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Dorin Maxim
University of Lorraine, LORIA/INRIA, France

Abstract—In this paper we present a probabilistic response
time analysis for mixed criticality real-time systems running
on a single processor according to a fixed priority pre-emptive
scheduling policy. The analysis extends the existing state of the
art probabilistic analysis to the case of mixed criticalities, taking
into account both the level of assurance at which each task needs
to be certified, as well as the possible criticalities at which the
system may execute. The proposed analysis is formally presented
as well as explained with the aid of an illustrative example.

I. INTRODUCTION

In this paper we propose a probabilistic analysis for Mixed
Criticality Real-Time Systems (MCRTS). A MCRTS incor-
porates several functionalities of different criticalities on the
same architecture. The highest criticality functionalities are
usually related to safety critical applications and need to fulfill
strict certification requirements. It is important to note that
lower critical functionalities are still relevant for the good
functioning of the system [1] and this is a key observation
for our approach.

We introduce a probabilistic mixed criticality model where
every task is of a certain criticality and the worst-case execu-
tion time (WCET) of a task is a discrete random variable. The
set of possible execution times of every task are grouped into
sets of WCETs of different criticalities depending on their
probability of occurrence. Larger execution time values are
less likely to occur, but if they do occur they may be indicative
of an erroneous event and so the criticality of the system
changed to a higher level. When the citicality of the system
is high, the guarantees required from lesser criticality tasks
may be decreased so that higher criticality tasks may fulfill
their requirements. The main difference between our work and
the state of the art is the fact that in our work tasks are not
evicted from the system, but instead the timing constraints
imposed on them are gradually decreased (with the increase
of the systems criticality) so that they still provide a minimal
quality of service.

The first work dealing with real-time scheduling for mixed
criticality systems is that of Vestal [2]. The model presented in
[2] is based on the conjecture that the higher is the degree of
criticality at which a task is designed, the more conservative is
its worst-case execution time (WCET). This means that tasks
have several WCET estimates, one per level of criticality of
the system, and a mixed criticalty system is correct if every
task respects its timing guarantees when all the WCET values
that can impact on the schedulability of that task do not exceed

their WCET estimates at the level of criticality of that task.
Since then, many papers dealing with the mixed criticality
scheduling problem have been published. For more details on
the mixed criticality scheduling problem a complete review
can be found in [3]. Further-on we present related work from
the Probabilistic Analysis domain and work that is at the
intersection of mixed criticality and probabilistic analysis.

Probabilistic timing analysis models task parameters as ran-
dom variables (e.g. the task’s WCET, Minimum Inter-arrival
Time (MIT)). For WCET analysis multiple paths have been
explored, starting in 1995 when [4] introduced an analysis
for tasks that have periodic releases but variable execution re-
quirements. The algorithm called Probabilistic Time Demand
Analysis (PTDA) is based on a bound of the processor demand
of higher priority tasks and hence it is highly pessimistic. The
next step towards an exact probabilistic analysis was made
by [5] with the introduction of the Stochastic Time Demand
Analysis (STDA) for tasks that have probabilistic execution
times, computing a lower bound on the probability that jobs
of each task will meet their respective deadlines. Later on, [6]
refined STDA into an exact analysis for real-time systems that
have random execution times, represented as general random
variables. In this work we extend the probabilistic response
time analysis of [6] to the case of MCRTS.

Existing probabilistic analyses for real-time systems are not
well suited for the analyses of MCRTSs, as they do not take
into account the possible criticalities of the system and the
fact that permitted failure proabilities might change when the
criticality of the system changes.

A first step towards a probabilistic analysis for MCRTSs is
[7], where the authors consider a dual criticality model con-
sisting of implicit-deadline sporadic independent tasks where
a probability that no job exceeds its low criticality WCET
estimate is assigned to every high criticality task. In this
model a system is probabilistically schedulable in the strong
sense if the probability of missing a deadline (for any task)
does not exceed a given threshold, while it is probabilistically
schedulable in the weak sense if the set of high criticality tasks
does not exceed their respective deadlines. A schdeulability
analysis of an EDF-based (earliest deadline first) algorithm
is proposed. Using this analysis a system that is deemed
unschedulable using classical mixed criticality analysis can
be deemed schedulable in a probabilistic sense. In [8] the
authors introduce the notion of probabilistic C-Space and give
some intuitions concerning the way it can be used for the



probabilistic sensitivity analysis of a mixed criticality system.
Our approach has some similarities with the analysis of

[7] in the fact that it extends the probabilistic analysis to the
case of mixed criticalities, however the analysis we propose is
applicable for fixed priority pre-emptive systems (rather then
EDF) and for systems with more than two criticality levels.
Another way in which our contribution differs from that of
[7] is that in our model jobs are not dropped to increase the
schedulability of other tasks, but all tasks need to be verified to
be within certain thresholds of failure probabilities depending
on their criticalities and the criticality of the system.

Organization of the paper: We continue the paper with the
description of the system model in Section II and the problem
description in Section III. Then in Section IV we present the
main contribution of our work, which is a theoretical response
time analysis for mixed criticality real-time systems. To show
how the analysis can be applied on a task-set we present
an ilustrative example in Section V. Finally we conclude the
paper in Section VI.

II. MODEL AND TERMINOLOGY

We model the mixed criticality real-time system to be
analysed as a set of tasks Γ = {τ1, . . . , τn} sorted in an
increasing order of priority, from the lowest priority (τ1) to
the highest priority (τn), scheduled according to a pre-emptive
fixed priority policy on a single processor.

In adition to the set of tasks the system is also characterized
by a set of criticalities Ω = {L1, . . . , Lm}. We consider Ω
to be sorted from lowest criticality L1 to highest criticality
Lm. To every criticality level a maximum-probability of fail-
ure threshold is attributed by a deciding entity (e.g. system
designer, certification authority). We denote this threshold by
pLi for criticality Li. Intuitively a higher criticality implies a
more stringent probability threshold.

Each task τi is characterized by a tuple τi = (χi, Ci, Ti, Di)
such that χi ∈ Ω represents its criticality, Ci1 represents its
probabilistic worst-case execution time (pWCET), Ti repre-
sents its minimum inter arrival time and Di represents its
relative deadline. The criticality of each task is defined by
the system designer at design-time.

The pWCET Ci of a task τi is given as a discrete random
variable with a sample space SCi and a probability mass
function (pmf) pCi where pCi(c) is equal to P{Ci = c}, the
probability that Ci is equal to c. The probability mass function
of Ci is represented as:

pCi =

(
Ci,1 . . . Ci,|SCi |
P{Ci = Ci,1} . . . P{Ci = Ci,|SCi |}

)
(1)

We consider pWCET distributions to be known and their
calculation is beyond the scope of this paper. The interested
reader may refer to [9] and [10] for further reading on this
topic.

Two random variables X and Y are (probabilistically)
independent if they describe two events such that the outcome

1Throughout the paper we use calligraphic typeface to denote random
variables

of one event does not have any impact on the outcome of
the other. As stated in [9], since we consider probabilistic
worst-case values (for WCETs), the random variables are
(probabilistically) independent.

Let cdf(c) = P{Ci ≤ c} be the cumulative distribution
function of the pWCET random variable. A WCET outcome
Ci,k of the pWCET Ci is of criticality Lj if and only if the
probability that the pWCET exceeds Ci,k (P{Ci > Ci,k} =
1−cdf(Ci,k)) does not exceed the probability failure threshold
pLj . The subset of WCETs of criticality Lj of task τi is
denoted by SLj

Ci and is given by the following Equations:

S
Lj

Ci = {Ci,k ∈ SCi/pLj+1 < 1− cdf(Ci,k) ≤ pLj} (2)

if 1 ≤ j < m and
SLm

Ci = {Ci,k ∈ SCi/1− cdf(Ci,k) ≤ pLm}. (3)

Intuitively, Equations 2 and 3 describe the fact that the pWCET
distribution of a task can be split into m pieces (i.e. partial
distributions), one piece for each criticality level. One or
several such partial distributions may be void. The boundary
of each piece is given by the minimal and maximal WCET
values that the task can exhibit in a certain criticality level
of the system, i.e. larger values would push the system into a
higher criticality mode.

The representative WCET of a task τi in criticality level
Lj , noted Ci(Lj), is the largest WCET outcome of criticality
less than or equal to Lj . The representative WCET Ci(Lj)
is equal to zero if all the WCET outcomes of task τi are of
higher criticality than Lj .

We define the criticality mode of the system2 as the smallest
criticality such that no task τi executes for more than its
representative WCET estimate at this level of criticality.

We note by:

p≤Lh

Ci =

(
Ci,1 . . . Ci(Lh)
pCi(Ci,1) . . . pCi(Ci(Lh))

)
(4)

to be the partial mass function of pCi restricted to WCET
outcomes of criticality less than or equal to the criticality Lh.
If the set of WCET oucomes of critiality less than or equal to
Lh is empty, then p≤Lh

Ci (r) = 0,∀r ∈ N.
Each task τi generates an infinite number of jobs noted τi,k.

All jobs are assumed to be independent of other jobs of the
same task and those of other tasks. The execution time of a
job τi,k is denoted by ci,k.We use hp(i) to be the indexes of
tasks of higher or equal priority than τi.

The response time analysis for probabilistic real-time sys-
tems makes use of the convolution operator, which is a way
of summing up two independent random variables and it is
formally defined as follows:

Definition 1. The probability mass function pZ of the sum
Z of two (probabilistically) independent random variables
X and Y is the convolution pX ⊗ pY where P{Z = z} =∑k=+∞

k=−∞ P{X = k}P{Y = z − k}.

2In the rest of the paper, criticality level denoted by L ∈ {L1, . . . , Lm}
is used for tasks’ criticality, and criticality mode is used for system criticality



A probabilistic analysis for (non-mixed criticality) real-time
tasks where the WCET is a discrete random variable has been
proposed in [6]. In this analysis, the worst-case response time
probability mass function pRi

of task τi is computed using
the following equation (for more details please refer to [6]):

pRi
= Bi ⊗ pCi ⊗ Ii (5)

where Bi =
(⊗

j∈hp(i) pCj

)
is the accumulated execution

time requirements of all higher priority tasks that are instan-
tiated at the same time as the task under analysis and Ii is
the iterative convolution of jobs that may preempt the task
under analysis. Note that Equation 5 is computed as if jobs
would still continue to execute past their deadlines since this
is an upper-bound over the case when jobs are stopped at
their deadline. The exact analysis for the case when jobs are
dropped at deadline is still an open problem, but the no-drop
analysis is a tight over-approximation for the drop analysis and
its tightness is related to the probabilities of missing deadlines
as this is the difference between the two analyses.

III. PROBLEM DESCRIPTION

In this paper we are interested in the pre-emptive fixed
priority scheduling problem of probabilistic mixed criticality
real-time systems running on a single processor. Under this
mixed criticality probabilistic model introduced in Section II
a schedule is considered feasible if and only if: when the
criticality mode of the system is not larger than the criticality
of a task, each task respects the probability of failure threshold
specified for its criticality level. The idea is that all the tasks
are certified at their own criticality level, but the lowest criti-
cality tasks should not disturb the highest criticality ones when
the criticality mode of the system increases. That is, when the
criticality of the system increases, lower criticality tasks are
no longer constrained to respect a stringent probability failure
threshold, but instead the threshold is replaced with a more
relaxed one so to ensure minimal quality of service while not
hindering the timely execution of higher criticality tasks.

We consider that a task exhibits a failure if one of its jobs
misses it deadline, consequently, the probability failure of a
task is equal to its probability of deadline miss. In this work
we consider that: (1) if a job exceeds the maximum WCET
estimate corresponding to its criticality level it is not stopped
and (2) a job is evacuated from the system if and only if it
misses its deadline. The problem addressed in this paper is
the computation of tasks’ deadline miss probabilities (DMP)
in order to verify that failure thresholds are respected and the
system can be declared schedulable. To this extend we propose
an analysis to compute response time distributions for tasks.
Out of these response time distributions we can then extract
deadline miss probabilities.

IV. PMC SCHEDULABILITY ANALYSIS

A. Response Time Analysis
In this section we introduce our probabilistic analysis for

MCRTS, which we will denote by PMC (Probabilistic Mixed
Criticality) in the rest of the paper.

The Probabilistic Mixed Criticality (PMC) response time
analysis computes the partial probability mass functions pLh

Ri

of the worst-case response time of task τi when the criticality
mode of the system is Lh.

Given pRi
, the probability mass function of Ri, one can

decompose the worst-case response time probability mass
function into partial functions as follows,

pRi
=

 pL1

Ri
. . . pLm

Ri


where

pLh

Ri
=

(
r

. . . pLh

Ri
(r) . . .

)
is a partial function of pRi

with pLh

Ri
(r) is the probability that

the worst-case response time of τi is equal to r when,
1) none of the jobs that are active in the interval [0, r[

executes more than Ci(Lh), i.e. their respective repre-
sentative WCET in the criticality mode Lh and,

2) if h > 1, there exists at least an active job in the
interval [0, r[ that executes more than Ci(Lh−1), i.e. its
representative WCET at the criticality mode Lh−1.

More formally,

pLh

Ri
(r) = P{Ri = r and ∀τj,k ∈ [0, r[, cj,k ≤ Cj(Lh)

and if h > 1,∃τj,k ∈ [0, r[ s.t. cj,k > Cj(Lh−1)}.

= P{Ri = r and L = Lh}
with L the criticality mode of the system

Note that, ∑
Lh∈L

∑
r∈SLh

Ri

pLh

Ri
(r) = 1

where SLh

Ri
is the subset of outcomes of Ri in the case where

the criticality mode of the system is Lh.
We emphasize that this partitioning of the response time

distribution of task τi according to the different criticality
modes is not a simple slicing of the response time distribution
into m parts, but there can exist overlapping among these parts
and each part is computed by the analysis. The coalescing of
all the parts forms the complete response time distribution
of the task regardless of the criticality mode of the system.
The coalesced distribution is also the result returned by the
analysis of [6] which does not take into account the different
criticalities of tasks nor of the system. The computation of
the partial response-times probability mass functions pLh

Ri
of a

task τi is formalised in Algorithm 1. In step 1 the algorithm
computes for every criticality Lh the partial response time
probability mass function when the criticaliy mode is less than
or equal to Lh, for each Lh. Then in step 2 the partial response
time probability mass functions for each criticality mode are
computed. Steps 1 and 2 are detailed below.
Step 1: Compute the partial probability mass function p≤Lh

Ri

using Equation 6 below:

p≤Lh

Ri
=

⊗
j∈hp(i)

p≤Lh

Cj ⊗ p≤Lh

Ci ⊗ I≤Lh

i (6)



Algorithm 1 Computes for task τi the distributions
pLh

Ri
,∀Lh ∈ Ω

Require: τi, hp(i), {τj ,∀j ∈ hp(i)},Ω
Ensure: pLh

Ri
,∀Lh ∈ Ω

h← |Ω|
while h 6= 0 do

Compute p≤Lh

Ri
using equation 6 (see step 1)

h← h− 1
end while
pL1

Ri
= p≤L1

Ri

h← m
while h 6= 1 do

Compute pLh

Ri
using equation 7 (see step 2)

h← h− 1
end while

Equation 6 is similar to Equation 5 where partial probability
mass functions p≤Lh

Ci are used rather than the complete prob-
ability mass functions.
Step 2: Compute the partial probability mass function pLh

Ri
.

In this step we compute pLh

Ri
the partial probability mass

function of pRi when the criticality mode is equal to Lh using
equation 7:

pLh

Ri
=

{
p≤L1

Ri
if h = 1

p≤Lh

Ri
	 p≤Lh−1

Ri
if h > 1

(7)

where f 	 g(x) = f(x)− g(x) ∀x ∈ N.
Note that the 	 operator is well defined in this case, as the

(partial)distribution p≤Lh−1

Ri
to be subtracted is a subset of the

(partial)distribution p≤Lh

Ri
, i.e. the sample space of p≤Lh−1

Ri
is

included in the sample space of p≤Lh

Ri
as a result of the partial

distributions used in Step 1. Below is an example of how this
operators works:(

1 2 3 4
0.4 0.2 0.1 0.1

)
	
(

1 2 3
0.4 0.1 0.1

)
=

(
2 4

0.1 0.1

)
Proposition 1. The probability that ”the worst-case response
time of task τi is equal to r and the criticality mode of the
system is equal to Lh” is equal to p if and only if pLh

Ri
(r) = p

where pLh

Ri
(r) is computed using Equation 7.

Proof. By definition, p≤Lh

Ri
(r) is the probability that the re-

sponse time of task τi is equal to r and the criticality of the
system is less than or equal to Lh. This probability is equal to
the sum of the probabilities that the response time is equal to
r computed in every criticality mode of the system less than
or equal to Lh, thus

p≤Lh

Ri
(r) =

∑
j=1...h

P{Ri = r and L = Lj}

and similarly,

p
≤Lh−1

Ri
(r) =

∑
j=1...h−1

P{Ri = r and L = Lj}

The partial distribution p≤Lh−1

Ri
(r) is a subset of p≤Lh

Ri
(r).

Using Equation 7, we have pLh

Ri
(r) = p≤Lh

Ri
(r) −

p
≤Lh−1

Ri
(r) =

∑
j=1...h

P{Ri = r and L = Lj} −
∑

j=1...h−1

P{Ri =

r and L = Lj} and thus,

pLh

Ri
(r) = P{Ri = r and L = Lh}

that is equal to the probability that the worst-case response
time of task τi is equal to r and the criticality mode of the
system is equal to Lh.

B. PMC Sufficient Schedulability Test

Along with the PMC response-time analysis presented in the
previous section we also propose a sufficient schedulability test
which we present in this section. In the PMC feasibility test,
for each criticality Lh, the deadline miss probability of a task
τi needs to be less than or equal to the tasks’ allowed failure
probability threshold in criticality mode Lh of the system.

Definition 2. (Task Deadline Miss Probability Per Criticality
Mode). The deadline miss probability of a task τi in mode
L, noted DMPL

i , is the probability that task τi misses its
deadline when the system is in criticality mode L. This
probability is equal to:

DMPL
i = P{RL

i > Di} (8)

where RL
i , as computed using Equation 7, is the random

variable Ri restricted to outcomes in the case of a criticality
mode of the system equal to L.

The tasks deadline miss probability constraint to a certain
criticlity mode Lh can be extracted from the partial response
time mass functions of the task in the respective mode, using
Equation 9 below.

DMPLh
i =

∑
r>Di

pLh

Ri
(r) (9)

A sufficient feasibility test for PMC can be derived using
Equation 9. If in each criticality mode L the deadline miss
probability of a task τi is less than or equal to the probability
threshold imposed to the task in mode L, then the task is
considered schedulable.

When the criticality mode of the system is greater than
the criticality level of the task, the deadline miss probability
threshold imposed on the task can be increased to 1 and
in this case the task is allowed to miss all of its deadlines.
Alternatively, the threshold can be increased to an intermediate
value smaller than 1, signifying that even though the task is
less critical than the current mode of the system, it should
still provide a certain quality of service, i.e. the probability of
missing deadlines may be larger, but the task is not completely
evicted from the system. The thresholds can be given by a
standard or by a certification authority, or, alternatively, they
can be decided upon by the system designer. An example of
such schedulability thresholds is presented in Table III which
also presents the degradation of tasks’ failure thresholds as
the criticality of the system increases. For example, a task
of criticality 1 is allowed to have a DMP of 0.1 in system



Criticality of the task
System’s Criticality L1 L2 L3

L1 0.1 0.01 0.001
L2 0.5 0.01 0.001
L3 1 0.1 0.001

Table III
PERMITTED DEADLINE MISS PROBABILITY THRESHOLDS FOR THE

TASK-SET IN TABLE I

Figure 1. Response time partial distributions of task τ5 in different criticality
modes of the system.

criticality mode L1, a DMP of 0.5 in mode L2 and a DMP of
1 in mode L3, i.e. in L3 a task of criticality L1 is not required
to provide any service.

A note on complexity: it is well known that probabilistic
analyses are computationally intensive [11] and the analysis
we propose in this paper makes no exception. Nevertheless
there are efficient solutions in the literature to go around this
problem, such as re-sampling [11]. We do not go into details
about complexity and ways of reducing it, as we rather use
simple task-sets to exemplify our technique and provide a
proof of concept.

V. ILLUSTRATIVE EXAMPLE

In order to provide an intuition of how the proposed analysis
works we apply it on a simple tasks-set and show the results
obtained. The task-set presented in Table I is composed of five
tasks grouped in three levels of criticality L1, L2 and L3. The
pWCET distribution of each task has 6 values. The probability
thresholds for each criticality level are pL1 = 0.1, pL2 = 0.01
and pL3 = 0.001 and they further degrade as shown in
Table III. These threshold together with Equation 2 and Equa-
tion 3 are used to split the pWCET distribution of each task
into the (various sized) partial distributions that are depicted
in Table II.

For this example we will be analyzing only task τ5 as the
analysis procedure is the same for all the other tasks. The
system is scheduled according to deadline monotonic fixed
priority preemptive scheduling policy, hence task τ5 is the

lowest priority in the set. Also, task τ5 is considered to be of
criticality L2, an intermediate criticality in the system. From
Table III we see that the schedulability constraints imposed to
a task of criticality L2 are as follows: if the system is in mode
L1 or L2, which are normal modes from the point of view of a
task of criticality L2, i.e. neither it, nor any other task exceeded
their largest WCET estimated for criticality L2, then the task
needs to function within a maximum allowed deadline miss
probability of 0.01. On the other hand if the system switches to
criticality mode L3 - which is an error mode from the point
of view of a task of criticality L2 meaning that one of the
tasks in the system exceeded their largest WCET estimated
for mode L2 - its threshold is modified to 0.1. Intuitively, a
lower criticality task would have larger allowed DMPs (i.e.
thresholds) making it possible for the task to be placed at a
lower priority level, and, consequently, more critical tasks may
have higher priorities.

The response time partial distributions of task τ5 computed
using our analysis are presented in Figure 1. We note that all
curves were truncated at the value 50 as otherwise the plot
would be too large and difficult to read and we mention only
that maximal response time values of the task, in any mode,
are infinitely large. That is, according to any deterministic
analysis, task τ5 would never finish its execution in the worst
case, meaning that the system would be deemed unschedulable
(even for the lowest criticality mode). It is easy to see why
this is the case, as the (deterministic) utilisations of the
system are too large for it to be schedulable. For example the
maximal utilisation, computed using the largest values of each
(complete) pWCET distribution, is equal to 2.19. Even the
minimal utilisation of the system, computed using the smallest
values of each pWCET distribution, is equal to 0.56, close to
the schedulability limit of a fixed priority preemptive system.

We emphasize that the curves in Figure 1 are probability
mass functions (PMFs) and not exceedence curves (i.e. 1-
CDFs), and they show the probability that a specific response
time value (read on the X-axis) is observed during the exe-
cution of task τ5. These curves are decreasing exponentially
(note the logarithmic Y-axis) as a result of the fact that the
pWCETs of the example task-set are decreasing and so the
larger response time values have exceedingly smaller proba-
bilities of appearing. The decreasing pWCET distributions are
characteristic of tasks of real systems, which are presumed to
follow Gumbel distribution [12].

The deadline miss probability of task τ5 in each criticality
mode of the system are computed by adding together the
probability mass of all values (from the respective curve) that
are larger than the deadline. In this example task τ5 has a
deadline of 28. The probability that this deadline is missed
is equal to 0.00935 (≤ 0.01) in criticality mode L1 of the
system, to 0.00177 (≤ 0.01) in mode L2 and 0.00011 (≤ 0.1)
in mode L3. The reason that τ5 has a smaller DMP in mode
L3 than in modes L2 and L1, even though it is allowed to have
a larger DMP, is once more because the pWCET distributions
are decreasing, making it highly unlikely for large response
times to even be present in the system. If, on the contrary, we



ID pWCET T D χ

τ1

(
1 2 3 4 5 6
0.8 0.1 0.099 0.0009 0.00009 0.00001

)
10 10 L3

τ2

(
1 3 4 7 8 10
0.9 0.09 0.0099 0.00009 0.000009 0.000001

)
15 15 L2

τ3

(
2 3 5 6 8 9
0.7 0.199 0.01 0.05 0.04099 0.00001

)
20 20 L1

τ4

(
3 4 5 7 8 11
0.9 0.09 0.005 0.00399 0.001 0.00001

)
20 20 L3

τ5

(
4 6 7 9 10 12
0.9 0.09 0.009 0.0009 0.00009 0.00001

)
28 28 L2

Table I
EXAMPLE OF A TASK-SET WITH PROBABILISTIC WORST CASE EXECUTION TIMES DISTRIBUTIONS.

ID pWCET(L1) pWCET(L2) pWCET(L3)

τ1

(
1 2 3
0.8 0.1 0.099

) (
4

0.0009

) (
5 6

0.00009 0.00001

)
τ2

(
1 3 4
0.9 0.09 0.0099

) (
7 8 10

0.00009 0.000009 0.000001

)
τ3

(
2 3 5 6 8
0.7 0.199 0.01 0.05 0.04099

) (
9

0.00001

)
τ4

(
3 4
0.9 0.09

) (
5 7 8

0.005 0.00399 0.001

) (
11

0.00001

)
τ5

(
4 6
0.9 0.09

) (
7 9

0.009 0.0009

) (
10 12

0.00009 0.00001

)
Table II

THE SPLITTING OF PWCETS INTO PARTIAL DISTRIBUTIONS ACCORDING TO THE CRITICALITY THRESHOLDS.

would have chosen increasing pWCETs for our example, then
the curve representing mode L3 would have been above the
other two curves and also the tasks’ DMP in mode L3 would
be much larger than in the other modes.

If we coalesce these three partial distributions we would
obtain the complete response time distribution of the task
independent of the functioning mode of the system. This would
be the same distribution that the analysis of [6] would return.
According to this analysis, the DMP of the task (irrespective
of the systems criticality) would be 0.01124 which is larger
than the threshold of 0.01 that is imposed on the task, hence
the task would be deemed unschedulable at this priority level.

VI. CONCLUSION

In this paper we proposed mixed criticality real-time system
model and a probabilistic schedulability analysis for MCRTSs
running on a single processor according to a fixed priority pre-
emptive scheduling policy. The analysis extends the existing
state of the art probabilistic analysis to the case of mixed
criticalities, taking into account both the level of assurance at
which each task needs to be certified, as well as the possible
criticalities at which the system may execute.The proposed
analysis is formally presented as well as explained with the aid
of an illustrative example. As future work we plan to provide
a formal proof of correctness. Intuitively the analysis is safe
as it is a direct extension of an existing state of the art analysis
which we further refine to decompose its results according to
various functioning modes of the system.
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