

Impact of pasteurization and homogenization on the digestion of human milk: an in vivo study in the preterm infant

SAMIRA DE OLIVEIRA¹, OLIVIA MÉNARD¹, AMANDINE BELLANGER^{2,3}, PATRICK PLADYS^{2,3}, YANN LE GOUAR¹, GWENAËLE HENRY¹, EMELYNE DIRSON², FLORENCE ROUSSEAU¹, FRÉDERIC CARRIÈRE⁴, DIDIER DUPONT¹, AMÉLIE DEGLAIRE^{1,} CLAIRE BOURLIEU¹

Context

HOMOGENIZED

Ensuring adequate growth of preterm newborns remains a challenge. When breastfeeding not possible -> pasteurized human milk from milk banks is preferentially administered. Holder pasteurization (62.5°; 30 min) is applied for sanitary reasons but may reduce fat absorption through the inactivation of milk endogenous lipases. Conversely, homogenization of Holder-pasteurized human milk (PHM) may improve fat absorption and weight gain.

Pasteurized +

Homogenized HM

Objective

Impact on digestive kinetics?

→ To investigate the impact of the homogenization and pasteurization of human milk on its gastric digestion in preterm infants

Materials & Methods

Results

(Time in min)

(Thomaz et al., 1999; Rayol et al., 1993; Martinez et al., 1987)

Clinical Trials.gov NCT02112331 **Experimental design**

©Thierry Pasquet

Randomized controlled trial

- Hospitalized tube-fed preterm infants (GA < 32 wks)</p>
- > 6-day experimental period; 2 independent groups

Pasteurized 🔆 💸

weight at first day 1.73 ± 0.48 kg

the two types of milk

GROUP B

HM from anonymous donor

→ The same pool from one donor was used for

n=8, GA 29.5 ± 1.5 wk, age at first day 32 ± 21 d, Body

Indirect homogenization by

ultrasonication

→ 595 W, 3 periods of 5 min interrupted

by 30s of pause

GROUP A HM from their own mother **Pasteurized** HM (PHM)

→ 1 pool aliquoted in 6 bottles → collected < 24h before feeding n=12, GA 30.0 \pm 1.1 wk, age at first day 27 \pm 12 d, Body

weight at first day 1.83 ± 0.41 kg Holder pasteurization

> 2 test meal/day, for each test meal, two gastric effluent collections: before the meal and 35, 60 or 90 min after the ingestion start

Multi-scale characterization of HM and digested samples

Cation exchange

chromatography

Biochemical composition: kinetics of lipolysis and proteolysis

analyzer chromatography Instantaneous lipolysis level:

→ % of free fatty acids vs. total acyl chains present at a given time

Lipolytic activity in gastric aspirates:

→ Titration of butyric acid released from tributyrin at pH 4.5 and 37 °C (Gargouri et al., 1986)

% of intact protein remaining at a given time: \rightarrow Lactoferrin, α -lactalbumin, serum albumin, β -casein (data not shown here)

Laser light microscopy scattering

Fluorescent probes:

Particle size distribution

Structural disintegration

→ Proteins (FastGreen®), apolar lipids (Lipidtox®) and polar lipids (Rhodamine-PE®)

Lipolytic activity

→ Pre-lipolysis occurred

prior to pasteurization

in all milks and groups

ranging between 2.2-

4.0%. The global gastric

detected in fasted state

→ Postprandial lipolytic

activity increased with

time and was higher

after administration of

U/mL/kg at pH 4.5.

activity

17.5±2.9

lipolytic

averaged

→ Results were expressed as means ± SD P < 0.001 (***); P < 0.01 (**); P < 0.05 (*);P > 0.05 (NS).

GROUP A

Pasteurization affected the emulsion disintegration of HM

Apolar lipids Amphiphiles Proteins

10 μm 10 μm HM 35 60 90

GROUP B

Homogenization affected the initial structure and the emulsion disintegration of HM

Six-fold increase in the specific surface area after homogenization: from $4.1 \pm 1.2 \text{ m}^2/\text{g}$ to $25.5 \pm 3.8 \text{ m}^2/\text{g}$ of fat

10 μm 10 μm 35 HM 60 90

(Time in min) → The lipid fraction kept its initial structure all over the gastric digestion (native globules vs. blend of droplets)

 \rightarrow Past HM and P+Homog HM (n = 4 pools): same macronutrients composition, same pre-lipolysis degree (4.4 ± 1.0%) but different structure

- → Hormonal feedback triggered by higher lipolysis level
- → Difference of colloidal behavior

But did not impact gastric lipolysis

Homogenization increased gastric lipolysis

Homogenization reduced the meal emptying rate

Meal: *** Time: *** Meal * Time: NS (PHM: n=36 points; P+Homog: n=32 points) T ½, half-emptying of the ingested meal.

Conclusion

- > The initial structure of HM modulated the hydrolysis kinetics (lipolysis and proteolysis) and the emulsion disintegration during the gastric digestion in preterm infants
- > Overall, in vivo data gathered here are crucial for a better understanding of milk neonatal digestion and help supporting the nutritional management of preterm infants.

- STLO, Agrocampus Ouest, INRA, Rennes, France 2 CHU Rennes, Pediatrics department, France
- 3 University of Rennes 1, Faculty of Medicine, France
- 4 CNRS, Aix Marseille University, UMR7282 EIPL, France
- www6.rennes.inra.fr/stlo * claire.bourlieu-lacanal@inra.fr Ref: (De Oliveira et al. 2017. JACN; De Oliveira et al. 2017. Clinical Nutrition ESPEN)

