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Double spinor Calabi-Yau varieties

Laurent Manivel

September 18, 2017

Abstract

Consider the ten-dimensional spinor variety S in a projectivized half-spin

representation of Spin10. This variety is projectively isomorphic to its pro-

jective dual S∨ in the dual projective space. The intersection X = S1 ∩ S2

of two general translates of S is a smooth Calabi-Yau fivefold, as well as the

intersection of their duals Y = S
∨

1 ∩ S
∨

2 . We prove that although X and Y

are not birationally equivalent, they are derived equivalent and L-equivalent.

1 Introduction

There has been a lot of recent interest in the relations, for pairs of Calabi-Yau
threefolds, between derived equivalence, Hodge equivalence and birationality. The
Pfaffian-Grassmannian equivalence provided pairs of non birational Calabi-Yau
threefolds which are derived equivalent, but with distinct topologies. Recently,
examples were found of non birational Calabi-Yau threefolds which are derived
equivalent, and also deformation and Hodge equivalent. They are constructed
from the six-dimensional Grassmannian G(2, V ) ⊂ P(∧2V ), where V denotes a
five-dimensional complex vector space. This Grassmannian is well-know to be pro-
jectively self dual, more precisely its projective dual is G(2, V ∨) ⊂ P(∧2V ∨), where
V ∨ denotes the dual space to V . Let Gr1 and Gr2 be two translates of G(2, V ) in
P(∧2V ), and suppose they intersect transversely. Then Gr∨1 and Gr∨2 also intersect
transversely in P(∧2V ∨). Moreover

X = Gr1 ∩Gr2 and Y = Gr∨1 ∩Gr∨2

are smooth Calabi-Yau threefolds with the required properties. This was established
independently in [14] and [1], to which we refer for more details on the general
background. We should note however that those remarkable threefolds had already
appeared in the litterature, see [2, 4, 5].

The purpose of this note is to show that the very same phenomena occur if we
replace the Grassmannian G(2, V ) ⊂ P(∧2V ) by the ten-dimensional spinor variety
S ⊂ P∆, where ∆ denotes one of the two half-spin representations of Spin10. Recall
that S parametrizes one of the two families of maximal isotropic spaces in a ten-
dimensional quadratic vector space. The projective dual of S ⊂ P∆ is the other
such family S∨ ⊂ P∆∨, which is projectively equivalent to S. Let S1 and S2 be
two translates of S in P∆, and suppose that they intersect transversely. Then S∨

1

and S∨
2 also intersect transversely in P∆∨. Moreover

X = S1 ∩ S2 and Y = S∨
1 ∩ S∨

2
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are smooth Calabi-Yau fivefolds of Picard number one which are deformation equiv-
alent, derived or D-equivalent (Proposition 4.2), Hodge equivalent (Corollary 4.3),
but not birationally equivalent (Proposition 4.4). Also, the difference of their classes
in the Grothendieck ring of varieties is annihilated by a power of the class of the
affine line (Proposition 4.5): in the terminology of [9], X and Y are L-equivalent.
This confirms their conjecture that for simply connected projective varieties, D-
equivalence should imply L-equivalence.

From the point of view of mirror symmetry, X and Y being D-equivalent should
have the same mirror, and in this respect their form a double mirror. Of course,
from the projective point of view they are also (projective) mirrors one of the other.

The close connection between the Grassmannian G(2, 5) ⊂ P9 and the spinor
variety S ⊂ P15 is classical, and manifests itself at different levels.

1. They are the only two Hartshorne varieties among the rational homogeneous
spaces, if we define a Hartshorne variety to be a smooth variety Z ⊂ PN of di-
mension n = 2

3
N which is not a complete intersection (recall that Hartshorne’s

conjecture predicts that n > 2

3
N is impossible) [17, Corollary 2.16].

2. They are both prime Fano manifolds of index ι = N+1

2
, while their topo-

logical Euler characteristic is also equal to N + 1; this allows their derived
categories to admit rectangular Lefschetz decompositions of length ι, based
on the similar pairs 〈OZ , U

∨〉, where U denotes their tautological bundle [7].

3. The GrassmannianG(2, 5) ⊂ P9 can be obtained from S ⊂ P15 as parametriz-
ing the lines in S through some given point [11]; conversely, S ⊂ P15 can be
reconstructed from G(2, 5) ⊂ P9 by a simple quadratic birational map defined
in terms of the quadratic equations of the Grassmannian [10].

That the story should be more or less the same for our double spinor varieties, as
for the double Grassmannians, is therefore not a big surprise. We thought it would
nevertheless be useful to check that everything was going through as expected. For
that we essentially followed the ideas of [1] and [14], to which this note is of course
heavily indebted.

Acknowledgements. We thank M. Brion, A. Kanazawa, A. Kuznetsov, J.C. Ottem,
A. Perry, J. Rennemo for their comments and hints.

2 Spinor varieties

2.1 Pure spinors

We start with some basic facts about spin representations. See [12] for more details,
and references therein. For convenience we will restrict to even dimensions, so we
let V = V2n be a complex vector space of dimension 2n, endowed with a non
degenerate quadratic form. The variety of isotropic n-dimensional subspaces of
V , considered as a subvariety of the Grassmannian G(n, 2n), has two connected
components S+ = OG+(n, 2n) and S− = OG−(n, 2n), called the spinor varieties,
or varieties of pure spinors. Moreover the Plcker line bundle restricted to S+ or
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S− has a square root L, which is still very ample and embeds the spinor varieties
into the projectivizations of the two half-spin representations of Spin2n, the simply
connected double cover of SO2n. We denote the half-spin representations by ∆+

and ∆−, in such a way that

S+ ⊂ P∆+ and S− ⊂ P∆−.

Since the two half-spin representations can be exchanged by an outer automor-
phism of Spin2n, these two embeddings are projectively equivalent. Note that the
spinor varieties have dimension n(n−1)/2, while the half-spin representations have
dimension 2n−1. The half-spin representations are self dual when n is even, and
dual one of the other when n is odd.

It follows from the usual Bruhat decomposition that the Chow ring of S± is
free, and the dimension of its k-dimensional component is equal to the number of
strict partitions of k with parts smaller than n. In particular the Picard group has
rank one, and L is a generator. Denote by U the rank n vector bundle obtained
by restricting the tautological bundle of G(n, 2n). Then the tangent bundle to S±

is isomorphic to ∧2U∨. This implies that S± is a prime Fano manifold of index
2n− 2.

2.2 The ten dimensional spinor variety

From now on we specialize to n = 5, and we simply denote S ⊂ P∆ one of the
spinor varieties. This is a ten-dimensional prime Fano manifold of index eight,
embedded in codimension five. This case is specific for several reasons, one of the
most important being that:

Proposition 2.1. The action of Spin10 on P∆− S is transitive.

In particular ∆ admits a prehomogeneous action, not of Spin10, but of GL(1)×
Spin10. This is discussed page 121 of [15].

As any equivariantly embedded rational homogeneous variety, the spinor variety
is cut out by quadrics. Moreover IS(2) ≃ V . In fact the spinor variety S has a
beautiful self-dual minimal resolution, which appears in [6, 5.1]:

0 → O(−8) → V (−6) → ∆∨(−5) → ∆(−3) → V (−2) → O → OS → 0.

For future use let us compute the Hilbert polynomial of S ⊂ P∆. Note that
H0(OS(k)) is, by the Borel-Weil theorem, the irreducible Spin10-module of highest
weight kω5 (where ω5 is the fundamental weight corresponding to the half-spin
representation ∆∨). Its dimension can thus be computed by a direct application of
the Weyl dimension formula, and we get

HS(k) =
1

2633527
(k + 1)(k + 2)(k + 3)2(k + 4)2(k + 5)2(k + 6)(k + 7).

In particular, as is well-known, S has degree 12. Finally the Poincaré polynomial
is also easy to compute:

PS(t) =
(1 + t3)(1 − t8)

1− t
.
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2.3 Self duality

Our next statement is a well-known direct consequence of Proposition 2.1:

Corollary 2.2. The spinor variety S ⊂ P∆ is self dual.

To be more precise, the dual variety of the spinor variety S ⊂ P∆ is the other
spinor variety S∨ ⊂ P∆∨, in the other half-spin representation.

As a consequence, up to the group action there are only two kinds, up to pro-
jective equivalence, of hyperplane sections of S: the smooth and the singular ones.
Let us briefly describe their geometries.

Proposition 2.3. A singular hyperplane section HSsing of S is singular along a

projective space of dimension four. Moreover HSsing admits a cell decomposition

and its Poincaré polynomial is

PHSsing
(t) = 1 + t+ t2 + 2t3 + 2t4 + 2t5 + 2t6 + 2t7 + t8 + t9.

Proof. Recall that we may consider S and S∨ as the two families of maximal
isotropic subspaces of V . Moreover, is E and F are two maximal isotropic spaces,
they belong to the same family if and only if their intersection has odd dimension.
Given a point of S, that we identify, with some abuse, to such an isotropic space
E, the set of tangent hyperplanes to S at E defines a subvariety of S∨.

Lemma 2.4. A point F ∈ S∨ defines a hyperplane in P∆ which is tangent to S
at E, if and only if dim(E ∩ F ) = 4.

Proof. The stabilizer of E in Spin(V ) has only three orbits in S∨, defined by the
three possible values for the dimension of the intersection with E. The variety of
tangent hyperplanes to S at E must therefore coincide with the set of F ∈ S∨ such
that dim(E ∩ F ) = 4.

Since an isotropic space E ∈ S such that dim(E∩F ) = 4 is uniquely determined
by E ∩ F , the hyperplane defined by F is tangent to S along a subvariety of S
isomorphic to PF∨.

For the last assertions, note that a singular hyperplane section of S is just a
Schubert divisor. By general results on the Bruhat decomposition, we know that
its complement in S is precisely the big cell. So HSsing has a cell decomposition
given by all the cells of S except the big one, and PHSsing

(t) = PS(t)− t10.

In the next statement, locally isomorphic means isomorphic up to a finite group.

Proposition 2.5. A smooth hyperplane section HSreg of S admits a quasi-homoge-

neous action of its automorphism group, which is locally isomorphic to Spin7⋊G8
a.

Moreover HSreg admits a cell decomposition and its Poincaré polynomial is

PHSreg
(t) = 1 + t+ t2 + 2t3 + 2t4 + 2t5 + 2t6 + t7 + t8 + t9.

Proof. Recall that in order to construct the half-spin representation ∆, we can
choose a decomposition V = E ⊕ F , where E and F are isotropic. Then the
quadratic form on V allows to identify F with the dual of E, which we will do in
the sequel. In particular the Lie algebra

so(V ) ≃ ∧2V ≃ ∧2E ⊕ End(E)⊕ ∧2E∨
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acts naturally on ∆ = ∧0E ⊕ ∧2E ⊕ ∧4E. Moreover [11] the spinor variety S can
be obtained as the image of the rational map

ω ∈ ∧2E 7→ [1, ω, ω ∧ ω] ∈ P∆.

Now we choose a general linear form on ∆, as in [15]: we let h = 1 + f1234 ∈
∧0E∨ ⊕ ∧4E∨ ⊂ ∆∨, where we have fixed a basis e1, . . . , e5 and its dual basis
f1, . . . , f5. (We typically use the notation eij = ei ∧ ej .) The stabilizer of the
corresponding hyperplane section of S is the stabilizer of the line [h] in P∆∨,
which will coincide with the stabilizer of h in ∆ since Spin(V ) has no non trivial
character. The Lie algebra of this stabilizer is the annihilator of h in so(V ), which
we shall now describe.

Let X = α+ Y + β∨ be an element of so(V ). Then

X(h) = tr(Y ) + (α(f1234) + β∨) + Y (f1234).

For this to be zero, we need that tr(Y ) = 0, β∨ = −α(f1234) and Y (f1234) = 0.
We may decompose Y = f5 ⊗ e + f ⊗ e5 + Z, where Z does not involve e5 nor f5.
Then Y (f1234) = tr(Z)f1234 + f5 ∧ e(f1234). So we need tr(Z) = 0 and e must be
a multiple of e5. But since also tr(Y ) = 0, we finally get Y = f ⊗ e5 + Z, where
f does not involve f5 and tr(Z) = 0. Of course it is convenient to consider Z as
a traceless endomorphism of G = 〈e1, e2, e3, e4〉. So the stabilizer of h is finally
s ≃ ∧2E ⊕G∨ ⊕ sl(G). Since E = G⊕ C, we finally get

s = sl(G)⊕ ∧2G⊕G⊕G∨.

A more careful analysis would allow to check that sl(G)⊕∧2G is actually a subal-
gebra of s isomorphic to so7, and acting on G⊕G∨ as on the spin representation.
But the important point for us will be that sl(G) is itself a subalgebra of s, of
maximal rank. Choose a Cartan subalgebra h of sl(G); it is the Lie algebra of
a three-dimensional torus H acting on our hyperplane section HSreg. We claim
that this torus has only finitely many fixed points on HSreg. Indeed, as an sl(G)-
module, the spin representation ∆ is isomorphic to the full exterior algebra of G.
In particular its weights have multiplicity one, except zero which is the weight of
both ∧0G and ∧4G. The fixed points of H on HSreg are given by the intersection
of HSreg with the projectivized weight spaces; each weight of multiplicity one gives
at most one fixed point; the zero weight space gives a projective line in P∆ which
is not contained in the hyperplane h = 0, hence also gives at most one fixed point.
This proves our claim. Then the Byalinicki-Birula decomposition yields a cell de-
composition of HSreg. The Betti numbers are given by the Lefschetz hyperplane
theorem.

Finally, the fact that the automorphism group acts on HSreg with an open orbit
can be verified infinitesimaly: it is a simple computation to check that the stabilizer
of the point 1 + e12 − e34 − e1234 has the correct dimension.

The self-duality of S is preserved at the categorical level, in the sense that
S ⊂ P∆ and S∨ ⊂ P∆∨ are homologically projectively dual [7, Section 6.2]. As
already mentionned in the introduction, the derived category of coherent sheaves
on the spinor variety S has a specially nice rectangular Lefschetz decomposition,
defined by eight translates of the exceptional pair 〈OS , U

∨〉 (where U denotes the
rank five tautological bundle).
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3 Double spinor varieties

In this section we introduce our main objects of interest, the double spinor varieties

X = S1 ∩ S2,

where S1 = g1S and S2 = g2S are translates of S by g1, g2 ∈ PGL(∆). Up to
projective equivalence, we can of course suppose that X = S ∩gS for g ∈ PGL(∆).

3.1 Local completeness

Let G = PGL(∆), with its subgroup H = Aut(S) ≃ PSO10. The family of double
spinor varieties is by definition the image of a rational map

G/H ×G/H 99K Hilb(P∆).

Moreover the diagonal left action of G is by projective equivalence, hence factors
out when we consider local deformations of a given X . At the global level, the
quotient [(G/H × G/H)/G] should be thought of as the moduli stack of double
spinor varieties. One could reproduce the analysis of the similar stack made in [1]
for the double Grassmannians, but we will not do that. We will only check the
local completeness of our family.

Proposition 3.1. The family of smooth double spinor varieties is locally complete.

Proof. We first observe that H1(X,TS1|X) = 0. This is a direct consequence of
the vanishing of Hq(S1, TS1(−k)) for 0 < k < 8 and q > 1, which follows from the
Kodaira-Nakano vanishing theorem since this cohomology group is Serre dual to
H10−q(S1,ΩS1

(k − 8)). Hence the map

H0(X,NX/S1
) ≃ H0(X,NS2/P|X) −→ H1(X,TX)

is surjective. Here we abbreviated P∆ by P. What remains to prove is that the
composition

H0(P, TP)
r

−→ H0(X,TP|X)
s

−→ H0(X,NS2/P|X)

is also surjective. The tensor product of the resolutions of OS1
and OS2

gives a free
resolution of OX as a OP-module, from which the surjectivity of r easily follows.
The surjectivity of s follows from the vanishing of H1(X,TS2|X), which we already
verified.

3.2 Invariants

Proposition 3.2. Any smooth double spinor variety X = S1 ∩ S2 is a Calabi-Yau

fivefold. Moreover Hq(X,OX) = 0 for 0 < q < 5, and H5(X,Z) is torsion free.

Proof. The smoothness of X is equivalent to the fact that S1 and S2 meet trans-
versely. Then X has dimension five. Suppose to simplify notations that S1 = S.
By generic perfection, the OS -module OX has a free resolution

0 → OS(−8) → VS(−6) → ∆∨
S(−5) → ∆S(−3) → VS(−2) → OS → OX → 0. (1)

6



This immediately implies that h0(OX) = 1, so that X is connected, and that the
relative dualizing sheaf ωX/S = OX(−8). Since ωS = OS(−8), this implies that X
has trivial canonical bundle.

Moreover, since S is Fano of index eight, the line bundles OS(−k) are acyclic
for 0 < k < 8. This implies that for q > 1, Hq(X,OX) ≃ Hq+5(S,OS(−8)) =
Hq+5(S, ωS), which is zero for q < 5.

Finally, applying Sommese’s results as in [14, Lemma 3.3], to A = S1 and
B = S2 in P15, we get that the relative homotopy groups πi(S1, X) = 0 for i ≤ 5.
In particularX is simply connected, and by the Bogomolov decomposition theorem,
it is Calabi-Yau. Moreover, after passing from homotopy to homology, we deduce
from Hi(S1, X,Z) = 0 for i ≤ 5 that H5(X,Z) is torsion free.

Knowing the Hilbert polynomial of S, we also deduce that the Hilbert polyno-
mial of X is

HX(k) =
2

5
k(k2 + 1)(3k2 + 17).

In order to compute the other Hodge numbers of the double spinor varieties,
it will be convenient to use the following observation, already made in [5] for the
double Grassmannian varieties: when g goes to identity, X = S ∩ gS degenerates
to the zero locus in S of a global section of its normal bundle ∧4U∨ = U(2). This
bundle is generated by global sections, being homogeneous and irreducible, with

H0(S, U(2)) = Vω4+ω5

by the Borel-Weil theorem. So the zero locus of a general section is a smooth Calabi-
Yau fivefold which is deformation equivalent to the smooth double spinor varieties;
in particular the family of those zero-loci is not locally complete, something that
seems to be quite exceptional. The dimension of this family can be checked to
coincide with the expected dimension dimPVω4+ω5

− dimSO10 = 209− 45 = 164.
In particular it will define a codimension one subvariety of the local deformation
space.

Note that other kinds of degenerations, this time singular, were considered in
[2]: typically, joins of two elliptic quintics (which are linear sections of the Grass-
mannian) in two disjoint P4’s in P9. Such degenerations were studied in connection
with the Horrocks-Mumford vector bundle, in order to describe the moduli space
of (1, 10)-polarized abelian surfaces. It would certainly be interesting to study the
similar story in our setting. The analogous singular degenerations are of course
the joins of two K3 surfaces of degree 12 (which are linear sections of the spinor
variety) in two disjoint P7’s in P15.

Proposition 3.3. The non zero Hodge numbers of a smooth double spinor variety

are hp,p = 1 for 0 ≤ p ≤ 5, and

h0,5 = h5,0 = 1, h1,4 = h4,1 = 165, h2,3 = h3,2 = 7708.

Proof. We may suppose that X is the zero locus in S of a general section of U(2) =
∧4U∨. Then we have the conormal exact sequence

0 → U∨
X(−2) → ΩS|X = ∧2UX → ΩX → 0

7



and a Koszul complex

0 → OS(−8) → U(−6) → ∧2U(−4) → ∧2U∨(−4) → U∨(−2) → OS → OX → 0.

Using this complex we can compute the cohomology of ΩS|X and U∨
X(−2) from

the cohomology of ΩS and U∨(−2) and their twists on S which is controlled by
the Borel-Weil-Bott theorem. We find that Hq(X,ΩS|X) = 0 for q = 0, 2, 3,
while H1(X,ΩS|X) ≃ H1(S,ΩS) = C. Moreover Hq(X,U∨

X(−2)) = 0 for 0 ≤
q ≤ 4. This implies that Hq(X,ΩX) = 0 for q = 0, 2, 3, and that the restric-
tion map H1(S,ΩS) → H1(X,ΩX) is an isomorphism. Moreover the dimension
of H4(X,ΩX) is the same as that of H1(X,TX), which readily follows from the
discussion of the proof of Proposition 3.1:

h1(X,TX) = dimG− 2 dimH = 255− 2× 45 = 165.

Let us now consider the bundle of two-forms on X , which is resolved by the skew-
symmetric square of the conormal sequence, that is

0 → S2U∨
X(−4) → ∧2UX ⊗ U∨

X(−2) → S211UX → Ω2
X → 0.

A tedious application of Borel-Weil-Bott allows to check that

H2(S211UX) = C, H3(∧2UX ⊗ U∨
X(−2)) = 0, H4(S2U∨

X(−4)) = 0.

By a standard spectral sequence argument, this implies that H2(Ω2
X) is at most

one dimensional, hence in fact one dimensional. At this point, the only missing
Hodge number is h3(Ω2

X) = 1 + χ(Ω2
X). We compute this Euler characteristic as

χ(S211UX) − χ(∧2UX ⊗ U∨
X(−2)) + χ(S2U∨

X(−4)), by reducing once again to a
computation on the spinor variety.

Corollary 3.4. The Picard group of X is free of rank one, generated by OX(1).

3.3 Uniqueness

In this section we prove that the only translates of S that contain X = S ∩ gS
are S itself, and gS. In particular there is a unique way to represent X has an
intersection of two translates of the spinor variety. We follow the approach of [1].

Proposition 3.5. Let N denote the normal bundle to S in P∆. Then the restric-

tion of N to X is slope stable.

Proof. Recall that we denoted by U the rank five tautological bundle on S. There
is an isomorphism N ≃ ∧4U∨ = U(2), so we just need to prove that U∨

X is stable.
Let E be a subsheaf of rank e of U∨

X , with 1 ≤ e ≤ 4. Then c1(E) = tL for some
integer t. Taking double duals we get a non zero section of ∧eU∨

X(−t), so we just
need to prove that H0(X,∧eU∨

X(−t)) = 0 for any t > 0. This would follow from the
resolution of OX as an OS -module, if we knew that Hq(S,∧eU∨(−t)) = 0 for t > 0
and q ≤ 9. This is not exactly true. A careful application of the Borel-Weil-Bott
theorem yields the following statement.

Lemma 3.6. Suppose that 1 ≤ e ≤ 4, 0 ≤ q ≤ 9 and t > 0.
Then Hq(S,∧eU∨(−t)) = 0, except for the three following cohomology groups:

8



1. H9(S,∧2U∨(−8)) = C,

2. H1(S,∧3U∨(−2)) = C,

3. H0(S,∧4U∨(−1)) = ∆.

We can nevertheless conclude the proof of the proposition.
Indeed, Hq(S, U∨(−t)) = Hq(S,∧2U∨(−t)) = 0 for all t > 0 and all q ≤ 5,

hence H0(X,U∨
X(−t)) = H0(X,∧2U∨

X(−t)) = 0 for all t > 0 since the resolu-
tion of OX as an OS-module has length five. The same conclusion holds for
H0(X,∧3U∨

X(−t)) and any t > 0, since the non vanishing of H1(S,∧3U∨(−2))
could only transfer to H0(X,∧3U∨

X). Finally, H0(X,∧4U∨
X(−t)) = 0 for t > 0

except possibly for t = 1. This means that U∨
X could possibly contain a rank four

subsheaf E such that c1(E) = L. Then its slope

µL(E) = c1(E)L
4/4 = L5/4 < µL(U

∨
X) = c1(U

∨
X)L4/5 = 2L5/5.

So we can nevertheless conclude that U∨
X is indeed slope stable.

The next step is to prove the following statement:

Proposition 3.7. Suppose X ⊂ S1, where S1 is a translate of S. Let N1 is the

normal bundle to S1 in P∆. Then the restriction of N1 to X determines S1.

Proof. Suppose S1 = S to simplify the notations. Since S is cut out by quadrics,
our strategy will be to reconstruct its quadratic equations from NX , or equivalently,
from UX . The key observation is that there is a natural isomorphism

H0(S, U(1)) ≃ H0(S,OS(1))
∨.

Indeed, U∨ is the irreducible bundle associated to the representation of highest
weight ω1 = ǫ1. The highest weight of its dual U is −ǫ5 = ω4 − ω5. Therefore the
highest weight of U(1) is ω4, and the assertion follows from the Borel-Weil theorem.

Now there are natural morphisms

H0(S, U∨)⊗H0(S, U(1)) −→ H0(S, U∨ ⊗ U(1)) −→ H0(S,OS(1)),

the right hand side being induced by the trace map U∨⊗U → OS . This determines
the quadratic equations of S, as the image of the induced map

V = V ∨ = H0(S, U∨) −→ H0(S, U(1))∨ ⊗H0(S,OS(1)) ≃
≃ H0(S,OS(1))

⊗2 −→ Sym2H0(S,OS(1)).

What we just need to do is therefore prove that the restriction morphisms to X for
those spaces of sections are isomorphisms. More precisely, we need that

H0(S, U∨) −→ H0(X,U∨
X), H0(S, U(1)) −→ H0(X,UX(1))

are isomorphisms. This again follows from a straightforward application of the
Borel-Weil-Bott theorem.

By the same argument as in [1], we deduce that:

Proposition 3.8. If X = S1 ∩S2 is a transverse intersection, then the only trans-

lates of S that contain X are S1 and S2.
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4 Double mirrors

Recall that the spinor variety S ⊂ P∆ is projectively dual to the other spinor
variety S∨ ⊂ P∆∨. We may therefore associate to X = S1 ∩ S2 ⊂ P∆, the other
double spinor variety Y = S∨

1 ∩ S∨
2 ⊂ P∆∨. When X is smooth, its presentation

as the intersection of two translated spinor varieties is unique, and therefore Y is
uniquely defined.

4.1 Derived equivalence

Proposition 4.1. The double spinor varieties X and Y are simultaneously smooth.

Proof. Suppose S1 = g1S and S2 = g2S and let x ∈ X . Then x = g1E1 = g2E2 for
some E1, E2 in S. The intersection of S1 and S2 fails to be transverse at x if and
only if there is a point y ∈ P∆∨ such that the corresponding hyperplane Hy in P∆
is tangent to both S1 and S2 at x. By Lemma 2.4, this means that y = g1F1 = g2F2

for some F1, F2 in S∨, such that dim(E1 ∩ F1) = dim(E2 ∩ F2) = 4. In particular
y belongs to g1S

∨ ∩ g2S
∨ = S∨

1 ∩S∨
2 = Y and by symmetry, the intersection of S∨

1

and S∨
2 fails to be transverse at y. This implies the claim.

Proposition 4.2. When they are smooth, the double spinor varieties X and Y are

derived equivalent.

Proof. This is a direct application of the Main Theorem in [3]. As we already men-
tionned, the fact that (S1,S

∨
1 ) and (S2,S

∨
2 ) are pairs of homologically projectively

dual varieties was established in [7, Section 6.2]. In fact the results of [3] imply
the stronger statement that X and Y are derived equivalent as soon as they have
dimension five, even if they are singular.

As the authors informed us, Proposition 4.2 should also follow from the results
of [8]. From the point of view of mirror symmetry, X and Y being D-equivalent
should have the same mirror: they form an instance of a double mirror.

Applying Proposition 2.1 of [14], we deduce (recall from Proposition 3.2 that
H5(X,Z) and H5(Y,Z) are torsion free):

Corollary 4.3. The polarized Hodge structures on H5(X,Z) and H5(Y,Z) are

equivalent.

4.2 Non birationality

Now we sketch a proof of the following result, according to the ideas of [14, Proof
of Lemma 4.7].

Proposition 4.4. Generically, the mirror double spinors X and Y are not bira-

tionally equivalent.

Proof. Since X and Y have free Picard groups of rank one, both generated by
the hyperplane divisor, we are reduced to proving that they are not projectively
equivalent. Since they are both contained in a unique pair of translates S1 and
S2 of the spinor variety, we need to show that in general, there is no projective
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isomorphism u : P∆ ≃ P∆∨ such that u(S1) = S∨
1 and u(S2) = S∨

2 , or u(S1) = S∨
2

and u(S2) = S∨
1 .

Let us fix once and for all a linear isomorphism u0 : P∆ ≃ P∆∨ such that
u0(S1) = S∨

1 . There is a linear automorphism g of P∆ such that S1 = g(S2). It is
easy to check that the existence of u is equivalent to the existence of v, w in Aut(S1)
such that either

u0g
tu−1

0 = vg−1w or u0g
tu−1

0 = vgw.

We follow the approach of [14] to prove that for a general g, such elements of
H = Aut(S1) do not exist.

First case. In order to exclude the possibility that u0g
tu−1

0 = vg−1w, one might
exhibit anH×H-invariant function on g = SL(∆) such that F (g−1) 6= F (u0g

tu−1

0 ).
To do this, recall that the quadratic equations of the spinor variety S ⊂ P∆ are
parametrized by V ≃ V ∨ ⊂ S2∆∨. The invariant quadratic form q ∈ S2V ∨ is thus
mapped to an invariant element Q ∈ S2∆∨ ⊗ S2∆∨. (In fact this element belongs
to the kernel of the product map to S4∆∨, since the latter contains no invariant.)
Dually there is an invariant element Q∨ ∈ S2∆⊗ S2∆, and the function we use is
F (g) = 〈Q∨, gQ〉.

Second case. As observed in [14], it suffices to show that there exists some parti-
tion λ such that the space of H-invariants in Sλ∆ is at least two-dimensional. We
provide an abstract argument for that. Suppose the contrary. Let G = SL(∆).
By the Peter-Weyl theorem, the multiplicity of Sλ∆ inside C[G/H ] is the dimen-
sion of its subspace of H-invariants. If this dimension is always smaller or equal
to one, C[G/H ] is multiplicity free, which means that H is a spherical subgroup

of G. Then by [16, Theorem 1], H has an open orbit in the complete flag variety
Fl(∆). But the dimension of H is just too small for that to be true, and we get a
contradiction.

4.3 L-equivalence

Recall that L denotes the class of the affine line in the Grothendieck ring of complex
varieties.

Proposition 4.5. The double spinor varieties X and Y are such that

([X ]− [Y ])L7 = 0

in the Grothendieck ring of varieties.

Note that when X and Y are not birational, [X ]− [Y ] 6= 0 in the Grothendieck
ring (see [9, Proposition 2.2]).

Proof. The proof is the same as for Theorem 1.6 in [1]. We consider the incidence
correspondence

Q

��
❅❅

❅❅
❅❅

❅❅

��⑧⑧
⑧⑧
⑧⑧
⑧⑧

S1 S∨
2
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where Q is the variety of pairs x ∈ S1, y ∈ S∨
2 such that x belongs to the hyperplane

Hy. The fiber of p2 over y is S1 ∩ Hy; it is singular if and only if y also belongs
to S∨

1 , hence to Y . In this case the fiber is isomorphic to HSsing, otherwise it is
isomorphic to HSreg. This yields two fibrations with constant fibers, which may
not be Zariski locally trivial but must be piecewise trivial, like in [13, Lemme 3.3].
We deduce that in the Grothendieck ring of varieties,

[Q] = [Y ][HSsing] + [S∨
2 − Y ][HSreg].

The same analysis for the other projection yields the symmetric relation

[Q] = [X ][HSsing] + [S1 −X ][HSreg].

Taking the difference (recall that S1 and S∨
2 are isomorphic varieties), we get

0 = ([X ]− [Y ])([HSsing ]− [HSreg]).

But HSsing and HSreg both have cell decompositions (Propositions 2.3 and 2.5),
with the same numbers of cells except that HSreg has one less in dimension seven.
Hence [HSsing]− [HSreg] = L7.
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