Yavar Kian 
  
RECOVERY OF NON COMPACTLY SUPPORTED COEFFICIENTS OF AN ELLIPTIC EQUATION ON AN INFINITE WAVEGUIDE

Keywords: Elliptic equation, scalar potential, unbounded domain, infinite cylindrical waveguide, slab, partial data, Carleman estimate Mathematics subject classification 2010 : 35R30, 35J15

We consider the unique recovery of a non compactly supported and non periodic perturbation of a Schrödinger operator in an unbounded cylindrical domain, also called waveguide, from boundary measurements. More precisely, we prove recovery of general class of electric potentials from the partial Dirichlet-to-Neumann map, where the Dirichlet data is supported on slightly more than half of the boundary and the Neumann data is taken on the other half of the boundary. We apply this result in different context including recovery of some general class of coefficients from measurements on a bounded subset and recovery of an electric potential, supported on an unbounded cylinder, of a Schrödinger operator in a slab.

Introduction

Let Ω := ω × R, where ω is a bounded open set of R 2 , with C 2 -boundary. Throughout this paper we denote the point x ∈ Ω by x = (x , x 3 ), where x 3 ∈ R and x := (x 1 , x 2 ) ∈ ω. Given q ∈ L ∞ (Ω) such that 0 is not in the spectrum of -∆ + q with Dirichlet boundary condition, we consider the following boundary value problem (BVP in short):

(-∆ + q)v = 0, in Ω, v = f, on Γ := ∂Ω.

(1.1)

Since Γ = ∂ω × R, the outward unit vector ν normal to Γ reads ν(x , x 3 ) = (ν (x ), 0), x = (x , x 3 ) ∈ Γ, where ν is the outer unit normal vector of ∂ω. For simplicity, we refer to ν for both exterior unit vectors normal to ∂ω and to Γ. For θ 0 ∈ S 1 := {y ∈ R 2 ; |y| = 1} fixed, we introduce the θ 0 -illuminated (resp., θ 0 -shadowed) face of ∂ω, as

∂ω - θ0 := {x ∈ ∂ω; θ 0 • ν(x) 0} (resp., ∂ω + θ0 = {x ∈ ∂ω; θ 0 • ν(x) 0}). (1.2)
Here and in the remaining part of this text, we denote by x • y := k j=1 x j y j the Euclidian scalar product of any two vectors x := (x 1 , . . . , x k ) and y := (y 1 , . . . , y k ) of R k , for k ∈ N * , and we put |x| := (x • x) 1/2 .

Set G := G × R, where G is an arbitrary open set of ∂ω containing the compact set ∂ω - θ0 in ∂ω and consider K = K × R with K an arbitrary open set containing the compact set ∂ω + θ0 in ∂ω. In the present paper we seek determination of q from the knowledge of the partial Dirichlet-to-Neumann (DN in short) map

Λ q : f → ∂ ν v |G , ( 1.3) 
where ∂ ν v(x) := ∇v(x) • ν(x) is the normal derivative of the solution v to (1.1), computed at x ∈ Γ and supp(f ) ⊂ K.

1.1. Physical motivations. Let us recall that the problem under consideration in this paper is related to the so called electrical impedance tomography (EIT in short) and its several applications in medical imaging and others. Note that the specific geometry of infinite cylinder or closed waveguide can be considered for problems of transmission to long distance or transmission through particular structures, where the ratio length-to-diameter is really high, such as nanostructures. In this context, the problem addressed in this paper can correspond to the unique recovery of an impurity perturbing the guided propagation (see [START_REF] Chang | Conductance through a single impurity in the metallic zigzag carbon nanotube[END_REF][START_REF] Kane | Coulomb Interactions and Mesoscopic Effects in Carbon Nanotubes[END_REF]).

Let us also observe that in Corollary 1. [START_REF] Bellassoued | An inverse problem for the magnetic Schrödinger equation in infinite cylindrical domains[END_REF], we show how one can apply our result to the problem stated in a slab, which is frequently used for modeling propagation in shallow-ocean acoustics (e.g. [START_REF] Ahluwalia | Exact and asymptotic representations of the sound field in a stratified ocean[END_REF]), for coefficients supported in an infinite cylinder.

1.2. Known results. Since the pioneer work of [START_REF] Calderón | On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics[END_REF], the celebrated Calderón or the EIT problem has been growing in interest. In [START_REF] Sylvester | A global uniqueness theorem for an inverse boundary value problem[END_REF], Sylvester and Uhlmann provide one of the first and most important results related to this problem. They actually proved, in dimension n 3, the unique recovery of a smooth conductivity from the full DN map. Since then, several authors extended this result in several way. The determination of an unknown coefficient from partial knowledge of the DN map was first addressed in [START_REF] Bukhgeim | Recovering a potential from partial Cauchy data[END_REF] and extended by Kenig, Sjöstrand and Uhlmann in [START_REF] Kenig | The Calderon problem with partial data[END_REF] to the recovery of a potential from restriction of data to the back and the front face illuminated by a point lying outside the convex hull of the domain. In dimension two, similar results with full and partial data have been stated in [START_REF] Bukhgeim | Recovering the potential from Cauchy data in two dimensions[END_REF][START_REF] Imanuvilov | The Calderón problem with partial data in two dimensions[END_REF][START_REF] Imanuvilov | Partial Cauchy data for general second order elliptic operators in two dimensions[END_REF]. We mention also, without being exhaustive, the work of [START_REF] Caro | Stability estimates for the Radon transform with restricted data and applications[END_REF][START_REF] Caro | Stability estimates for the Calderón problem with partial data[END_REF][START_REF] Choulli | Double logarithmic stability estimate in the identification of a scalar potential by a partial elliptic Dirichlet-to-Neumann map[END_REF][START_REF] Potenciano-Machado | Stability estimates for a Magnetic Schrodinger operator with partial data[END_REF][START_REF] Potenciano-Machado | Optimal stability estimates for a Magnetic Schrödinger operator with local data[END_REF] dealing with the stability issue associated to this problem and some results inspired by this approach for other PDEs stated in [START_REF] Choulli | Logarithmic stability in determining the time-dependent zero order coefficient in a parabolic equation from a partial Dirichlet-to-Neumann map. Application to the determination of a nonlinear term[END_REF][START_REF] Hu | Determination of singular time-dependent coefficients for wave equations from full and partial data[END_REF][START_REF] Kian | Unique determination of a time-dependent potential for wave equations from partial data[END_REF][START_REF] Kian | Recovery of time-dependent damping coefficients and potentials appearing in wave equations from partial data[END_REF][START_REF] Kian | Recovery of time-dependent coefficient on Riemanian manifold for hyperbolic equations[END_REF].

Let us remark that all the above mentioned results have been proved in a bounded domain. It appears that only a small number of mathematical papers deal with inverse boundary value problems in an unbounded domain. Combining results of unique continuation with complex geometric optics (CGO in short) solutions and a Carleman estimate borrowed from [START_REF] Bukhgeim | Recovering a potential from partial Cauchy data[END_REF], Li and Uhlmann proved in [START_REF] Li | Inverse Problems on a Slab[END_REF] the unique recovery of compactly supported electric potentials of the stationary Schrödinger operator in a slab from partial boundary measurements. In [START_REF] Krupchyk | Inverse Problems with Partial Data for a Magnetic Schrödinger Operator in an Infinite Slab or Bounded Domain[END_REF], the authors extended this result to magnetic Schrödinger operators and [START_REF] Caro | Stability of inverse problems in an infinite slab with partial data[END_REF] treated the stability issue for this inverse problem. We mention also [START_REF] Li | Inverse boundary value problems with partial data in unbounded domains[END_REF][START_REF] Li | Inverse problem for Schrödinger equations with Yang-Mills potentials in a slab[END_REF] dealing with more general Schrödinger equations, the work of [START_REF] Yang | Determining the first order perturbation of a bi-harmonic operator on bounded and unbounded domains from partial data[END_REF] for bi-harmonic operators and the recovery of an embedded object in a slab treated by [START_REF] Ikehata | Inverse conductivity problem in the infinite slab[END_REF][START_REF] Salo | Complex spherical waves and inverse problems in unbounded domains[END_REF]. More recently, [START_REF] Choulli | Stability result for elliptic inverse periodic coefficient problem by partial Dirichletto-Neumann map[END_REF][START_REF] Choulli | On the Calderón problem in periodic cylindrical domain with partial Dirichlet and Neumann data[END_REF] proved the stable recovery of coefficients periodic along the axis of an infinite cylindrical domain. Finally, we mention [START_REF] Bellassoued | An inverse stability result for non compactly supported potentials by one arbitrary lateral Neumann observation[END_REF][START_REF] Bellassoued | An inverse problem for the magnetic Schrödinger equation in infinite cylindrical domains[END_REF][START_REF] Choulli | An inverse anisotropic conductivity problem induced by twisting a homogeneous cylindrical domain[END_REF][START_REF] Kavian | Uniqueness and stability results for an inverse spectral problem in a periodic waveguide[END_REF][START_REF] Kian | Stability of the determination of a coefficient for wave equations in an infinite waveguide[END_REF][START_REF] Kian | Carleman estimate for infinite cylindrical quantum domains and application to inverse problems[END_REF][START_REF] Kian | Hölder stable determination of a quantum scalar potential in unbounded cylindrical domains[END_REF] dealing with determination of non-compactly supported coefficients appearing in different PDEs from boundary measurements.

Statement of the main result and applications.

Prior to stating the main result of this article we first recall some results stated in [START_REF] Bukhgeim | Recovering a potential from partial Cauchy data[END_REF][START_REF] Choulli | Stability result for elliptic inverse periodic coefficient problem by partial Dirichletto-Neumann map[END_REF][START_REF] Choulli | On the Calderón problem in periodic cylindrical domain with partial Dirichlet and Neumann data[END_REF] related to the well-posedness of the BVP (1.1) in the space

H ∆ (Ω) := {u ∈ L 2 (Ω); ∆u ∈ L 2 (Ω)} with the norm u 2 H ∆ (Ω) := u 2 L 2 (Ω) + ∆u 2 L 2 (Ω) .
Since Ω is unbounded, for X = ω or X = ∂ω and any s > 0, we define the space H s (X × R) by

H s (X × R) := L 2 (X; H s (R)) ∩ L 2 (R; H s (X)).
We define also H -s (Γ) to be the dual space of H s (Γ). Combining [6, Lemma 1.1] with [16, Lemma 2.2], we deduce that the map

T 0 u := u |Γ (resp., T 1 u := ∂ ν u |Γ ), u ∈ C ∞ 0 (R 3 ), extend into a continuous function T 0 : H ∆ (Ω) → H -1 2 (Γ) (resp., T 1 : H ∆ (Ω) → H -3 2 (Γ))
. We set the space

H(Γ) := T 0 H ∆ (Ω) = {T 0 u; u ∈ H ∆ (Ω)},
and notice from [16, Lemma 2.2] that T 0 is bijective from B := {u ∈ L 2 (Ω); ∆u = 0} onto H (Γ). Thus, with reference to [START_REF] Bukhgeim | Recovering a potential from partial Cauchy data[END_REF][START_REF] Nachman | Reconstruction in the Calderón problem with partial data[END_REF], we consider

f H(Γ) := T -1 0 f H ∆ (Ω) = T -1 0 f L 2 (Ω) . (1.4)
We define also H K (Γ) := {f ∈ H(Γ) : supp(f ) ⊂ K}. Then, in view of [START_REF] Choulli | Stability result for elliptic inverse periodic coefficient problem by partial Dirichletto-Neumann map[END_REF]Proposition 1.1], assuming that 0 is not in the spectrum of -∆ + q with Dirichlet boundary condition on Ω, for any f ∈ H (Γ) we deduce that the BVP (1.1) admits a unique solution v ∈ L 2 (Ω). Moreover, the DN map Λ

q : f → T 1 v |G is a bounded operator from H K (Γ) into H -3 2 (G).
The main result of this paper can be stated as follows.

Theorem 1.1. Let q 1 , q 2 ∈ L ∞ (Ω) be such that q 1 -q 2 ∈ L 1 (Ω) and 0 is not in the spectrum of -∆ + q j , j = 1, 2, with Dirichlet boundary condition on Ω. Then the condition

Λ q1 = Λ q2 (1.5) implies q 1 = q 2 .
From the main result of this paper, stated in Theorem 1.1, we deduce three other results related to other problems stated in an unbounded domain. The first application that we consider corresponds to the Calderón problem stated in the unbounded domain Ω. In order to state this problem, for a * ∈ (0, +∞) and a 0 ∈ W 2,∞ (Ω) satisfying a 0 a * , we introduce the set of functions

A := {a ∈ C 1 (Ω) ∩ H 2 loc (Ω) : a a * , ∆ a 1 2 -∆ a 1 2 0 ∈ L 1 (Ω) ∩ L ∞ (Ω)}
and, for a ∈ A, the BVP -div(a∇u) = 0, in Ω, u = f, on Γ.

(1.6)

Recall that for any a ∈ A and any f ∈ H 1 2 (Γ), the BVP (1.6) admits a unique solution u ∈ H 1 (Ω) for each f ∈ H 1 2 (Γ). Moreover, the full DN map associated with (1.6), defined by f → aT 1 u is a bounded operator from

H 1 2 (Γ) to H -1 2 (Γ).
Here, we rather consider the partial DN map,

Σ a : f ∈ H 1 2 (Γ) ∩ a -1 2 (H K (Γ)) → aT 1 u |G , (1.7) 
where a -1 2 (H K (Γ)) := {a -1 2 f ; f ∈ H K (Γ)}. The first application of Theorem 1.1 claims unique recovery of a conductivity a ∈ A, from the knowledge of Σ a . It is stated as follows.

Corollary 1.2. Let ω be connected and pick a j ∈ A, for j = 1, 2, obeying

a 1 (x) = a 2 (x), x ∈ Γ (1.8) and ∂ ν a 1 (x) = ∂ ν a 2 (x), x ∈ K ∩ G.
(1.9) Then the condition Σ a1 = Σ a2 implies a 1 = a 2 .

For our second application we consider the recovery of potentials that are known in the neighborhood of the boundary outside a compact set. In the spirit of [START_REF] Ammari | Reconstuction from partial Cauchy data for the Schrödinger equation[END_REF], we can improve Theorem 1.1 in a quite important way in that case. More precisely, we fix R > 0 and we consider γ 1 an arbitrary open subsets of K × (-∞, -R), γ 2 an open subsets of ∂ω × (-∞, -R), γ 1 an open subset of K × (R, +∞) and γ 2 an open subsets of ∂ω × (R, +∞). Then, we consider the partial DN map given by

Λ * q,R : {h ∈ H(Γ) : supp(h) ⊂ (K × [-R, R]) ∪ γ 1 ∪ γ 1 } f → T 1 v |(∂ω×[-R,R])∪γ2∪γ 2 .
Our second application can be stated as follows Corollary 1.3. Let ω be connected, R > 0, δ ∈ (0, R), q 1 , q 2 ∈ L ∞ (Ω) be such that q 1 -q 2 ∈ L 1 (Ω) and 0 is not in the spectrum of -∆ + q j , j = 1, 2, with Dirichlet boundary condition on Ω. We fix ω 1, * , ω 2, * two arbitrary C 2 open and connected subset of ω satisfying ∂ω ⊂ (∂ω 1, * ∩ ∂ω 2, * ). We consider also Ω j, * , j = 1, 2, two C 2 open and connected subset of Ω such that

ω 1, * × (-∞, -R) ⊂ Ω 1, * ⊂ ω 1, * × (-∞, δ -R), ω 2, * × (R, +∞) ⊂ Ω 2, * ⊂ ω 2, * × (R -δ, +∞)
and we assume that

q 1 (x) = q 2 (x), x ∈ Ω 1, * ∪ Ω 2, * . (1.10)
Then the condition Λ * q1,R = Λ * q2,R implies q 1 = q 2 . In our third application we consider the recovery of potentials, supported in an infinite cylinder, appearing in a stationary Schrödinger equation on a slab. More precisely, for L > 0, we consider the set O := {x = (x 1 , x 2 , x 3 ) ∈ R 3 : x 1 ∈ (0, L)}, then assuming that q ∈ L ∞ (O) and that 0 is not in the spectrum of -∆ + q with Dirichlet boundary condition on O, we consider the problem

   (-∆ + q)v = 0, in O, v |x1=0 = 0, v |x1=L = f.
(1.11)

Fixing r > 0, ∂O + := {(L, x 2 , x 3 ) : x 2 , x 3 ∈ R} and ∂O -,r := {(0, x 2 , x 3 ) : x 2 ∈ (-r, r), x 3 ∈ R}, we associate to this problem the partial DN map

N q,r : H 1 2 (∂O + ) f → ∂ x1 v |∂O-,r
Then, we prove the following result.

Corollary 1.4. Let q 1 , q 2 ∈ L ∞ (O) be such that q 1 -q 2 ∈ L 1 (O) and 0 is not in the spectrum of -∆ + q j , j = 1, 2, with Dirichlet boundary condition on O. Moreover, assume that there exists r ∈ (0, +∞) such that

q 1 (x 1 , x 2 , x 3 ) = q 2 (x 1 , x 2 , x 3 ) = 0, (x 1 , x 2 , x 3 ) ∈ {(y 1 , y 2 , y 3 ) ∈ O : |y 2 | r}.
(1.12)

Then, for any R > r, the condition

N q1,R = N q2,R (1.13) implies q 1 = q 2 .
1.4. Comments about the main result and the applications. To our best knowledge this paper is the first paper proving recovery of coefficients that are neither compactly supported nor periodic for elliptic equations in unbounded domains from boundary measurements. Indeed, beside the present paper it seems that only these two cases have been addressed so far (see [START_REF] Choulli | Stability result for elliptic inverse periodic coefficient problem by partial Dirichletto-Neumann map[END_REF][START_REF] Choulli | On the Calderón problem in periodic cylindrical domain with partial Dirichlet and Neumann data[END_REF][START_REF] Krupchyk | Inverse Problems with Partial Data for a Magnetic Schrödinger Operator in an Infinite Slab or Bounded Domain[END_REF][START_REF] Li | Inverse Problems on a Slab[END_REF]).

Like several other papers, the main tools in our analysis are suitable solutions of the equation also called complex geometric optics (CGO in short) solutions combined with Carleman estimates. It has been proved by [START_REF] Choulli | Stability result for elliptic inverse periodic coefficient problem by partial Dirichletto-Neumann map[END_REF][START_REF] Choulli | On the Calderón problem in periodic cylindrical domain with partial Dirichlet and Neumann data[END_REF][START_REF] Krupchyk | Inverse Problems with Partial Data for a Magnetic Schrödinger Operator in an Infinite Slab or Bounded Domain[END_REF][START_REF] Li | Inverse Problems on a Slab[END_REF] that for compactly supported or periodic coefficients one can apply unique continuation or Floquet decomposition in order to transform the problem on an unbounded domain into a problem on a bounded domain. Then, one can use the CGO solutions for the problem on the bounded domain in order to prove the recovery of the coefficients under consideration. For more general class of coefficients, one can not apply such arguments and the construction of CGO solutions for the problem on an unbounded domain seems unavoidable. In this paper, using a suitable localization in space, that propagates along the infinite direction of the unbounded cylindrical domain, we introduce, for what seems to be the first time, CGO solutions that can be directly applied to the inverse problem on the unbounded domain. This makes a difference with previous related works and it allows also to derive results like Corollary 1.3 where the recovery of non compactly supported coefficients is proved by mean of measurements on a bounded subset of the unbounded boundary. The construction of the CGO solutions in consideration requires also some extension of arguments, like Carleman estimate and construction of the decaying remainder term, to unbounded domain that we prove in Section 2, 3 and 4.

Let us mention that the arguments used for the construction of the CGO solutions work only if the unbounded domain has one infinite direction (or a cylindrical shape). This approach fails if the unbounded domain has more than one infinite direction like the slab. However, following the approach of [START_REF] Krupchyk | Inverse Problems with Partial Data for a Magnetic Schrödinger Operator in an Infinite Slab or Bounded Domain[END_REF][START_REF] Li | Inverse Problems on a Slab[END_REF], by mean of unique continuation properties we prove in Corollary 1.4 the recovery of coefficients supported in an unbounded cylinder. Here the cylinder can be arbitrary and this result extend the one of [START_REF] Krupchyk | Inverse Problems with Partial Data for a Magnetic Schrödinger Operator in an Infinite Slab or Bounded Domain[END_REF][START_REF] Li | Inverse Problems on a Slab[END_REF] to non compactly supported coefficients. Note also that, combining the density results stated in Lemma 6.1, used for the proof of Corollary 1.3, with Corollary 1.4, one can check that the data used by [START_REF] Krupchyk | Inverse Problems with Partial Data for a Magnetic Schrödinger Operator in an Infinite Slab or Bounded Domain[END_REF][START_REF] Li | Inverse Problems on a Slab[END_REF] for the recovery of compactly supported coefficients allow to recover more general class of coefficients supported in infinite cylinder and known on the neighborhood of the boundary outside a compact set.

In the main result of this paper, stated in Theorem 1.1, we show that the partial DN map Λ q allows to recover coefficients q which are equivalent modulo integrable functions to a fixed bounded function. This last condition is not fulfilled by the class of potential, periodic along the axis of the cylindrical domain, considered by [START_REF] Choulli | Stability result for elliptic inverse periodic coefficient problem by partial Dirichletto-Neumann map[END_REF][START_REF] Choulli | On the Calderón problem in periodic cylindrical domain with partial Dirichlet and Neumann data[END_REF]. However, combining Theorem 1.1 with [START_REF] Choulli | Stability result for elliptic inverse periodic coefficient problem by partial Dirichletto-Neumann map[END_REF][START_REF] Choulli | On the Calderón problem in periodic cylindrical domain with partial Dirichlet and Neumann data[END_REF], one can conclude that the partial DN map Λ q allows to recover the class of coefficients q considered in the present paper as well as potentials q which are periodic along the axis of Ω.

Let us remark that in a similar way to [START_REF] Krupchyk | Inverse Problems with Partial Data for a Magnetic Schrödinger Operator in an Infinite Slab or Bounded Domain[END_REF][START_REF] Li | Inverse Problems on a Slab[END_REF], with suitable choice of admissible coefficients q, it is possible to formulate (1.11) with q replaced by q -k 2 and k 2 taking some suitable value in the absolute continuous spectrum of the operator -∆ + q with Dirichlet boundary condition. In this context, (1.11) admits a unique solution satisfying the Sommerfeld radiation condition on the infinite directions of the domain. Assuming that q is chosen in such a way that these conditions are fulfilled for (1.1) and (1.11), one can adapt the argument of the present paper to this problem. In this paper we do not consider such extension of our main result which requires a study of the forward problem.

Let us also observe that like in [START_REF] Krupchyk | Inverse Problems with Partial Data for a Magnetic Schrödinger Operator in an Infinite Slab or Bounded Domain[END_REF][START_REF] Li | Inverse Problems on a Slab[END_REF], Corollary 1.4 can be formulated with different kinds of measurements on the side x 1 = 0 and x 1 = L of ∂O.

1.5. Outline. This paper is organized as follows. In Section 2, we start by considering the CGO solutions, without boundary conditions, for the problem in an unbounded cylindrical domain. For the construction of these solutions we combine different arguments such as localization of the CGO solutions along the axis of the waveguide and some arguments of separation of variables. Then, in the spirit of [START_REF] Bukhgeim | Recovering a potential from partial Cauchy data[END_REF], we introduce in Section 3 a Carleman estimate with linear weight stated in an infinite cylindrical domain. Using this Carleman estimate, we build in Section 4 CGO solutions vanishing on some parts of the boundary. In Section 5, we combine all these results in order to prove Theorem 1.1. Finally, Section 6 is devoted to the applications of the main result stated in Corollary 1.2, 1.3 and 1.4.

CGO solutions without conditions

In this section we introduce the first class of CGO solutions of our problem without boundary conditions. These CGO solutions correspond to some specific solutions u ∈ H 2 (Ω) of -∆u + qu = 0 in Ω for q ∈ L ∞ (Ω). More precisely, we start by fixing θ ∈ S

1 := {y ∈ R 2 : |y| = 1}, ξ ∈ θ ⊥ := {y ∈ R 2 : y • θ = 0}, ξ := (ξ , ξ 3 ) ∈ R 3 with ξ 3 = 0. Then, we consider η ∈ S 2 := {y ∈ R 3 : |y| = 1} defined by η = (ξ , -|ξ | 2 ξ3 ) |ξ | 2 + |ξ | 4 ξ 2 3 .
In particular, we have

η • ξ = (θ, 0) • ξ = (θ, 0) • η = 0. (2.14) Then, we fix χ ∈ C ∞ 0 (R; [0, 1]) such that χ = 1 on a neighborhood of 0 in R and, for ρ > 1, we consider solutions u ∈ H 2 (Ω) of -∆u + qu = 0 in Ω taking the form u(x , x 3 ) = e -ρθ•x e iρη•x χ ρ -1 4 x 3 e -iξ•x + w ρ (x) , x = (x , x 3 ) ∈ Ω. (2.15)
Here the remainder term w ρ ∈ H 2 (Ω) satisfies the decay property

ρ -1 w ρ H 2 (Ω) + ρ w ρ L 2 (Ω) Cρ 7 8 , (2.16)
with C independent of ρ. This construction can be summarized in the following way.

Theorem 2.1. There exists ρ 0 > 1 such that, for all ρ > ρ 0 , the equation -∆u + qu = 0 admits a solution u ∈ H 2 (Ω) of the form (2.15) with w ρ satisfying the decay property (2.16).

Remark 2.2.

Comparing to CGO solutions on bounded domains, the main difficulty in the construction of CGO solutions in our context comes from the fact that Ω is not bounded and the CGO solutions should lye in L 2 (Ω). This means that the usual principal parts of the CGO solutions considered by [START_REF] Bukhgeim | Recovering a potential from partial Cauchy data[END_REF][START_REF] Kenig | The Calderon problem with partial data[END_REF][START_REF] Sylvester | A global uniqueness theorem for an inverse boundary value problem[END_REF], taking the form e -ρθ•x e iρη•x e -iξ•x in our context, will be inadequate since it will not be lying in L 2 (Ω). This is the main reason why we introduce the new expression involving the cut-off χ that allows to localize such expressions. The main difficulty in our choice consist of using this expression to localize without loosing the decay properties stated in (2.16). This will be done by assuming that the principal part of the CGO solutions given by

e -ρθ•x e iρη•x χ ρ -1 4 x 3 e -iξ•x
propagates in some suitable way along the axis of the waveguide with respect to the large parameter ρ.

Actually, this seems to be one of the main novelty in our construction of CGO solutions comparing to any others.

Clearly, u solves -∆u + qu = 0 if and only if w ρ solves

P -ρ w ρ = -qw ρ -e ρθ•x (-∆ + q)e -ρθ•x e iρη•x χ ρ -1 4 x 3 e -iξ•x , ( 2.17) 
with P s , s ∈ R, the differential operator defined by

P s := -∆ -2sθ • ∇ -s 2 , ( 2.18) 
where ∇ = (∂ x1 , ∂ x2 ) T . In order to define a suitable set of solutions of (2.17), we start by considering the following equation

P -ρ y = F, x ∈ Ω. (2.19) 
Taking the Fourier transform with respect to x 3 , denoted by F x3 , on both side of this identity we get

P k,-ρ y k = F k , k ∈ R, (2.20) 
with

F k (x ) = F x3 F (x , k), y k (x ) = F x3 y(x , k) and P k,-ρ = -∆ + 2ρθ • ∇ -ρ 2 + k 2 .
Here ∆ = ∂ 2 x1 + ∂ 2 x2 and F x3 is defined by

F x3 h(x , k) := (2π) -1 2 R h(x , x 3 )e -ikx3 dx 3 , h ∈ L 1 (Ω).
We fix also

p k,-ρ (ζ) = |ζ| 2 + 2iρθ • ζ + k 2 , ζ ∈ R 2 , k ∈ R, such that, for D x = -i∇ , we have p k,-ρ (D x ) = P k,-ρ .
Applying some results of [START_REF] Choulli | Une introduction aux problèmes inverses elliptiques et paraboliques[END_REF][START_REF] Hörmander | The Analysis of linear partial differential operators[END_REF][START_REF] Isakov | Completness of products of solutions and some inverse problems for PDE[END_REF] about solutions of PDEs with constant coefficients we obtain the following.

Lemma 2.3. For every ρ > 1 and k ∈ R there exists a bounded operator

E k,ρ : L 2 (ω) → L 2 (ω)
such that:

P k,-ρ E k,ρ F = F, F ∈ L 2 (ω), (2.21 
) 

E k,ρ B(L 2 (ω)) Cρ -1 , (2.22) E k,ρ ∈ B(L 2 (ω); H 2 (ω)) (2.23) and E k,ρ B(L 2 (ω);H 2 (ω)) + k 2 E k,ρ B(L 2 (ω)) Cρ, ( 2 
|∂ α ζ p k,-ρ (ζ)| 2 1 2 , ζ ∈ R 2 , for all differential operator Q(D x ) with Q(ζ) pk,-ρ (ζ) a bounded function, we have Q(D x )E k,ρ ∈ B(L 2 (ω)
) and there exists a constant C depending only on ω such that

Q(D x )E k,ρ B(L 2 ((0,T )×(-R,R))) C sup ζ∈R 2 |Q(ζ)| pk,-ρ (ζ) . (2.25) Note that pk,-ρ (ζ) |I∂ ζ1 p k,-ρ (µ, η)| 2 + |I∂ ζ2 p k,-ρ (µ, η)| 2 = 2ρ, ζ ∈ R 2 .
Therefore, (2.25) implies

E k,ρ B(L 2 (ω)) C sup ζ∈R 2 1 pk,-ρ (ζ) Cρ -1
and (2.22) is fulfilled. In a same way, for all ζ ∈ R 2 , assuming that

k 2 + |ζ| 2 2ρ 2 , we have pk,-ρ (ζ) |Rp k,-ρ (ζ)| = k 2 + |ζ| 2 -ρ 2 k 2 + |ζ| 2 2 .
Thus, we have sup

ζ∈R 2 |ζ| 2 + k 2 pk,-ρ (ζ) sup k 2 +|ζ| 2 2ρ 2 |ζ| 2 + k 2 pk,-ρ (ζ) + sup k 2 +|ζ| 2 2ρ 2 |ζ| 2 + k 2 pk,-ρ (ζ) 2 + 2ρ 2 sup ζ∈R 2 1 pk,-ρ (ζ) 3ρ.
Then, in view of [12, Theorem 2.3], we deduce (2.23) with

E k,-ρ B(L 2 (ω);H 2 (ω)) + k 2 E k,-ρ B(L 2 (ω)) C sup ζ∈R 2 1 + |ζ| 2 + k 2 pk,-ρ (ζ) Cρ
which implies (2.24).

Applying this lemma, we can now consider solutions of (2.19) given by the following result.

Lemma 2.4. For every ρ > 1 there exists a bounded operator

E ρ : L 2 (Ω) → L 2 (Ω)
such that:

P -ρ E ρ F = F, F ∈ L 2 (Ω), (2.26) 
E ρ B(L 2 (Ω)) Cρ -1 , (2.27) E ρ ∈ B(L 2 (Ω); H 2 (Ω)) (2.28) and E ρ B(L 2 (Ω);H 2 (Ω)) Cρ, (2.29)
with C > 0 depending only on Ω.

Proof. According to Lemma 2.3, we can define E ρ on L 2 (Ω) by (2.26). Moreover, we have

E ρ F := Ω (x , x 3 ) → F -1 k (E k,ρ F x3 F (•, k)) (x , x 3 ). It is clear that (2.21) implies
E ρ F 2 L 2 (Ω) = R E k,ρ F x3 F (•, k) 2 L 2 (ω) dk
and from (2.22) we get

E ρ F 2 L 2 (Ω) C 2 ρ -2 R F x3 F (•, k) 2 L 2 (ω) dk = C 2 ρ -2 F 2 L 2 (Ω) .
From this estimate we deduce (2.27). In view of (2.23)-(2.24), we have E ρ ∈ B(L 2 (Ω); H 2 (Ω)) and, for all F ∈ L 2 (Ω), we have

E ρ F 2 H 2 (Ω) C R E k,ρ F x3 F (•, k) 2 H 2 (ω) + k 2 E k,ρ F x3 F (•, k) 2 L 2 (ω) dk C C 2 ρ 2 R F x3 F (•, k) 2 L 2 (ω) dk = C C 2 ρ 2 F 2 L 2 (Ω) ,
with C depending only on ω. This proves (2.28)-(2.29).

Using this last result, we can build geometric optics solutions of the form (2.15).

Proof of Theorem 2.1. We start by recalling that

-e ρθ•x (-∆ + q)e -ρθ•x e iρη•x χ ρ -1 4 x 3 e -iξ•x = -(|ξ| 2 + q)χ ρ -1 4 x 3 -2iη 3 ρ 3 4 χ ρ -1 4 x 3 + 2iξ 3 ρ -1 4 χ ρ -1 4 x 3 -ρ -1 2 χ ρ -1 4 x 3 e iρη•x e -iξ•x
(2.30) On the other hand, we have

R χ ρ -1 4 x 3 2 dx 3 = ρ 1 4 R |χ(t)| 2 dt
and we deduce that χ ρ -1 4 x 3

L 2 (Ω) = χ L 2 (R) |ω| 1 2 ρ 1 8 .
In the same way, one can check that

χ ρ -1 4 x 3 L 2 (Ω) + χ ρ -1 4 x 3 L 2 (Ω) + χ ρ -1 4 x 3 L 2 (Ω) Cρ 1 8 ,
with C depending only on ω and χ. Combining this with (2.30), we find

-e ρθ•x (-∆ + q)e -ρθ•x e iρη•x χ ρ -1 4 x 3 e -iξ•x L 2 (Ω) = C (|ξ| 2 + q L ∞ (Ω) )ρ 1 8 + 2|η 3 |ρ 7 8 + 2|ξ 3 |ρ -1 8 + ρ -3 8 Cρ 7 8 , (2.31) 
with C > 0 depending on ω, ξ and q L ∞ (Ω) . According to Lemma 2.4, we can rewrite equation (2.17) as

w ρ = -E ρ qw ρ + e ρθ•x (-∆ + q)e -ρθ•x e iρη•x χ ρ -1 4 x 3 e -iξ•x , with E ρ ∈ B(L 2 (Ω))
given by Lemma 2.4. For this purpose, we will use a standard fixed point argument associated to the map

G : L 2 (Ω) → L 2 (Ω), G → -E ρ qG + e ρθ•x e -iρη•x (-∆ + q)e -ρθ•x e iρη•x χ ρ -1 4 x 3 e -iξ•x .
Indeed, in view of (2.27) and (2.31), we have

Gw L 2 (Ω) Cρ -1 8 + Cρ -1 w L 2 (Ω) , w ∈ L 2 (Ω), Gw 1 -Gw 2 L 2 (Ω) E ρ [q(w 1 -w 2 )] L 2 (Ω) Cρ -1 w 1 -w 2 L 2 (Ω) , w ∈ L 2 (Ω),
with C depending on ω, ξ and q L ∞ (Ω) . Therefore, fixing M 1 > 0, there exists ρ 0 > 1 such that for ρ ρ 0 the map G admits a unique fixed point w ρ in {w ∈ L 2 (Ω) : w L 2 (Ω) M 1 }. In addition, condition (2.27)-(2.29) imply that w ρ ∈ H 2 (Ω) fulfills (2.16). This completes the proof of Theorem 2.1.

Carleman estimate

In this section we derive a Carleman estimate for the Laplace operator in the unbounded cylindrical domain Ω. We consider first a Carleman inequality similar to [6, Lemma 2.1] for unbounded cylindrical domains.

Proposition 3.1. Let θ ∈ S 1 . Then, there exists d > 0 depending only on ω such that the estimate

8ρ 2 d e -ρθ•x u 2 L 2 (Ω) + 2ρ e -ρθ•x (θ • ν) 1/2 ∂ ν u 2 L 2 (∂ω + θ ×R) e -ρθ•x ∆u 2 L 2 (Ω) + 2ρ e -ρθ•x |θ • ν| 1/2 ∂ ν u 2 L 2 (∂ω - θ ×R) , (3.32) 
holds for every u ∈ H 2 (Ω) satisfying u |Γ = 0.

Proof. We start by proving (3.32) for u ∈ C ∞ 0 (R 3 ) satisfying u |Γ = 0. The operator e -ρθ•x ∆e ρθ•x decomposes into the sum P + + P 3 + + P -, with

P + := ∆ + ρ 2 and P -:= 2ρθ • ∇ , P 3 + := ∂ 2 x3
, where the symbol ∆ (resp., ∇ ) stands for the Laplace (resp., gradient) operator with respect to x ∈ ω. Thus, we get upon setting v(x)

:= e -ρθ•x u(x) that e -ρθ•x ∆u 2 L 2 (Ω) = e -ρθ•x ∆e ρθ•x v 2 L 2 (Ω) = (P + + P 3 + + P -)v 2 L 2 (Ω) = (P + + P 3 + )v 2 L 2 (Ω) + P -v 2 L 2 (Ω) + 2R P 3 + v, P -v L 2 (Ω) + 2R P + v, P -v L 2 (Ω)
, and hence

P -v 2 L 2 (Ω) + 2R P + v, P -v L 2 (Ω) e -ρθ•x ∆u 2 L 2 (Ω) -2R P 3 + v, P -v L 2 (Ω) .
(3.33) Moreover, we find upon integrating by parts that

2R P 3 + v, P -v L 2 (Ω) = -ρ R ω ∇ • (|∂ x3 v(x)| 2 θ)dx dx 1 = -ρ Γ |∂ x3 v(x)| 2 θ • ν(x)dσ(x) = 0. (3.34)
Here we used the fact that the condition v |Γ = 0 implies ∂ x3 v |Γ = 0. Next, as the function w := v(•, x 3 ) ∈ C 2 (ω) satisfies w |∂ω = 0 for a.e. x 3 ∈ R, applying [6, Lemma 2.1], we deduce that there exists d > 0 depending on ω such that

8ρ 2 d w 2 L 2 (ω) + 2ρ ∂ω e -2ρθ•x θ • ν(x ) ∂ ν e ρθ•x w(x ) 2 dσ(x ) P -w 2 L 2 (ω) + 2R P + w, P -w L 2 (ω) . It follows 8ρ 2 d e -ρθ•x u(•, x 3 ) 2 L 2 (ω) + 2ρ ∂ω e -2ρθ•x θ • ν(x) |∂ ν u(•, x 3 )| 2 dσ(x ) P -v(•, x 3 ) 2 L 2 (ω) + 2R P + v(•, x 3 ), P -v(•, x 3 ) L 2 (ω)
. Thus, integrating both sides of the above inequality with respect to x 3 ∈ R, we obtain Using the fact that

8ρ 2 d e -ρθ•x u 2 L 2 (Ω) + 2ρ Γ e -2ρθ•x θ • ν(x) |∂ ν u(x)| 2 dσ(x) P -v 2 L 2 (Ω) + 2R P + v, P -v L 2 (Ω) . ( 3 
|∆u| 2 2 |(-∆ + q)u| 2 + q 2 L ∞ (Ω) |u| 2 ,
we get

4ρ 2 d -q 2 L ∞ (Ω) e -ρθ•x u 2 L 2 (Ω) + ρ e -ρθ•x (θ • ν) 1 2 ∂ ν u 2 L 2 ( Γ+ θ ) e -ρθ•x (-∆ + q)u 2 L 2 (Ω) + ρ e -ρθ•x |θ • ν| 1 2 ∂ ν u 2 L 2 ( Γ- θ )
. As a consequence we obtain the following estimate. Corollary 3.2. For M > 0, let q ∈ L ∞ (Ω) satisfy q L ∞ (Ω) M . Then, under the conditions of Proposition 3.1, we have

2ρ 2 d e -ρθ•x u 2 L 2 (Ω) + ρ e -ρθ•x (θ • ν) 1 2 ∂ ν u 2 L 2 ( Γ+ θ ) e -ρθ•x (-∆ + q)u 2 L 2 (Ω) + ρ e -ρθ•x |θ • ν| 1 2 ∂ ν u 2 L 2 ( Γ- θ ) , provided ρ ρ 1 := M (d/2) 1 2 + 1.

CGO solutions vanishing on parts of the boundary

In this section we fix q ∈ L ∞ (Ω). From now on, for all y ∈ S 1 and all r > 0, we set

∂ω +,r,y = {x ∈ Γ : ν(x) • y > r}, ∂ω -,r,y = {x ∈ Γ : ν(x) • y r}.
Here and in the remaining of this text we always assume, without mentioning it, that y and r are chosen in such way that ∂ω ±,r,±y contain a non-empty relatively open subset of ∂ω. Without lost of generality we assume that there exists 0 < ε < 1 such that for all θ ∈ {y ∈ S 1 : |y -θ 0 | ε} we have ∂ω -,ε,-θ ⊂ K . The goal of this section is to use the Carleman estimate (3.32) in order to build solutions u ∈ H ∆ (Ω) to

-∆u + qu = 0 in Ω, u = 0, on ∂ω +,ε/2,-θ × R, (4.36) of the form u(x , x 3 ) = e ρθ•x e -iρη•x χ ρ -1 4 x 3 + z ρ (x) , x = (x , x 3 ) ∈ Ω. (4.37) Here θ ∈ {y ∈ S 1 : |y -θ 0 | ε}, z ρ ∈ e -ρθ•x e iρη•x H ∆ (Ω) fulfills z ρ (x , x 3 ) = -χ ρ -1 4 x 3 , (x , x 3 ) ∈ ∂ω +,ε/2,-θ × R and z ρ L 2 (Ω) Cρ -1 8 , ( 4.38) 
with C depending on K , Ω and any

M q L ∞ (Ω) . Since (∂ω \ K ) ⊂ (∂ω \ ∂ω -,ε,-θ ) = ∂ω +,ε,-θ , it is clear that condition (4.36) implies supp(T 0 u) ⊂ K (recall that for v ∈ C ∞ 0 (Ω), T 0 v = v |Γ ).
The main result of this section can be stated as follows.

Theorem 4.1. Let q ∈ L ∞ (Ω), θ ∈ {y ∈ S 1 : |y-θ 0 | ε}. For all ρ > ρ 1 , one can find a solution u ∈ H ∆ (Ω) of (4.36) taking the form (4.37) with z ρ satisfying (4.38). Here ρ 1 denotes the constant introduced at the end of Corollary 3.2.

In order to prove existence of such solutions of (4.36) we need some preliminary tools and an intermediate result.

4.1. Weighted spaces. In this subsection we give the definition of some weighted spaces. We set s ∈ R, we fix θ ∈ {y ∈ S 1 : |y -θ 0 | ε} and we denote by γ the function defined on Γ by

γ(x) = |θ • ν(x)| , x ∈ Γ.
We introduce the spaces L s (Ω), and for all non negative measurable function h on Γ the spaces L s,h,± defined respectively by

L s (Ω) = e -sθ•x L 2 (Ω), L s,h,± = {f : e sθ•x h 1 2 (x)f ∈ L 2 (ω ±,θ × R)}
with the associated norm

u s = Ω e 2sθ•x |u| 2 dx 1 2 , u ∈ L s (Ω), u s,h,± = ∂ω ±,θ ×R e 2sθ•x h(x) |u| 2 dσ(x )dx 3 1 2
, u ∈ L s,h,± .

4.2.

Completion of the proof. We set the space

D 0 = {v |Ω : v ∈ C 2 0 (R 3 ), v |Γ = 0}
and, in view of Proposition 3.1, applying the Carleman estimate (3.32) to any g ∈ D 0 we obtain

ρ g ρ + ρ 1 2 ∂ ν g ρ,γ,-C( (-∆ + q)g ρ + ∂ ν g ρ,ργ,+ ), ρ ρ 1 . ( 4.39) 
We introduce also the space

M = {((-∆ + q)v |Ω , ∂ ν v |∂ω +,θ ×R ) : v ∈ D 0 }
and think of M as a subspace of L ρ (Ω) × L ρ,ργ,+ . Combining the Carleman estimate (4.39) with a classical application of the Hahn Banach theorem (see [START_REF] Kenig | The Calderon problem with partial data[END_REF]Proposition 7.1] and [16, Lemma 3.2] for more detail) to a suitable linear form defined on M, we obtain the following intermediate result.

Lemma 4.2. We fix ∂ω * -,θ = {x ∈ ∂ω : θ • ν(x) < 0}. Given ρ ρ 1 , with ρ 1 the constant of Corollary 3.2, and

v ∈ L -ρ (Ω), v -∈ L -ρ,γ -1 ,-,
there exists y ∈ L -ρ (Ω) such that: 1) -∆y

+ qy = v in Ω, 2) y |∂ω * -,θ ×R = v -, 3) y -ρ C ρ -1 v -ρ + ρ -1 2 v --ρ,γ -1 ,-with C depending on Ω, M q L ∞ (Ω) .
Armed with this lemma we are now in position to prove Theorem 4.1.

Proof of Theorem 4.1. We need to consider z ρ satisfying

       z ρ ∈ L 2 (Ω) (-∆ + q)(e ρθ•x e -iρη•x z ρ ) = -(-∆ + q)e ρθ•x e -iρη•x χ ρ -1 4 x 3 in Ω z ρ = -χ ρ -1 4 x 3 on ∂ω +,ε/2,-θ × ×R. (4.40) Let ψ ∈ C ∞ 0 (R 2 ) be such that supp(ψ) ∩ ∂ω ⊂ {x ∈ ∂ω : θ • ν(x) < -ε/3} and ψ = 1 on {x ∈ ∂ω : θ • ν(x) < -ε/2} = ∂ω +,ε/2,-θ . Choose v -(x , x 3 ) = -e ρθ•x e -iρη•x χ ρ -1 4 x 3 ψ(x ), x ∈ ∂ω -,θ × R. Since v -(x) = 0 for x ∈ {x ∈ Γ : θ • ν(x) -ε/3} × R we have v -∈ L -ρ,γ -1 ,-. Fix also v(x) = -(-∆ + q)e ρθ•x e -iρη•x χ ρ -1 4 x 3 , x ∈ Ω.
From Lemma 4.2, we deduce that there exists h ∈ H ∆ (Ω) such that

(-∆ + q)h = v in Ω, h(x) = v -(x), x ∈ ∂ω -,θ × R.
Then, for z ρ = e -ρθ•x e iρη•x h condition (4.40) will be fulfilled. Repeating some arguments similar to Theorem 2.1, we obtain

e -ρθ•x (-∆ + q)e ρθ•x e -iρη•x χ ρ -1 4 x 3 L 2 (Ω) Cρ 7 8 ,
with C depending only on ω and M q L ∞ (Ω) . Combining this with condition 3) of Lemma 4.2 we get

z ρ L 2 (Ω) = h -ρ C ρ -1 v -ρ + ρ -1 2 v --ρ,γ -1 ,- C ρ -1 8 + ρ -1 2 ψγ -1 2 L 2 (∂ω -,θ ) χ ρ -1 4 • L 2 (R) C ρ -1 8 + ρ -3 8 ψγ -1 2 L 2 (∂ω -,θ ) χ L 2 (R) Cρ -1 8
with C depending only on Ω and q L ∞ (Ω) . Therefore, estimate (4.38) holds. Using the fact that e -ρθ•x e iρη•x z ρ = h ∈ H ∆ (Ω), we deduce u defined by (4.37) is lying in H ∆ (Ω) and is a solution of (4.36). This completes the proof of Theorem 4.1.

Uniqueness result

This section is devoted to the proof of Theorem 1.1. From now on we set q = q 2 -q 1 on Ω and we assume that q = 0 on R 3 \ Ω. Without lost of generality we assume that for all θ ∈ {y ∈ S 1 : |y -θ 0 | ε} we have ∂ω -,ε,θ ⊂ G with ε > 0 introduced in the beginning of the previous section. Let ρ > max(ρ 0 , ρ 1 ) and set θ ∈ {y ∈ S 1 : |y -θ 0 | ε}, ξ := (ξ , ξ 3 ) ∈ R 3 satisfying ξ 3 = 0 and ξ ∈ θ ⊥ . According to Theorem 2.1, we can consider u 1 ∈ H 2 (Ω) solving -∆u 1 + q 1 u 1 = 0 on Ω taking the form (2.15) with w ρ satisfying (2.16). In addition, in view of Theorem 4.1, we can fix u 2 ∈ H ∆ (Ω) a solution of (4.36), with q = q 2 , of the form (4.37) with e -ρθ•x e iρη•x z ρ ∈ H ∆ (Ω) satisfying (4.38). Fix w 1 ∈ H ∆ (Ω) solving

-∆w 1 + q 1 w 1 = 0 in Ω, T 0 w 1 = T 0 u 2 .
(5.41)

Then, u = w 1 -u 2 solves -∆u + q 1 u = (q 2 -q 1 )u 2 in Ω, u(x) = 0 on ∂Ω, (5.42) and since (q 2 -q 1 )u 2 ∈ L 2 (Ω), in view of [14, Lemma 2.2], we deduce that u ∈ H 2 (Ω). Using the fact that u 1 ∈ H 2 (Ω), we can apply the Green formula to get

Ω (q 2 -q 1 )u 2 u 1 dx = Ω u 1 (-∆u + q 1 u)dx - Ω u(-∆u 1 + q 1 u 1 )dx = - Γ ∂ ν uu 1 dσ(x) + Γ ∂ ν u 1 udσ(x).
On the other hand, we have u |Γ = 0 and, combining (1.5) with the fact that suppT 0 u 2 ⊂ K, we deduce that

∂ ν u |G = 0. It follows that Ω qu 2 u 1 dx = - Γ\G ∂ ν uu 1 dσ(x).
(5.43)

In view of (2.16), by interpolation, we have

w ρ L 2 (Γ) C w ρ H 9 16 (Ω) C w ρ L 2 (Ω) 23 32
w ρ H 2 (Ω)

9 32
Cρ 7 16 .

Thus, applying the Cauchy-Schwarz inequality to the first expression on the right hand side of this formula, we get

Σ\G ∂ ν uu 1 dσ(x) R ∂ω +,ε,θ ∂ ν ue -ρx •θ (e -iξ•x χ ρ -1 2 x 3 + w ρ ) dσ(x )dx 3 C ∂ω +,ε,θ ×R e -ρx •θ ∂ ν u 2 dσ(x) 1 2 χ ρ -1 2 • L 2 (R) + w ρ L 2 (Γ) Cρ 7 16 ∂ω +,ε,θ ×R e -ρx •θ ∂ ν u 2 dσ(x) 1 2
for some C independent of ρ. Here we have used both (2.16) and the fact that (Γ \ G) ⊂ ∂ω +,ε,θ × R.

Combining this estimate with the Carleman estimate stated in Corollary 3.2, we find

Ω (q 2 -q 1 )u 2 u 1 dx 2 Cρ 7 8 ∂ω +,ε,θ ×R e -ρx •θ ∂ ν u 2 dσ(x) ε -1 Cρ 7 8 ∂ω +,θ ×R e -ρx •θ ∂ ν u 2 |ν • θ|dσ(x) ε -1 Cρ -1 8 Ω e -ρx •θ (-∆ + q 1 )u 2 dx ε -1 Cρ -1 8 Ω e -ρx •θ qu 2 2 dx ε -1 Cρ -1 8 q L ∞ (Ω) χ L ∞ (R) Ω |q(x)|dx + q 2 L ∞ (Ω) z ρ 2 L 2 (Ω) .
(5.44)

Here C > 0 stands for some generic constant independent of ρ. Applying the fact that q ∈ L 1 (Ω), we deduce that lim ρ→+∞ Ω qu 2 u 1 dx = 0.

(5.45) Moreover, we have

Ω qu 1 u 2 dx = R 3 χ 2 (ρ -1 4 x 3 )q(x)e -iξ•x dx + Ω Y (x)dx + Ω Z(x)dx
with Y (x) = q(x)e -iρη•x z ρ (x)w ρ (x) and

Z(x) = q(x)χ ρ -1 4 x 3 z ρ e -ix•ξ + w ρ e -iρη•x .
Applying the decay estimate given by (2.16) and (4.38), we obtain

Ω |Y (x)|dx w ρ L 2 (Ω) z ρ L 2 (Ω) Cρ -1 4 Ω |Z(x)|dx q L 2 (Ω) χ ρ -1 4 • L ∞ (R) ( w ρ L 2 (Ω) + z ρ L 2 (Ω) ) C q 1 2 L ∞ (Ω) q 1 2 L 1 (Ω) χ L ∞ (R) ρ -1 8 .
with C independent of ρ. Combining this with (5.45), we deduce that lim ρ→+∞ R 3 χ 2 (ρ -1 4 x 3 )q(x)e -iξ•x dx = 0.

On the other hand, since q ∈ L 1 (R 3 ) and χ(0) = 1, by the Lebesgue dominate convergence theorem, we find

lim ρ→+∞ R 3 χ 2 (ρ -1 4 x 3 )q(x)e -iξ•x dx = R 3 q(x)e -iξ•x dx.
This proves that, for all θ ∈ {y ∈ S 1 : |y -θ 0 | ε}, all ξ ∈ R 2 orthogonal to θ and all ξ 3 ∈ R \ {0}, we have

F [F x3 q(•, ξ 3 )] (ξ ) = (2π) -1 R 2 F x3 q(x , ξ 3 )e -iξ •x dx = 0. (5.46) Since q ∈ L 1 (R 3 ), ξ 3 → F x3 q(•, ξ 3 ) is continuous from R to L 1 (R 2 ) and |F x3 q(•, ξ 3 )| (2π) -1 2 R |q(•, x 3 )|dx 3 ,
by the Fubini and the Lebesgue dominate convergence theorem, we deduce that (5.46) holds for all ξ ∈ R 2 orthogonal to θ and all ξ 3 ∈ R. Now using the fact that for any ξ 3 ∈ R, F x3 q(•, ξ 3 ) is supported on ω which is compact, we deduce, by analyticity of F [F x3 q(•, ξ 3 )], that F x3 q(•, ξ 3 ) = 0. This proves that q = 0 which completes the proof of Theorem 1.1.

Applications

In this section we will prove the three applications of Theorem 1.1 stated in Corollary 1.2, 1.3 and 1.4. 

(-∆ + q a )v = 0, in Ω, v = a 1 2 f, on Γ,
where we recall that q a := a -1 2 ∆(a

). Moreover, one can check that

Σ a f = a 1 2 Λ qa a 1 2 f -a 1 2 ∂ ν a 1 2 f, f ∈ H 1 2 (Γ) ∩ a -1 2 1 (H K (Γ)),
where Σ a is defined by (1.7). From this and (1.8)-(1.9), it then follows for every f ∈ H

1 2 (Γ) ∩ a -1 2 1 (H K (Γ)), that Σ aj f = a 1 2 1 Λ qj a 1 2 1 f -a 1 2 1 ∂ ν a 1 2
1 f |G , j = 1, 2, where, for simplicity, q j stands for q aj . As a consequence, the condition Σ a1 = Σ a2 implies

(Λ q1 -Λ q2 )f = a -1 2 1 (Σ a1 -Σ a2 )a -1 2 1 f = 0, f ∈ a 1 2 1 H 1 2 (Γ) ∩ (H K (Γ)).
In particular, this proves that Λ q1 = Λ q2 . Since a j ∈ A, j = 1, 2, it is clear that q j ∈ L ∞ (Ω) and q 1 -q 2 ∈ L 1 (Ω). Then, according to Theorem 1.1, we have q 1 = q 2 . Fixing y := a

1 2 1 -a 1 2 2 ∈ H 2 loc (Ω) we deduce that y satisfies (-∆ + q 1 )y = -a 1 2 2 (q 1 -q 2 ) = 0, in Ω, y |K∩G = ∂ ν y |K∩G = 0.
Combining this with results of unique continuation for elliptic equations (e.g. [42, Theorem 1]) we have y = 0 and we deduce that a 1 = a 2 . This completes the proof of Corollary 1.2. 6.2. Recovery of coefficients that are known in the neighborhood of the boundary outside a compact set. This subsection is devoted to the proof of Corollary 1.3. For this purpose we assume that the conditions of Corollary 1.3 are fulfilled. Let us also introduce the following sets of functions

S q := {u ∈ L 2 (Ω) : -∆u + qu = 0, supp(T 0 u) ⊂ K}, Q q := {u ∈ L 2 (Ω) : -∆u + qu = 0}, S q,γ1,γ 1 := {u ∈ L 2 (Ω) : -∆u + qu = 0, supp(T 0 u) ⊂ (K × [-R, R]) ∪ γ 1 ∪ γ 1 }, Q q,γ2,γ 2 := {u ∈ L 2 (Ω) : -∆u + qu = 0, supp(T 0 u) ⊂ (∂ω × [-R, R]) ∪ γ 2 ∪ γ 2 }.
We consider first the following result of density for these spaces. Lemma 6.1. The space Q q1,γ2,γ 2 (resp. S q2,γ1,γ 1 ) is dense in Q q1 (resp. S q2 ) for the topology induced by L 2 (Ω \ (Ω 1, * ∪ Ω 2, * )).

Proof. Due to the similarity of these two results, we consider only the proof of the density of Q q1,γ2,γ 2 in Q q1 . For this purpose, assume the contrary. Then, there exist g ∈ L 2 (Ω \ (Ω 1, * ∪ Ω 2, * )) and v 0 ∈ Q q1 such that Ω\(Ω1, * ∪Ω2, * ) gvdx = 0, v ∈ Q q1,γ2,γ 2 , (6.47)

Ω\(Ω1, * ∪Ω2, * ) gv 0 dx = 1. (6.48)

From now on, we extend g by 0 to Ω. Let y ∈ H 2 (Ω) be the solution of (-∆ + q 1 )y = g, in Ω, y = 0, on Γ.

Then, for any v ∈ H 2 (Ω) ∩ Q q1,γ2,γ 2 , we find

0 = Ω gvdx = - ∂ω×[-R,R] ∂ ν yvdσ(x) - γ2 ∂ ν yvdσ(x) - γ 2 ∂ ν yvdσ(x).
Allowing v ∈ H 2 (Ω) ∩ Q q1,γ2,γ 2 to be arbitrary, we deduce that ∂ ν y(x) = 0, x ∈ (∂ω × [-R, R]) ∪ γ 2 ∪ γ 2 . (6.49) Therefore, y satisfies (-∆ + q 1 )y = 0 in Ω 1, * , y |γ2 = ∂ ν y |γ2 = 0 and the unique continuation property for elliptic equations implies that y |Ω1, * = 0. In the same way, we can prove that y |Ω2, * = 0 and we deduce that .

Therefore, applying this integration by parts formula, we get Ω\(Ω1, * ∪Ω2, * ) gv 0 dx = Ω\(Ω1, * ∪Ω2, * )

(-∆ + q 1 )yv 0 dx = 0.

Applying the results of Section 2, we can consider u 2 ∈ H 2 (ω × R) solving -∆u 2 + q 2 u 2 = 0 in ω × R and taking the form u 2 (x) := e ρθ•x e -iρη•x χ ρ -1 4 x 3 e -ix•ξ + w 2,ρ (x) , x := (x , x 3 ) ∈ ω × R, (6.52)

with θ := (θ 1 , θ 2 ) ∈ S 1 such that θ 1 > 0, η, ξ ∈ R 3 chosen in a similar way to the beginning of Section 2, and w 2,ρ ∈ H 2 (ω × R) satisfying ρ -1 w 2,ρ H 2 (ω×R) + ρ w 2,ρ L 2 (ω×R) Cρ Applying (6.51)-(6.56) and the fact that q 1 -q 2 ∈ L ∞ (Ω) ∩ L 1 (Ω) ⊂ L 2 (Ω), in a similar way to Section 5 we deduce that lim ρ→+∞ Ω (q 1 -q 2 )v 1 v 2 dx = 0.

On the other hand, we have

Ω (q 1 -q 2 )v 1 v 2 dx = Ω (q 1 -q 2 )χ 2 ρ -1 4 x 3 e -ix•ξ dx + Ω X ρ dx, (6.57) 
where X ρ :=(q 1 -q 2 )e -ρθ•x u 2 w 1,ρ -(q 1 -q 2 )e -2ρθ1x1 e iρη•x χ ρ -1 4 x 3 + w 1,ρ (x) e -iρη•s(x) χ ρ - 1 4 x 3 e -ix•ξ + w 2,ρ (s(x)) , with s(x 1 , x 2 , x 3 ) = (-x 1 , x 2 , x 3 ). Combining this with the decay estimates (6.53), (6.56) and using the fact that θ 1 x 1 > 0, we deduce that lim ρ→+∞ Ω X ρ dx = 0.

Then, (6.57) and the fact that q 1 -q 2 ∈ L 1 (Ω) imply that Ω (q 1 -q 2 )e -ix•ξ dx = 0 and following the arguments used at the end of the proof of Theorem 1.1 we deduce that q 1 = q 2 .

. 35 )

 35 Putting (3.33)-(3.35) together, we end up getting(3.32). Finally, using the density of the space of restriction to Ω of function u ∈ C ∞ 0 (R 3 ) satisfying u |Γ = 0 in the space of function u ∈ H 2 (Ω) satisfying u |Γ = 0, we deduce that (3.32) holds for u ∈ H 2 (Ω).
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 11 Application to the Calderón problem. This subsection is devoted to the proof of Corollary 1.2. Applying the Liouville transform, we deduce that for u the solution to(1.6), v := a u solves the following BVP

y

  |∂Ωj, * = ∂ ν y |∂Ωj, * = 0, j = 1, 2.Combining this with (6.49), we obtainy(x) = ∂ ν y(x) = 0, x ∈ ∂(Ω \ (Ω 1, * ∪ Ω 2, * )).Now let us recall that, repeating the arguments used in [6, Corollary 1.2], one can check that, for any y ∈ H 2 (Ω) and z ∈ H ∆ (Ω), we have Ω\(Ω1, * ∪Ω2, * )

  fix v 2 ∈ H 2 (Ω) defined by v 2 (x 1 , x 2 , x 3 ) := u 2 (x 1 , x 2 , x 3 ) -u 2 (-x 1 , x 2 , x 3 ), (x 1 , x 2 , x 3 ) ∈ Ω. (6.54) It is clear that v 2 ∈ W q2 (Ω).In the same way, we fix v 1 ∈ V q1 (Ω)v 1 (x) := e -ρθ•x e iρη•x χ ρ -1 4 x 3 + w 1,ρ (x) , x := (x , x 3 ) ∈ Ω, (6.55) with w 1,ρ ∈ H 2 (Ω) satisfying ρ -1 w 1,ρ H 2 (Ω) + ρ w 1,ρ L 2 (Ω) Cρ

  Proof. In light of[START_REF] Choulli | Une introduction aux problèmes inverses elliptiques et paraboliques[END_REF] Thoerem 2.3] (see also[START_REF] Hörmander | The Analysis of linear partial differential operators[END_REF] Theorem 10.3.7]), there exists a bounded operator E k,ρ ∈ B(L 2 (ω)), defined from fundamental solutions associated to P k,-ρ (see Section 10.3 of[START_REF] Hörmander | The Analysis of linear partial differential operators[END_REF]), such that (2.21) is fulfilled. In addition, fixing

	pk,-ρ (ζ) :=
	α∈N 2

.

[START_REF] Isakov | Completness of products of solutions and some inverse problems for PDE[END_REF] 

with C > 0 depending only on ω.

This contradicts (6.48) and completes the proof of the lemma.

Armed with this lemma we are now in position to complete the proof of Corollary 1.3.

Proof of the Corollary 1.3. Let u 1 ∈ Q q1,γ2,γ 2 and u 2 ∈ S q2,γ1,γ 1 . Repeating the linearization process described in Section 5 we deduce that Λ * q1,R = Λ * q2,R implies Ω (q 2 -q 1 )u 1 u 2 dx = 0.

Then, (1.10) implies

Combining this with the density result of Lemma 6.1 and applying again (1.10), we deduce that

Finally, choosing u 1 , u 2 in a similar way to Section 5, we can deduce that q 1 = q 2 . This completes the proof of the corollary.

Recovery of non-compactly supported coefficients in a slab.

In this subsection we consider Corollary 1.4. Applying the construction of CGO solutions and the Carleman estimate of the previous sections, we will prove how one can extend the result of [START_REF] Li | Inverse Problems on a Slab[END_REF] to coefficients supported on an unbounded cylinder. For this purpose, we start by fixing δ ∈ (0, R -r) and ω an open smooth and connected subset of (0,

Then, we fix Ω := ω × R and we consider the set of functions

Following [START_REF] Li | Inverse Problems on a Slab[END_REF]Lemma 9], one can check the following result of density. Lemma 6.2. Let q ∈ L ∞ (Ω) be such that 0 is not in the spectrum of -∆ + q with Dirichlet boundary condition on O. Then the set W q (O) is dense in W q (Ω) with respect to the topology of L 2 (Ω).

In the same way, combining Lemma 6.2 with the Carleman estimate of Corollary 3.2 and [37, Lemma 10], we obtain the following important estimate. Lemma 6.3. Let θ := (θ 1 , θ 2 ) ∈ S 1 be such that θ 1 > 0 and assume that (1.12)-(1.13) are fulfilled. Then we have

for all v 1 ∈ V q1 (Ω) and for all v 2 ∈ W q2 (Ω).

Armed with these two results, we will complete the proof of Corollary 1.4 by choosing suitably the solutions v j , j = 1, 2, of the equation -∆v j + q j v j = 0 in Ω.

Proof of Corollary 1.4.

From now on we assume that the condition (1.13) is fulfilled. Let us first start by considering the set ω := {x := (x 1 , x 2 , x 3 ) : (-x 1 , x 2 , x 3 ) ∈ ω} ∪ ω and let us extend q 2 by symmetry to ω × R by assuming that q 2 (-x 1 , x 2 , x 3 ) = q 2 (x 1 , x 2 , x 3 ), (x 1 , x 2 , x 3 ) ∈ ω × R.