3
2

z+
13
8

u+
1
2

ξ
3

u =−4
7

z− 32
21

ξ − 4
21

ξ
3.

IV. SOME CASES OF STUDY

A. The case of strict-feedforward dynamics

Consider the controlled strict-feedforward dynamics

z+ = Fz+ϕ(ξ ),
∂ z+(u)

∂u
= G(ξ+(u),u) (19a)

ξ
+ = a(ξ ),

∂ξ+(u)
∂u

= B(ξ+(u),u) (19b)

or equivalently

zk+1 =Fzk +ϕ(ξk)+g(ξk,uk), ξk+1 = a(ξk)+b(ξk,uk)

with uncontrolled part (6) and by definition

g(ξk,uk) :=
∫ uk

0
G(ξ+(v),v)dv, b(ξk,uk) :=

∫ uk

0
B(ξ+(v),v)dv

with g(·,0) = 0 and b(·,0). As already detailed, when u≡ 0,
the coordinates change ζ = z− φ(ξ ) in (9) transforms the
system into the decoupled dynamics (11). Thus, by applying
such coordinate change to (19), one gets

ζ
+ =Fζk,

∂ζ+(u)
∂u

= Gζ (ξ
+(u),u) (20a)

ξ
+ =a(ξk),

∂ξ+(u)
∂u

= B(ξ+(v),v)dv (20b)

where

Gζ (ξ
+(u),u) = G(ξ+(u),u)−LB(·,u)φ(ξ

+(u)).

As a consequence, Theorem 3.1 holds with average output

Y1(ζ ,ξ ,u) = LGζ (·,u)Ṽ0(ζ ,ξ ). (21)



Remark 4.1: When F = I and nz = 1, the coordinates
change ζ = z− φ(ξ ) makes the ζ -dynamics driftless. Ac-
cordingly, one recovers the result in [19] proposed when
assuming directly in (19), ξk+1 = uk and nz = 1.

Remark 4.2: In [16], the strict-feedforward stabilization
is set in the Immersion and Invariance (I&I) framework,
[21] when nz = 1. Assuming A.2, a stable set over which
the closed loop ξ -dynamics evolves is exhibited. The design
aims at driving the off-stable set state components ζ to zero
while ensuring boundedness of the full state trajectories.
Moreover, I&I is less demanding since the knowledge of a
Lyapunov function U(ξ ) for the ξ -system is not necessary.
On the other hand, the presented cross term approach covers
a wider range of cases.

B. Stabilization of input-delayed dynamics

The result presented in the previous section is now applied
to design u-average passivity-based controllers for discrete-
tima systems affected by input delay. Consider the nonlinear
input-delayed discrete-time dynamics

zk+1 = f (zk)+ϕ(zk,uk−1). (22)

Setting the usual extension ξk = uk−1, (22) rewrites as

zk+1 = f (zk)+ϕ(zk,ξk), ξk+1 = uk (23)

that clearly takes the form of (13) with g(z,ξ ,u) = 0 and
a(ξ ) = 0. Assuming GS the origin of the dynamics zk+1 =
f (zk) with C1 and radially unbounded Lyapunov function
W (z) and setting U(ξ ) = ξ 2, the Lyapunov function V0(z,ξ )
for (23) takes the form V0 = ξ 2 +W (z)+Ψ(z,ξ ) with cross
term solution of

∆kΨ(z,ξ )
∣∣
u≡0 =−W ( f (z)+ϕ(z,ξ ))+W ( f (z)).

Under the assumptions in Theorem 3.1, one computes the
output mapping Hdel(z,ξ ) =

∂V0
∂ξ

(z,ξ ) with respect to which
(23) is u-average passive so satisfying the inequality

V0( f (z)+ϕ(z,ξ ),u)−V0(z,ξ )≤
∫ u

0

∂V0

∂ξ
( f (z)+ϕ(z,ξ ),v)dv.

Accordingly, the control udel solution of the equality

udel =−
1

udel

∫ udel

0

∂V0

∂ξ
( f (z)+ϕ(z,ξ ),v)dv

stabilizes in closed-loop provided the ZSD property holds.
This comment can be generalized to multiple input delays

and to a z-dynamics explicitly depending on u as well. This
is of peculiar interest when the problem of stabilizing a
continuous-time time-delay system is set in the sampled-data
context and reformulated as a discrete-time stabilizing one
over an extended state space [22].

V. CONCLUSIONS

In this paper, we have addressed the problem of stabilizing
discrete-time dynamics in feedforward form via Lyapunov-
based and passivity-based methodologies. The study is de-
tailed for the case of two interconnected dynamics by con-
structing a Lyapunov function via the definition of suitable

cross-term. Work is progressing for a deeper understanding
of the more general control problems that can be reconduced
to the one here presented for cascade structures.
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APPENDIX

We begin the proof by showing (i). To this purpose, since
the equilibrium of ξk+1 = a(ξk) is LES, we can write that for
a real constant |α|< 1 and function γ(·)∈K , then ξ̃ (s,ξ )≤
γ(‖ξ‖)|α|s for any s≥ 0.

From Assumption A.4 and this latter property, we write

W ( f (zk)+ϕ(zk,ξk))−W (zk)≤ (24)

W ( f (zk)+ϕ(zk,ξk))−W ( f (zk))≤
∣∣∂W

∂ z
ϕ(zk,ξk)

∣∣≤
‖∂W

∂ z
‖(γ(‖ξ‖))|α|k + γ(‖ξ‖))|α|k‖zk‖)≤ cγ(‖ξ‖)|α|kW (zk)

Accordingly, W (z) is not decreasing along the trajectories of
(2) and ‖zk‖ and ‖ ∂W

∂ z (zk)‖ are bounded on [0,∞) (because
W (z) is radially unbounded). Consequently, one can write

W ( f (zk)+ϕ(zk,ξk))−W ( f (zk))≤ γ1(‖(z,ξ )‖)αk (25)

so getting that W ( f (zk)+ϕ(zk,ξk))−W ( f (zk)) is summable
over [0,∞) and (5) exists and is bounded for all (z,ξ ).

Continuity of (5) comes from the fact that it is the
composition and the sum of continuous-function on [0,∞).

As far as (ii) is concerned, positive definiteness of V0 is
obtained by exploiting the radial unboundedness of W (z).

W (zk) =W (z)+
k−1

∑
t=0

[
W ( f (zt)+ϕ(zt ,ξt))−W (zt)

]
=

W (z)+
k−1

∑
t=0

[
W ( f (zt)+ϕ(zt ,ξt))−W ( f (zt))

]
+

k−1

∑
t=0

[
W ( f (zt))−W (zt)

]
where the term W ( f (zt))−W (zt) is non-increasing for any
t ≥ 0. By substracting both sides of the last equality by
W ( f (zt))−W (zt) and taking the limit for k→ ∞ one gets

W∞(z)−
∞

∑
t=0

[
W ( f (zt))−W (zt)

]
=

W (z)+
∞

∑
t=0

[
W ( f (zt)+ϕ(zt ,ξt))−W ( f (zt))

]
where W∞(z)= limk→∞ W (zk) and Ψ(z,ξ )=∑

∞
t=0
[
W ( f (zt)+

ϕ(zt ,ξt))−W ( f (zt))
]
. Hence, one gets that V0(z,ξ ) rewrites

as

V0(z,ξ ) =W∞(z)−
∞

∑
t=0

[
W ( f (zt))−W (zt)

]
+U(ξ )≥ 0.

(26)

From the radially unboundedness of W and U one has
that if V0(z,ξ ) = 0 then ξ = 0. By construction, V0(z,0) =
W (z) so concluding that V0(z,ξ ) = 0 implies (z,ξ ) = (0,0).
According to the last inequality this proves that V0 is positive-
definite.

To prove its radial unboundedness we first point out that
from (26) it follows that V0(z,ξ )→ ∞ as ‖ξ‖ → ∞ for any
z. Hence, one has to show that

lim
‖z‖→+∞

[
W∞(z)−

∞

∑
t=0

(
W ( f (zt))−W (zt)

)]
=+∞. (27)

This will be achieved by lowerbounding (27) by means of a
radially unbounded function deduced from W (z). For, fix ξ

so that γ(‖ξ‖) in (24) becomes a constant C. Accordingly,
for any k ≥ 0 we write

|W ( f (zk)+ϕ(zk,ξk))−W ( f (zk))| ≤

‖∂W
∂ z
‖(C|α|k +C|α|k‖zk‖).

It follows that

W ( f (zk)+ϕ(zk,ξk))−W ( f (zk))≥
−|W ( f (zk)+ϕ(zk,ξk))−W ( f (zk))| ≥

≥ −2‖∂W
∂ z
‖C|α|k‖zk‖−C(1−‖zk‖)‖

∂W
∂ z
‖|α|k.

When 1−‖zk‖ > 0 the term −C(1−‖zk‖) ∂W
∂ z ‖|α|

k can be
discarded without affecting the inequality. On the other hand,
when 1−‖zk‖ ≤ 0, it is bounded by K2|α|k so that

W ( f (zk)+ϕ(zk,ξk))−W ( f (zk))≥

−2‖∂W
∂ z
‖C|α|k‖zk‖−K2|α|k.

Using A.4 we obtain

W ( f (zk)+ϕ(zk,ξk))−W (zk)≥ (28){
−K|α|kW (zk)−K2|α|k +W ( f (zk))−W (zk), ‖z‖> r
−K1|α|kW (zk)−K2|α|k +W ( f (zk))−W (zk), ‖z‖ ≤ r

with r ≥ 1 and real K,K1,K2.

‖z‖> r and k ∈ [0, t)

W (zk)≥ φ(k,0)W (z)+
k−1

∑
t=0

φ(k−1, t)
[
−K2|α1|t+

W ( f (zt))−W (zt)
]

‖z‖ ≤ r and k ∈ [0, t)

W (zk)≥W (z)+
k−1

∑
t=0

[
−K1|α|t −K2|α|t +W ( f (zt))−W (zt)

]
with φ(k, t) =∏

k
j=t(1−K|α| j). Accordingly, by mixing both

the bounds, one gets

W (zk)≥ φ(k,0)W (z)+
k−1

∑
t=0

(−K1|α|t −K2|α|t +W ( f (zt))−W (zt))

so that for all k ≥ 0, φ(k,0) admits a lower bound K3 and

W (zk)≥ K3W (z)+
k−1

∑
t=0

[
W ( f (zt))−W (zt)

]
+ rk

with rk := ∑
k−1
t=0

[
−K1|α|t −K2|α|t

]
which converges to a

bounded solution r∗ over [0,∞). So, taking the limit when
k→ ∞ one obtains

W∞(z,ξ )−
k−1

∑
t=0

[
W ( f (zt))−W (zt)

]
≥ K3W (z)+ r∗.

It is clear that r∗ and K3 may depend on ξ but are indepen-
dent of z so that (27) holds.

Accordingly, by construction V0(zk+1,ξk+1)−V0(zk,ξk))=
W ( f (zk))−W (zk)+U(a(ξk))−U(ξk)≤ 0 so concluding the
proof.


