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An optimal control approach to Photoacoustic Tomography

Maı̈tine Bergounioux, Thomas Haberkorn and Yannick Privat

Abstract— Quantitative photoacoustic tomography is a hy-
brid imaging technique for soft tissues. It consists in exciting
the body to reconstruct with a laser pulse and measuring
the induced acoustic waves due to the inhomogenous heating
and then expansion of the tissues. We present a simplified
mathematical model of this phenomenon, which writes as a
system of two coupled equations, namely a wave equation and
a diffusion approximation of a radiative transfer equation.
Following [5], the inverse problem of reconstructing the optical
absorption coefficient is written as an optimal control problem
where the control is the parameter we seek to reconstruct.
Necessary conditions for optimality of a control and numerical
results for this approach are given in the case of a small number
of sensors.

I. INTRODUCTION

Photoacoustic imaging is a biomedical imaging technology
that combines the optical absorption contrast of different
media with the high resolution of acoustic waves. It is aimed
at imaging soft tissues and, since it is non-ionizing and non-
invasive, it has great potential as a safe way to localize
heterogeneities in a body.

The general idea of the photoacoustic effect is simple.
The tissue to be investigated is irradiated with a short-pulse
laser at a given wavelength, usually near infrared where
the optical absorption contrast is the highest. This energy
is then converted to heat which expands inhomogeneously
the medium. This expansion generates a pressure wave that
is captured by transducers outside the body.

This phenomemon is used to reconstruct the hetero-
geneities in the body from measurements of the acoustic
waves outside the body. This gives rise to an inverse problem
on which various methods have been successfully applied.
To cite a few, we can mention the popular filtered back-
projection approach (see for example [7], [8], [12]), that
assumes a closed observation surface and are primarily used
to approximate the initial condition of the acoustic wave
phenomemon. The time reversal method (see for example
[9], [10]) also uses a closed observation surface to estimate
the initial pressure distribution for the wave phenomenon.
Extended literature exists on those two approaches. We will
use the approach presented in [5] that, contrary to the two
mentioned previously do not restrict the observation domain
to be a closed surface and is therefore more flexible.
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This paper is structured as follows. In section II, we
introduce the equations of the model, a diffusion equation
for the illumination of the body and a wave equation for
the propagation of the acoustic wave. In section III, the
inverse problem we propose to solve is presented, namely
the reconstruction of the optical absorption coefficient from
acoustic wave measurements. In section IV, we present the
optimal control formulation to this inverse problem. We also
give the optimality system the optimal control has to satisfy.
The originality of this approach is that we do not decompose
the inverse problem in two separate ones but tackle it by
directly using the coupled system of equations modeling
the phenomenon, a similar approach can be found in [11].
Section V gives numerical results of the solving of our
optimal control problem, when using only a small number
of measurements. Finally we conclude and give some ideas
of future works.

II. PHOTOACOUSTIC MODEL

The photoacoustic effect consists in 3 main processes: the
light transport, the thermal expansion and the pressure wave
generation and propagation.

The light transport is the optical effect in which the source,
a nanosecond laser pulse, propagates. As it propagates, the
light is subjected to absorption and diffusion, and is governed
by the Boltzmann equation [1]. However, we use a simplified
version of this equation and model the optical effect with the
diffusion equation{

µaΦ−div(D∇Φ) = S , in Ω

Φ(∂Ω) = 0 (1)

Where Φ(x) is the fluence, µa(x) the unknown absorption
coefficient, D(x) the known diffusion coefficient and S(x)
the known source. The domain Ω is the illuminated body.

The second effect is the thermal expansion that, due to
it’s time-scale, is neglected in our model. Finally, the third
effect, which is in fact coupled with the thermal expansion,
is the generation and propagation of the acoustic wave. The
pressure jump is generated by the energy deposition H(x) =
Γ(x)µa(x)Φ(x) that is used as the source of a wave equation

∂ 2 p
∂ t
− v2

s ∆p = 0, in (0,T )×B,

p([0,T ],∂B) = 0

p(0,B) = 1ΩΓµaΦ

∂ p
∂ t (0,B) = 0

(2)

Where p(t,x) is the cumulative pressure, Γ(x) is the known
Grüneisen coefficient, vs(x) is the known speed of sound and



1Ω is the characteristic function of Ω (= 1 on Ω, 0 outside).
The set B contains Ω and is large enough so that the acoustic
wave initially in Ω does not reach ∂B.

III. INVERSE PROBLEM

In this work, we want to reconstruct the absorption coeffi-
cient µa in Ω, from acoustic wave measurements outside
Ω (in B \Ω) and the knowledge of the light source S
that induced the wave. The setting we will consider in our
numerical experiments is described in Figure 1.
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Fig. 1. Setting of the 2 domains and distribution of µa and D.

The domain in which µa is unknown is Ω, a 2 by 2 cm
square. The domain B simply has to be large enough to allow
the acoustic wave to travel without rebounding on ∂B, this
will be numerically taken care of with appropriate boundary
conditions on ∂B.

In B ⊃ Ω, µa = µ0
a = 0.1 cm−1 except in an ellipse on

the left side and a disk on the right side of Ω where µa =
µ0

a +10%, as pictured in Figure 1. The diffusion coefficient
D is assumed to be equal to D0 = 0.03 cm except on a disk
centered in Ω where it is equal to D0 +10%.

The measurements are taken on ω =∪i∈{N,E,S,W}ωi or ω =
∪i∈{E,W}ωi, see Figure 1. The ωi, i ∈ {N,E,S,W}, are small
disks that in our numerical experiments will be represented
by one pixel of the finite difference grid. So there will only
be a small amount of measurements available to reconstruct
µa with an observation domain that is not closed. We denote
by pobs the acoustic wave measurements in [0,T ]×ω .

Finally, we will consider 4 light sources Sk, k= 1, · · · ,4, of
the diffusion equation (1). Those sources are located inside Ω

near it’s boundary so that the diffusion equation approxima-
tion is valid. Depending on the numerical experiments, the 4
light sources will either all be placed on the left side of Ω or
evenly distributed near ∂Ω, with the same angular positions
as the ωi, i ∈ {N,E,S,W}. Each light source will give rise
to a set of measurements pobs

k on [0,T ]×ω . This idea of
considering multiple sources has already been explored in
[3] for instance.

IV. OPTIMAL CONTROL PROBLEM

As said in the introduction, the main difference between
our approach and the classical ones is that we don’t consider
2 distinct inverse problems: one to reconstruct the initial
condition H of the wave equation (2), and another one to
reconstruct the µa map from this initial condition. We only
consider one inverse problem to reconstruct the µa map
directly from the pressure measurements and the 2 coupled
equations (1) and (2). The problem we consider is then the
following optimal control problem

min
µa∈Uad

1
2

s

∑
k=1

∫
[0,T ]×ωk

(pk[µa]− pobs
k )2+

α

2

∫
Ω

(µa−µ
0
a )

2, (3)

where pk[µa](t,x), k = 1, · · · ,s is the solution of the coupled
system for the given light source Sk and the control µa. The
integer s is the number of performed experiments, that is the
number of different light sources Sk to consider (4 in our
case). And the admissible control set is

UAd = {µa ∈ L∞(Ω)|µmin
a ≤ µa(x)≤ µ

max
a ,a.e. in Ω} (4)

The reason for the square on the data fitting term (pk[µa]−
pobs

k )2 is physical because it is then akin to an energy
term, as well as mathematical since it adds regularity. The
penalization term is added to ensure the existence of a
solution to the problem. Note however that it would be
interesting to use a less smooth penalization term such as
an L1-norm or the total variation.

To see problem (3) in the framework of optimal control
problem, one has to see µa as the control and equations (1)
and (2) as state equations. In [5], we considered a related
optimal control problem but with a non-stationnary Fluence
equation and with µ = (µa,D) as the control. From Theorem
3.1 in [5], and with some modifications because we only
consider µa as control and not (µa,D), we can deduce the
following result.

Theorem 1: Assume that α > 0. Then, problem (3) has at
least one solution µ̄a.
Additionnaly, in [6], the authors prove the following unique-
ness result in a very similar case.

Theorem 2: Assume that α is large enough, then problem
(3) has a unique solution µ̄a.
Note that in [6], the Fluence equation is a non stationnary dif-
fusion equation and the large enough statement is explicitely
quantified.

In [5], we derived first order necessary conditions for a
µ̄ to be optimal. In this simplified framework, we can still
derive first order necessary conditions and they lead to 2
adjoint equations, one for the wave equation (2), the other
for the diffusion equation (1). We denote by qp in [0,T ]×B,
and qΦ in Ω the adjoint state to the pressure p and to the
Fluence Φ. The adjoint state to the pressure qp, satisifes the



following equation
∂ 2qp

∂ t
− v2

s ∆qp = 1ω(p− pobs), in (0,T )×B,

qp([0,T ],∂B) = 0

qp(T,B) =
∂qp

∂ t
(T,B) = 0

(5)

It is important to note that the initial condition of this
equation is given at time T and not time 0.

The adjoint of the Fluence, qΦ, satisfies the following
equation{

µaqΦ−div(D∇qΦ) =− ∂qp

∂ t (0, ·)Γµa , in Ω

qΦ(∂Ω) = 0
(6)

As mentioned before, we use the subscript k to refer to the
k-th experiment, with source Sk. That is we denote by qp

k the
adjoint state to pk and qΦ

k the adjoint state to Φk.
Again, from [5], we can deduce the following necessary

conditions for a control µ̄a to be a solution of (3).
Theorem 3: Assume µ̄a is an optimal solution to problem

(3). Then, there exists qp
k , qΦ

k , k = 1, · · · ,s such that
• The 2s equations (2) for the pressure and (1) for the

Fluence are satisfied (with the s sources Sk, k = 1, · · · ,s)
• The 2s adjoint state equations (5)-(6) are satisfied by qp

k
and qΦ

k respectively, for k = 1, · · · ,s.
• For every µa ∈Uad, the following inequality holds

〈−
s

∑
k=1

(∂tq
p
k (0, ·)Γ+qΦ

k )Φk

+α(µ̄a−µ
0
a ) ,µa− µ̄a〉L2(Ω) ≥ 0. (7)

V. NUMERICAL RESULTS

To illustrate this approach, we will use Theorem 3 to
reconstruct the µa map given in Figure 1. Note that µa
is known in B \Ω and is equal to µ0

a . Also note that all
the other parameters of equations (1) and (2) are assumed
to be known, in particular the diffusion coefficient D, the
Grüneisen coefficient Γ and the speed of sound vs. We use
D as in Figure 1, Γ = 0.225 and vs = 1500 m/s. The distance
unit is normalized so that Ω is the unit square (so the distance
unit is 2 cm). The time unit is also normalized so that the
speed of sound is one. The duration T of an experiment is
set so that the acoustic wave emanating from Ω has enough
time to completely exit Ω and encounter the sensors ω

(T =
√

2 after normalization). The sources Sk are taken as
small (0.05 normalized distance of radius) disks inside Ω of
unit magnitude after normalization.

The numerical simulations are performed using the Scilab
software. We use finite difference discretization in time and
space to compute the solutions of state equations (1)-(2)
and adjoint state equations (5)-(6). Equations (2) and (5)
use a staggered scheme coupled with a perfectly matched
layer absorbing boundary for the spatial domain, see [4],
to avoid having to consider a large domain B. Indeed, the
only requirement for domain B is that the acoustic wave
emanating from Ω does not rebound on ∂B. Ω is discretized
with a 64 by 64 grid.

The following steps are used for the simulations :
1) Solve equations (1)-(2) for each source Sk (k = 1, · · · ,s)

with the real µa map to obtain the measurements pobs
k

in [0,T ]×ω . Note that ω is the reunion of 4 (first
example) or 2 (second example) pixels of the spatial
discretization.

2) Use µa = µ0
a as initial guess for the solution of

problem (3) and α = 0.1 (for example) for the initial
regularization weight.

3) Use a nonlinear conjugate gradient to cancel, up to a
given precision,

−
s

∑
k=1

(∂tq
p
k (0, ·)Γ+qΦ

k )Φk +α(µ̄a−µ
0
a ), (8)

with respect to µa. Let us call µ̄α
a the obtained solution.

4) If α is small enough, then µ̄α
a is taken as our solution.

Otherwise, take α = α/10 and return to step 3 with
µa = µ̄α

a as initial guess.
Note that we do not use the projection of µa into Uad so that
(7) is equivalent to the cancellation of (8). Also note that, in
order to compute (8) we need to first solve equation (1) and
use the result Φk as the initial condition of equation (2) that
is solved from time 0 to T and gives pk. Then, equation (5)
is solved from time T to 0, using the source 1ω(pobs

k − pk)
and gives qp

k . Finally, qΦ
k is computed from equation (6) and

∂tq
p
k (0, ·).

We will use two numerical examples. The first, in section
V-A considers the case of 4 simulated experiments in which
the 4 sources are all in the left side of Ω. This choice will
lead to the right side of Ω not being well enough illuminated.
The second example, in section V-B considers the case of
4 simulated experiments in which the 4 sources are evenly
distributed in Ω, thus illuminating it more homogeneously.

A. 4 LEFT SIDED SOURCES

In this simulation, we consider 4 sources, located on
the left side of Ω. Figure 2 gives the sum, in log-scale
of the simulated initial conditions to equation (2), that is
∑

4
k=1 ΓµaΦk on Ω. From this Figure, one can see the position

of the 4 sources, they correspond to the highest values.
The measurements are performed thanks to 4 sensors

located at ωN,E,S,W from Figure 1. The computation of
the solution of problem (3) is done following the steps
introduced above, from α = 0.1 to α = 10−6. The solution
µ̄a found is pictured on Figure 3. The regions outlined in
white represent the location of the real µa changes, not
of the reconstructed one. In this reconstruction of µa, the
left ellipse is appropriately found, but the right disk does
not even start to show. This absence is not surprising since
the light sources barely illuminate the place where this
disk is. The reconstruction of the left ellipse, though not
perfect, is encouraging considering the small number of
measurements used. Note that we cannot expect to have a
µa with sharp changes because of the choice of the L2 norm
as regularization. In order to have a µa solution of problem
(3) with sharp changes we could for instance consider a total
variation regularization, see [2].



Fig. 2. Sum of log10 of initial condition of Wave equation (2) for 4 sources
distributed on the left (∑s

k=1(log10 ΓµaΦk +10−6)).

Fig. 3. µa reconstruction for 4 sources distributed on the left and 4 sensors.

Moreover, the maximum value of µa in the ellipse is
preserved. Note that the shape of the reconstructed µa hints
at a wave originating from the sensor ωW .

B. EVEN DISTRIBUTION OF 4 SOURCES

In this simulation, we consider 4 evenly distributed
sources. Figure 4 gives the sum, in log-scale, of the simulated
initial conditions of equation (2), that is ∑

4
k=1 ΓµaΦk on Ω.

Again, the 4 highest values in Figure 4 give the locations of
the 4 sources. We can see that the body is illuminated more
homogeneously than in the previous example. In particular,
the left ellipse of µa as well as its right disk are well
illuminated.

The measurements are performed thanks to only 2 sensors,
located at ωE,W from Figure 1. The computation of the
solution is done using the same steps as in the previous
example. This solution is pictured on Figure 5. Again, the
real µa changes are outlined in white. This reconstruction
of µa shows both the left ellipse and the right disk that are
accurately located. Again, the µa hints at the location of the

Fig. 4. Sum of log10 of initial condition of Wave equation (2) for 4 sources
distributed evenly (∑s

k=1(log10 ΓµaΦk +10−6)).

Fig. 5. µa reconstruction for 4 evenly distributed sources and 2 sensors.

2 sensors since we can see waves in it.
Note that if in the numerical solving, we do not use the

known diffusion coefficient D but a uniform one equal to D0

everywhere, the reconstruction is barely different. By this,
we mean that for the generation of the measurements we
use the non uniform D (with a δD disk at the center of Ω)
but for the reconstruction algorithm we use a uniform D.

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this work, we gave new numerical results stemming
from the optimal control formulation of a Photoacoustic
tomography problem introduced in [5]. We showed that we
are able to properly reconstruct the absorption coefficient µa
from a small set of measurements. It is expected that using
more measurements will lead to a sharper reconstruction.
This approach as many advantages since it is flexible in term
of the observation domain. It can also be used with variable



speed of sound or other parameters like the Grüneisen one
or the Diffusion.

B. Future Works

Many directions can be taken to build on those results. One
could consider a more complete inverse problem in which
µa and D are unknown. Indeed, this was the framework
in [5] but the first numerical simulations showed that the
reconstruction of D does not yet yield good results. We can
however expect that by multiplying the measurements and
the number of different sources (and thus experiments), we
should be able to improve this reconstruction of D. Another
direction would be to change the regularization function
on µa to allow for sharp changes of the solution. A good
candidate for such a regularization term would be the total
variation of µa, see [2].
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