

Impact of pasteurization and homogenization on the digestion of human milk: an in vivo study in the preterm infant

Samira Cássia de Oliveira, Olivia Ménard, Amandine Bellanger, Patrick Pladys, Yann Le Gouar, Gwenaele Henry, Emelyne Dirson, Florence Rousseau, Frédéric Carrière, Didier Dupont, et al.

▶ To cite this version:

Samira Cássia de Oliveira, Olivia Ménard, Amandine Bellanger, Patrick Pladys, Yann Le Gouar, et al.. Impact of pasteurization and homogenization on the digestion of human milk: an in vivo study in the preterm infant. 15. Euro Fed Lipid Congress Oil, Fats and Lipids: New Technologies and Applications for a Healthier Life, Aug 2017, Uppsala, Sweden. , 2017. hal-01583187

HAL Id: hal-01583187 https://hal.science/hal-01583187

Submitted on 6 Sep 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License

Impact of pasteurization and homogenization on the digestion of human milk: an in vivo study in the preterm infant

SAMIRA DE OLIVEIRA¹, OLIVIA MÉNARD¹, AMANDINE BELLANGER^{2,3}, PATRICK PLADYS^{2,3}, YANN LE GOUAR¹, GWENAËLE HENRY¹, EMELYNE DIRSON², FLORENCE ROUSSEAU¹, FRÉDERIC CARRIÈRE⁴, DIDIER DUPONT¹, AMÉLIE DEGLAIRE^{1,} CLAIRE BOURLIEU¹

Context

HOMOGENIZED

HM

Ensuring adequate growth of preterm newborns remains a challenge. When breastfeeding not possible \rightarrow pasteurized human milk from milk banks is preferentially administered. Holder pasteurization (62.5°; 30 min) is applied for sanitary reasons but may reduce fat absorption through the inactivation of milk endogenous lipases. Conversely, homogenization of Holder-pasteurized human milk (PHM) may improve fat absorption and weight gain.

Objective

 \rightarrow To investigate the impact of the homogenization and pasteurization of human milk on its gastric digestion in preterm infants

(Thomaz et al., 1999; Rayol et al., 1993; Martinez et al., 1987)

digestive kinetics?

ClinicalTrials.gov NCT02112331 **Experimental design** **Materials & Methods**

Multi-scale characterization of HM and digested samples

- Randomized controlled trial
- Hospitalized tube-fed preterm infants (GA < 32 wks)</p>

> 6-day experimental period; 2 independent groups

Biochemical composition: kinetics of lipolysis and proteolysis

Structural disintegration

Human Milk Gas and thin layer Titrimetry SDS-Page + densitometry; analyzer chromatography Cation exchange chromatography Instantaneous lipolysis level:

 \rightarrow % of free fatty acids vs. total acyl chains present at a given time

Lipolytic activity in gastric aspirates:

 \rightarrow Titration of butyric acid released from tributyrin at pH 4.5

and 37 °C (Gargouri et al., 1986)

% of intact protein remaining at a given time:

 \rightarrow Lactoferrin, α-lactalbumin, serum albumin, β-casein (data not shown here)

Confocal Laser light microscopy scattering Particle size distribution

Fluorescent probes:

 \rightarrow Proteins (FastGreen[®]), apolar lipids (Lipidtox[®]) and polar lipids (Rhodamine-PE[®])

 \rightarrow Results were expressed as means ± SD P < 0.001 (***); P < 0.01 (**); P < 0.05 (*);P > 0.05 (NS).

GROUP A

Pasteurization affected the emulsion disintegration of HM

Particle size distribution

milks

8

Raw HM -

Results

But did not impact gastric lipolysis

Lipolytic activity

 \rightarrow Pre-lipolysis occurred

activity

17.5±2.9

Homogenization affected the initial structure and the emulsion disintegration of HM

 $4.1 \pm 1.2 \text{ m}^2/\text{g}$ to $25.5 \pm 3.8 \text{ m}^2/\text{g}$ of fat \rightarrow The lipid fraction kept its initial structure all over the gastric digestion (native globules vs. blend of droplets)

> \rightarrow Past HM and P+Homog HM (n = 4 pools): same macronutrients composition, same pre-lipolysis degree (4.4 ± 1.0%) but different structure

> > \rightarrow Hormonal feedback triggered by higher lipolysis level

 \rightarrow Difference of colloidal behavior

Conclusion

> The initial structure of HM modulated the hydrolysis kinetics (lipolysis and proteolysis) and the emulsion disintegration during the gastric digestion in preterm infants

> Overall, *in vivo* data gathered here are crucial for a better understanding of milk neonatal digestion and help supporting the nutritional management of preterm infants.

STLO, Agrocampus Ouest, INRA, Rennes, France STLO 2 CHU Rennes, Pediatrics department, France 3 University of Rennes 1, Faculty of Medicine, France 4 CNRS, Aix Marseille University, UMR7282 EIPL, France www6.rennes.inra.fr/stlo * claire.bourlieu-lacanal@inra.fr Ref: (De Oliveira et al. 2017. JACN; De Oliveira et al. 2017. Clinical Nutrition ESPEN)

