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Entropies and Equilibria of Many–Particle

Systems: An Essay on Recent Research

A.Arnold∗ J.A. Carrillo† L. Desvillettes‡ J.Dolbeault§

A. Jüngel¶ C. Lederman‖ P.A. Markowich∗∗ G. Toscani††

C. Villani‡‡

This essay is intended to present a fruitful collaboration which has developed among a
group of people whose names are listed above: entropy methods have proved over the last
years to be an efficient tool for the understanding of the qualitative properties of physically
sound models, for accurate numerics and for a more mathematical understanding of nonlinear
PDEs. The goal of this essay is to sketch the historical development of the concept of entropy
in connection with PDEs of continuum mechanics, to present recent results which have been
obtained by the members of the group and to emphasize the most striking achievements
of this research. The presentation is by no way an exhaustive review of the methods and
results involving the entropy, not even in the field of PDEs. Many other researchers in and
outside Europe have contributed to the development of this field, including – but not only –
in collaboration with some of the people of the group. However, it can be claimed that this
group had a leading role over the recent years and this essay is intended to explain how this
occurred.

1 Motivation and Applications

In the fast moving development of new technologies, ranging from microelectronics to space
crafts, applied mathematics plays a substantial role in two fundamental steps of the realiza-
tion process: modeling and numerical simulation. These two issues are closely connected,
and vital to continuously improve the physical description of the relevant phenomena. In
many novel applications the modeling involves the knowledge of the behavior of systems
composed of a large number of interacting particles: electrons in micro-devices, ions in the
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plasma of fusion reactors, atoms in a Bose–Einstein condensate, gas flowing over the wings
of aircrafts, etc. One of the main features of such systems is their tendency (if left alone) to
converge to an equilibrium configuration as time becomes large (usually this time is rather
small viewed at our macroscopic scale). This is even part of our daily experience at a macro-
scopic scale: whenever we create a breeze in a room by opening a window, after shutting it
again the gas will come to rest in a very short time.

Very often, there is a thermodynamical principle underlying this property of trend to
equilibrium: as time progresses, interactions between particles lead to the increase of a dis-
tinguished functional called entropy (second law of thermodynamics, formulated at the end
of the nineteenth century). Gibbs’ principle asserts that the equilibrium distribution is the
one which achieves the maximum entropy under the constraints imposed by the conservation
laws. On the other hand, when such a large particle system is subjected to a continuous
exterior stimulus (e.g. a force field) it exhibits an interplay between non-equilibrium and
equilibrium regimes, which are of particular interest in computational physics and scientific
computing: E.g., the simulation of the air flow around a space capsule at re-entry into the
atmosphere requires to combine fluid mechanical equations for the equilibrium regions with
finer so-called kinetic models for the non-equilibrium domains. Such kinetic equations pro-
vide a very accurate description of reality by modeling the collisional particle interactions
in the position and momentum phase space. However, since they are often prohibitively ex-
pensive for numerical simulations of real three-dimensional problems, one frequently resorts
to fluid dynamical equations, which only use position (and of course time) as independent
variables. But the finer kinetic description is still crucial to understand the range of validity
of the simplified models.

Since a system in (local) equilibrium depends only on a limited number of unknowns –
certain macroscopic observables– both the identification of equilibrium configurations and the
speed of convergence towards equilibrium are of paramount importance for applications.
Knowing this convergence rate is the only way to understand the relevant time scale for
the equilibration process, which in turn is important for modeling and hence for guessing
the feasibility of numerical simulations. Driven by technological needs in semiconductor
development, plasma physics, and aeronautics the mathematical research of equilibration
processes in the kinetic theory of rarefied gases recently experienced an unprecedented thrust.

The Boltzmann equation is the most famous kinetic model, both due to its important
current applications and for historical reasons: For this model L. Boltzmann proved his cel-
ebrated H-theorem about the increase of the entropy1, which was the first analytical proof
ever of the second principle of thermodynamics. Boltzmann’s analysis can be adapted for
numerous variants of the Boltzmann equation which are used in the description of collec-
tive dynamics in physics, engineering and biology, and in the description of the temporal
transition from non-equilibrium to equilibrium in thermodynamical processes.

This report describes a collaborative research program, carried out by the research groups
of the authors, partly in cooperation with other applied mathematicians. In part already
known methods and partly the development of new analytical techniques to calculate the

1L. Boltzmann, Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen. Sitzungsberichte
der Akademie der Wissenschaften 66, (1872), 275–370 ; Lectures on Gas Theory. University of California
Press, Berkeley, 1964. Translated by S.G. Brush. Reprint of the 1896–1898 Edition. Reprinted by Dover
Publications, 1995.
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(optimal) speed of convergence towards equilibrium for both nonlinear kinetic equations and
diffusion equations (obtained by scaling limit techniques from kinetic models) were necessary.

As a result of this recent research work, several unexpected links between the study of
entropy production in nonlinear many-particle systems and the field of functional inequali-
ties were unreaveled. Thus, the findings have important implications for related problems,
mainly in the modeling of diffusion processes. These evolution processes have a variety of
applications in physics and in industry. Among other things, our results are important for
the validation of diffusion processes modeling heat transport, porous media flows, compos-
ite materials manufacturing, fast diffusion (Okuda-Dawson diffusion of plasma, solid state
physics), thin films, liquid films, and moving contact lines, which are of basic importance in
video tape production, cooling devices and biomedical devices.

A good part of the results of this joint work, which are collected at the end of this report,
can be found in the corresponding preprints in the Preprint Archive, http://hyke.org.

2 From Boltzmann’s H-Theorem to entropy methods

for partial differential equations

For a better understanding of the main ideas which are at the basis of our studies, we briefly
recall previous applications of entropy to sciences.

Since its introduction by Boltzmann more than one hundred years ago, the notion of
entropy has been widely used in the study of dissipating systems, both by physicists and
by mathematicians. It has also gained its way in engineering applications via the important
concept of information developed by Shannon2, and in statistics after the invention of Fisher’s
information3.

Different applications of the concept of entropy have been introduced by Lax4 for hy-
perbolic systems of conservation laws, and by DiPerna5 in the framework of compensated
compactness. Also, the well-celebrated theorem of DiPerna and P.-L. Lions6 on global ex-
istence of renormalized solutions of the Boltzmann equation, has a proof that is strongly
based on the use of Boltzmann’s entropy. Another, not so well-known example is the use of
the entropy in the famous work of Nash7 on the regularity of the solution of certain diffusion
processes. In all these works, the entropy is introduced for a purpose which is not its original
one, but appears surprisingly useful.

2C. E. Shannon, Collected papers. Edited by N. J. A. Sloane and Aaron D. Wyner. IEEE Press, New
York, 1993; T.M. Cover and J.A. Thomas, Elements of Information Theory. J. Wiley &amp; Sons Inc., New
York, 1991.

3R. Fisher, Theory of statistical estimation. Math. Proc. Cambridge Philos. Soc. 22 (1925), 700-725.
4P.D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves. Con-

ference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, 11. Society
for Industrial and Applied Mathematics, Philadelphia, Pa., (1973), v+48.

5R.J. DiPerna, Compensated compactness and general systems of conservation laws. Trans. Amer. Math.
Soc. 292 (1985), 383–420.

6R.J. DiPerna and P.-L. Lions, On the Cauchy problem for the Boltzmann equation: Global existence
and weak stability. Ann. of Math. (2) 130 (1989), 312-366.

7J. Nash, Continuity of solutions of parabolic and elliptic equations. Amer. J. Math. 80 (1958), 931-954.
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Twenty years ago, Cercignani8 had stated a conjecture about Boltzmann’s entropy

production which would imply an exponentially fast trend to equilibrium, but there was
no clue of the proof of this conjecture. We remark once again that the verification of this
conjecture is not merely an academic exercise, but on the contrary it has e.g. extremely
important consequences in numerical simulation of re-entry problems, since it provides a
theoretical justification of the use of fluid dynamics in the modeling. In 1989 Desvillettes9

found an interesting lower bound for the entropy production relative to the Boltzmann equa-
tion. However, this lower bound was not precise enough to settle the Cercignani conjecture.

At the beginning of the nineties, Carlen and Carvalho10 managed to establish a more
precise lower bound. More importantly, they pointed out some connections of Cercignani’s
conjecture with the field of information theory and some functional inequalities (so-called
logarithmic Sobolev inequality) which had become famous over the last decades for
their appearing in various branches of modern mathematics11 ,12. An equivalent inequality
had been shown a long time ago by Stam, working in information theory13.

The Gross logarithmic Sobolev inequality was introduced by Toscani14 into the theory
of kinetic Fokker–Planck diffusion processes. His work suggested a more physical way of
understanding the Bakry-Emery approach (originally developed in probabilistic diffusion
theory), in terms of the physical entropy production and production of entropy production.
This was at the beginning of the year 1997. Main problems were still mostly open then, but
the kinetic community in Europe was beginning to be widely interested in these topics.

3 Entropy methods

The last years have seen the rapid development of so-called entropy methods for the study
of convergence to equilibrium in many-particle systems, and have led to the solution of most
of the problems stated above.

The main idea behind entropy methods is to establish quantitative variants of the
mechanism of increase of the entropy. This approach has the merit to stand upon a clear
physical basis, and experience has shown its robustness and flexibility. The by now standard
strategy can be summed up in four steps:

• Step 1 : Identify the equilibrium state and the entropy functional, or more generally
Lyapunov functional, E, which is associated to the equation. In many cases, the

8C. Cercignani, H-theorem and trend to equilibrium in the kinetic theory of gases. Arch. Mech. 34

(1982), 231-241.
9L. Desvillettes, Entropy production rate and convergence in kinetic equations. Comm. Math. Phys. 26

(1989), 687-702.
10E.A. Carlen and M. Carvalho, Strict entropy production bounds and stability of the rate of convergence

to equilibrium for the Boltzmann equation. J. Statist. Phys. 67 (1992), 575-608.
11L. Gross, Logarithmic Sobolev inequalities. Amer. J. of Math. 97 (1975), 1061–1083
12D. Bakry and M. Emery, Diffusions hypercontractives. In Sém. Proba. XIX, 1123 Lecture Notes in

Math. Springer, 1985, 177–206.
13A. Stam, Some inequalities satisfied by the quantities of information of Fisher and Shannon. Inform.

Control 2 (1959), 101–112.
14G. Toscani, Sur l’inégalité logarithmique de Sobolev. C.R. Acad. Sc. Paris 324 (1997), 689–694.
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derivation of this Lyapunov functional is quite standard15.

• Step 2 : Given the entropy (Lyapunov) functional E, attaining its maximum at the
equilibrium f

∞
, the discrepancy between a distribution function f and the equilibrium

f
∞

is in this approach measured by E[f |f
∞

] = E(f
∞

)−E(f), thereafter called relative
entropy. Often it is not advisable to try directly to prove that f(t) converges to f

∞
, but

rather to show that E(f(t)) converges to E(f
∞

), which will be called “convergence

in relative entropy”.

• Step 3 : One considers as a main object of study the “entropy production func-

tional” P , which is just the time-derivative of the entropy, P (f(t)) = dE(f(t))/dt.

• Step 4 : One tries to quantify the following idea: if, at some given time t, f(t) is far
from f

∞
, then E(f(t)) will increase notably at later times.

When trying to implement the preceding general principles, one can succeed in prov-
ing an entropy–entropy production inequality: this is a functional type inequality
of the type P (f) ≥ Θ(E[f |f

∞
]), where H → Θ(H) is some continuous function, strictly

positive when H > 0. The main idea is that “entropy production controls relative

entropy”. Such an inequality implies an immediate solution to the problem of trend to
equilibrium. Indeed, it implies a closed differential equation on the relative entropy, of the
type −(d/dt)E[f |f

∞
] ≥ Θ(E[f |f

∞
]). Usual techniques for ordinary differential equations

(inequalities) imply that E(f(t)|f
∞

) converges to 0 as t → ∞. Moreover (and this is the
crucial point for getting relevant results), if the function Θ is known with enough details,
then one can compute an explicit rate of convergence. Thus, Θ(H) = λH (“linear bound”)
implies exponential convergence, with speed given by the constant λ, while Θ(H) = KH 1+α

(“polynomial bound”) implies polynomial rate of convergence, the relative entropy decaying
at least like t−1/α.

4 Results

The entropy method described in the previous section has been developed by the research
groups of the authors from 1997 on, starting with classical equations in kinetic theory. From
1998 on, the partners collaborated in the TMR European Network Project “Asymptotic
Methods in Kinetic Theory”(http://www.math.tu-berlin.de/˜tmr). Their studies led to the
following results:

1) the discovery of simple and sharp lower bounds for the entropy production of classical
equations of kinetic theory such as Boltzmann’s (settling the Cercignani conjecture, as we
shall explain);

2) a very complete understanding of the entropy production method, which was gen-
eralized in an unexpected way to apply to a large family of equations, including nonlinear
diffusion processes, and also mean-field diffusive equations. Moreover, the method was linked

15G.Toscani, Remarks on entropy and equilibrium states Appl. Math. Letters, 12 (1999) 19-25; J.A. Car-
rillo, A. Juengel, P. Markowich, G. Toscani and A. Unterreiter, Entropy production methods for degenerate
parabolic problems and generalized Sobolev inequalities. Monatsh.Math. 133 (2001) 1-82.
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to the field of mass transportation; this field is well-known in probability theory16, with appli-
cations to economy (going back to the Nobel-prize winner Kantorovich). The Bakry-Emery
method was re-interpretated, in a very surprising way, in terms of mass transportation, which
enabled its generalization to complicated models such as granular flows;

3) a new way of studying time-intermediate asymptotic for equations which do not possess
a steady state, but have certain self-similarity properties (such cases occur very frequently
in applications);

4) theoretical results, in the form of new functional inequalities, which came as a by-
product of this study, even if this was not the main goal of the researchers.

4.1 Entropy production functionals of Boltzmann and Landau.

The results of this section have immediate applications to the development of numerical
codes in rarefied gas dynamics and plasma physics. Moreover, they close a longstanding
open problem in kinetic theory. When grazing collisions in the Boltzmann operator prevail,
the evolution of the density in a dilute plasma is driven by the Landau operator17. An
almost complete study of the entropy production functional of the Landau equation was
performed18. By using the logarithmic Sobolev inequality Desvillettes and Villani succeeded
in proving Cercignani’s conjecture for an over-Maxwellian cross section. Also “sharp” en-
tropy production bounds for the Boltzmann collisional operator were obtained19. Physically
speaking, it was proved that Cercignani’s conjecture20 is “almost” true in the following sense:
One can choose Θ(H) = const.H1+ε, with ε > 0 as small as desired, provided that f decays
fast enough and satisfies a Gaussian lower bound estimate. The assumption of positive val-
ues for ε can not be avoided; there are counterexamples. The case of decay to equilibrium
for both Boltzmann and Landau equation with soft interaction and smoothed kernel21 was
subsequently treated. Another application of Lyapunov functionals was found22. Recent
applications of the entropy methods23 have been discussed.

16S.T. Rachev and L. Rschendorf, Mass Transportation Problems. Vol. II. Applications. Probability and
its Applications, Springer-Verlag, New York, 1998.

17L. Landau, Die kinetische Gleichung für den Fall Coulombscher Wechselwirkung. Phys. Z. Sovjet. 10

(1936), 154.
18L. Desvillettes and C. Villani, On the Spatially Homogeneous Landau Equation for Hard Potentials.

Part II: H-Theorem and Applications. Comm. Partial Differential Equations 25, n. 1-2, (2000), 261–298.
19G. Toscani and C. Villani, Sharp entropy production bounds and explicit rate of trend to equilibrium

for the spatially homogeneous Boltzmann equation. Commun. Math. Phys. 203, (1999) 667-706.
20C. Cercignani, H-theorem and trend to equilibrium in the kinetic theory of gases. Arch. Mech. 34

(1982) 231-241.
21G. Toscani and C. Villani, On the trend to equilibrium for some dissipative systems with slowing in-

creasing a priori bounds. J. Statist. Phys. 98 (2000) 1279–1309.
22G. Toscani and C. Villani, Probability metrics and uniqueness of the solution to the Boltzmann equation

for a Maxwell gas. J. Statist. Phys. 94, (1999) 619-637.
23L. Desvillettes and C. Villani, Entropic Methods for the Study of the Long Time Behavior of Kinetic

Equations. Proceedings of the 16-th ICTT Congress, Atlanta, (1999), to appear; (TMR Preprint Archive).
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4.2 Linear Fokker-Planck type diffusion equations.

A detailed analysis of entropy production inequalities for linear Fokker–Planck type equa-
tions was performed24. For this model, one can define a whole family of relative en-
tropy functionals, of the form HΦ(f |f

∞
) =

∫
Φ (f/f

∞
) f

∞
, whose “extremals” are given

by Φ(h) = h log h − h + 1 at one end, Φ(h) = (h − 1)2/2 at the other hand. For each of
these entropies one can perform a Bakry-Emery type argument to prove logarithmic Sobolev
type inequalities; and they are all the stronger as the nonlinearity in the relative entropy
is weaker (the strongest one corresponding to the h log h nonlinearity). The implications of
convergence in relative entropy have been established in great generality25. Moreover the
interplay between the Fokker–Planck equation and the field of differential inequalities26 was
systematically analyzed. This is a surprising situation where a physical system is used to
prove a result in PDE’s analysis !

4.3 Non-linear diffusions of second order with potential confine-

ment.

Maybe the most important application of entropy production methods is linked to the large–
time behavior of diffusion problems. For the first time entropy production for porous medium
and fast diffusion equations with potential confinement was studied27. Subsequently28 , non-
linear Fokker-Planck type equations and strongly coupled systems of degenerate nonlinear
parabolic equations were analyzed. These equations arise in semiconductor theory, plasma
physics, and stellar dynamics. The entropy production analysis was also extended to systems
of degenerate parabolic equations arising in non-equilibrium thermodynamics, semiconductor
energy-transport theory, and alloy solidification processes29. Additional applications include
explicit rates of convergence towards the self–similar solution of both slow (porous medium)
and fast diffusion equations. This is a famous problem which goes back to the seventies30 .
Very recently, nonlinear fast diffusion equations with finite equilibrium mass and infinite
equilibrium entropies31 were atudied. The analysis of second order diffusion equation with

24J.A. Carrillo and G. Toscani, Exponential convergence toward equilibrium for homogeneous Fokker-
Planck-type equations. Mathem. Methods Appl. Sciences 21 (1998) 1269-1286; A. Arnold, P. A. Markowich,
G. Toscani and A. Unterreiter, On Convex Sobolev Inequalities and the Rate of Convergence to Equilibrium
for Fokker-Planck Type Equations. Comm. Partial Differential Equations, 26 (2001), 43–100.

25A. Arnold, P.A. Markowich, G. Toscani and A. Unterreiter. On Generalized Csiszar-Kullback Inequali-
ties. Monatsh. Math. 131 (2000), 235–253.

26P.A. Markowich and C. Villani, On the trend to equilibrium for the Fokker-Planck equation: an interplay
between physics and functional analysis. Mat. Contemp. 19 (2000), 1–29.

27J. A. Carrillo and G. Toscani, Asymptotic L
1-decay of the porous medium equation to self-similarity.

Indiana Univ. Math. J. 46 (2000), 113-142.
28J.A. Carrillo, A. Juengel, P. Markowich, G. Toscani and A. Unterreiter, Entropy production methods

for degenerate parabolic problems and generalized Sobolev inequalities. Monatsh.Math., 133 (2001), 1–82.
29A. Juengel, P. Markowich and G.Toscani, Decay rates for solutions of degenerate parabolic systems.

Electron. J. Diff. Eqs. Conf. 06 (2001), 189-202.
30S. Kamenomostskaya, The asymptotic behavior of the solution of the filtration equation. Israel J. Math.

14 (1973), 76–87.
31C. Lederman and P.A. Markowich, On fast-diffusion equations with infinite equilibrium entropy and finite

equilibrium mass. Comm. Partial Differential Equations 28 (2003), 301–332.; J.A. Carrillo, C. Lederman,
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potential confinement has been recently generalized to models of dissipating granular flows32.
Further applications33 were also investigated.

4.4 Non-linear diffusions of fourth order.

Recent applications of the entropy production technique led to new and interesting results
for fourth order diffusion equations. Mainly, two different physical models were treated. The
first one is a nonlinear fourth-order parabolic equation arising in quantum semiconductor
modeling. Exponential convergence to equilibrium in relative entropy in the one–dimensional
case with no–flux boundary conditions34has been shown. Secondly, a model arising in the
field of the tension–dominated motion of a spreading droplet (thin–film equation)35 has been
investigated.

4.5 Mean field models.

Many physical multi–particle models include force terms, in particular self–consistent effects
described by mean field interactions. A very popular model from plasma physics is the
Vlasov-Fokker-Planck equation, in which the collision operator is the Fokker-Planck operator,
and the forces include both confinement and self–consistent interactions. If the interaction
is of Coulomb type, then one speaks of the Vlasov–Poisson–Fokker–Planck model. Some of
the authors introduced36 the entropy production method for drift-diffusion-Poisson equations
and generalized the method to systems of two particle species37. Also more general nonlinear
drift-diffusion systems with Poisson coupling38 were treated. These results are reminiscent
of the techniques developed for nonlinear second–order diffusions without self–consistent
interactions.

4.6 Spatially inhomogeneous models

Entropy production techniques have been applied to spatially inhomogeneous models in two
situations. The algebraic decay towards the global equilibrium for the linear spatially in-

P.A. Markowich and G. Toscani, Poincaré Inequalities for Linearizations of Very Fast Diffusion Equations.,
Nonlinearity 15 (2001), 1–16.

32J.A. Carrillo, R.J. McCann, C. Villani, Kinetic equilibration rates for granular media and related equa-
tions: entropy dissipation and mass transportation estimates, Rev. Mat. Iberoamericana, 19, (2003) 1–48.

33A. Arnold and J. Dolbeault, Refined convex Sobolev inequalities. (TMR Preprint Archive), (2001).
34A. Juengel and G. Toscani, Exponential decay in time of solutions to a nonlinear fourth-order parabolic

equation. in press on Z. Angew. Math. Phys. 54, (2003) 377-386
35J.A. Carrillo and G. Toscani, Large–time asymptotics for strong solutions of the thin film equation.

Commun. Math. Phys. 225 (2002), 113–142.
36A. Arnold, P. A. Markowich, G. Toscani and A. Unterreiter, On Convex Sobolev Inequalities and the Rate

of Convergence to Equilibrium for Fokker-Planck Type Equations. Comm. Partial Differential Equations
26 (2001) 43–100.

37A. Arnold, P. Markowich and G. Toscani, On large time asymptotics for drift-diffusion-Poisson systems.
Transport Theory Statist. Phys. 29 (2000), no. 3-5, 571–581.

38P. Biler, J. Dolbeault and P. A. Markowich, Large Time Asymptotics of Nonlinear Drift-Diffusion Sys-
tems with Poisson Coupling. Transport Theory Statist. Phys., 30 (2001), 521–536

8



homogeneous Fokker-Planck equation in a confining potential39. This is the first explicit
estimate of convergence towards the equilibrium in the context of the spatially inhomoge-
neous kinetic theory. Subsequently, a large-time-analysis of spatially inhomogeneous discrete
velocity models for kinetic initial-boundary value problems40. Exponential convergence to
the equilibrium is obtained here via elaborate multiplier techniques, since the mass transport
across the boundary is the main equilibrating effect.

4.7 Steady-state mean field models.

The existence of steady states for diffusive (elliptic) equations for systems with a (nonlinear)
mean field term (electrostatic conductor and, respectively, gravitational stellar mean field
models) was analyzed by bifurcation, variational and comparison techniques involving the
entropy41. The (singular) charge neutral (small Debye lenght) limit was also analyzed: for
typical parameters ranges the problem is reduced to solve an obstacle problem, showing the
occurrence of a depletion (vacuum) region41,42.

5 Expected impacts

Because of its clear physical basis, its robustness and flexibility, the entropy production
method has generated much interest in the PDE community. Our studies of trend to equi-
librium are mainly useful for problems in the modeling and numerical simulation of systems
in which a thermodynamical principle prevails. This concerns in particular the technological
development of microelectronics and nano-machines, models for systems in fluid dynam-
ics, granular materials, plasma physics, stellar media and many others. The methods give
information on the time scale for relaxation to equilibrium, and therefore on the qualita-
tive behavior of the models as well as on their validity. The obtained results yield a new
mathematical method which can be applied to a very large array of models. It is expected
to become a standard tool of the analysis of evolution PDEs. In particular, the entropy
production method helps in the rigorous derivation and validation of models and in compu-
tational physics, in particular for the justification of numerical schemes. Entropy production
techniques are by now essential in computer simulation and modeling of diffusion processes,
to justify the numerical passage from the mesoscopic level of description typical of kinetic
equations towards the macroscopic equations of fluid dynamics. More than one century after
its first introduction, entropy reveal itself to be a flexible and robust instrument both for

39L. Desvillettes and C. Villani, On the trend to global equilibrium in spatially inhomogeneous entropy-
dissipating systems. Part I : The linear Fokker-Planck equation. Preprint n. 9918 of the CMLA, ENS de
Cachan (1999). Comm. Pure Appl. Math., 54 (2001) 1–42.

40A. Arnold, J.A. Carrillo and M.D. Tidriri, Large-time behavior of discrete kinetic equations with non-
symmetric interactions. Math. Models Methods Appl. Sci. 12 (2002) 1555–1564

41L. Caffarelli, J. Dolbeault, P. Markowich and C. Schmeiser, On Maxwellian Equilibria of Insulated
Semiconductors. Interfaces Free Bound., 2 (2000), n. 3, 331-339; P. Biler, J. Dolbeault, M. Esteban, P.
Markowich and T.Nadzieja, Steady states for Streater’s energy-transport models of self-gravitating particles.
Preprint Ceremade n. 0039 (2000) (TMR Preprint Archive).

42J. Dolbeault, P.A. Markowich and A. Unterreiter, On Singular Limits of Mean-Field Equations. Arch.
Ration. Mech. Anal., 158 (2001), 319–351.

9



theory and applications.
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