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Abstract—With the generalization of cloud infrastructures
usage, energy consumption has become a major issue. Scheduling
heuristics have been proposed to optimize the resource usage of
data center so as to take down the energy consumption. This
paper tackles the problem with a different approach by taking
into consideration the availability of renewable energy. First we
formalize the green energy aware scheduling problem (GEASP)
and propose a global model based on constraint programming
as well as a search heuristic to solve it efficiently. The proposed
model integrates the various aspects inherent to the dynamic
planning in a data center: heterogeneous physical machines,
various application types (i.e., active or online applications
and batch applications), actions and energetic costs of turning
ON/OFF physical machines, interrupting/resuming batch appli-
cations, CPU and RAM resource consumption, tasks migration,
migration costs, and integration of green energy availability. The
model can therefore reduce both the costs related to energy
consumption and the carbon footprint of a data center. We
evaluate the model against the state-of-the-art framework PIKA
on real-world workload and solar power traces.

I. INTRODUCTION AND RELATED WORK

Over the years, energy consumption has become a major
concern in the field of information technologies. Amazon
reports that the cost related to the energy consumption over
a 3-years period is more than 40% of the overall cost of its
data center [11]. Besides, in [3], Barrosso shows that over
the lifetime of a data center, the expenses related to the
energy consumption can easily surpass the hardware cost. In
the literature, most work that attempts to reduce the energetic
cost of a data center proceeds by reducing the overall energy
consumption [9], [8]. Apart from the economic aspect, massive
energy consumption also has repercussion on the environment,
as the brown energy is produced from polluting sources.
In this paper, we propose not only to reduce the brown
energy consumption to handle the economic issue, but also
to maximize green energy consumption to take care of the
environmental issue.

The energy consumption of a system comprises a static and
a dynamic part [16]. The static part is linked to the system
size and the hardware type, and the dynamic part is linked to
resources usage. In [15] and [6], Li et al. propose a novel
framework, oPportunistic schedullIng broKer infrAstructure
(PIKA) that aims at reducing the brown energy consumption
of a small/medium-size data center. According to the amount
of green energy available at each time slot PIKA turns
physical machines ON/OFF, pauses, resumes or migrates jobs.
However, this opportunistic scheduling is rather reactive than

proactive. In this paper, we first formalize the green energy
aware scheduling problem (GEASP). Second, we propose a
global constraint programming model as well as a search
heuristic and show that our model can significantly optimize
the overall energy consumption of a data center. The proposed
model simultaneously takes into account each of the following
aspects:

• compatibility with both
active and batch applica-
tion types,

• applications resources
requirements varying
over the time,

• migration of applica-
tions from one physical
server to another,

• energetic cost of appli-
cation migrations,

• interruption/resumption
of batch applications,

• compatibility with he-
terogeneous physical
servers i.e. the resources
are variable from one
physical server to an-
other,

• turning ON/OFF the
physical servers and
resources management,

• extra energy consump-
tion to turn a physical
server ON/OFF,

• green energy integration.

The main advantages of constraints programming include
a certain level of flexibility that PIKA lacks. Indeed, thanks
to this feature, the proposed model is also compatible with
business constraints inherent to data center infrastructure man-
agement as well as with user preferences. Figure 1 illustrates
different aspects of this context.
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Fig. 1: The GEASP model computes a global and pro-active
configuration plan that minimizes the brown energy and max-
imizes the green energy consumption of the data center while
satisfying all the constraints. Hardware constraints are related
to memory/CPU limitations and turning the servers ON and
OFF. The application constraints are related to the interruption,
the migration, and the placement of the applications as well
as to some business constraints (ban, lonely, spread, . . . ).



The rest of the paper is organized as follows: Section II
describes the problem and gives all the necessary definitions
and Section III formalizes the GEASP problem and presents
our model. In Section IV, we present the search heuristic to
find suitable solutions to the GEASP. Finally, we evaluate our
contribution using real data center workloads and green energy
traces in Section V, and we conclude in Section VI.

II. PROBLEM DESCRIPTION AND DEFINITIONS

We consider the problem of scheduling in a small/medium
size data center with limited resources [5]. The scheduling
should minimize the brown energy consumption and maximize
the green energy consumption. We recall that a data center is
made up of one or more servers that host the applications. We
have two types of applications, the active and the batch. Both
types of application are introduced in Section II-A.

A. Definitions

Active Application An active application is an application
that is executed throughout the time horizon without being
interrupted. Each active application is described by its:
• Memory consumption, i.e. is the constant amount of

RAM consumed by the application within the server it
is hosted.

• CPU Usage, the processing power used by a server to
execute the application; it may vary from one time slot
to the next throughout the horizon.

• Migration cost, i.e. the extra energy consumption needed
to migrate an application from one server to another.

An active application ai of memory requirement memi,
CPU usage cpui and migration cost migri is denoted
ai(memi, cpui,migri).

Batch Application A batch application or batch job is an
application that can be interrupted and resumed. A time slot
during which a batch job is running is called a runtime. Each
batch application is characterized by its :
• Memory consumption: its memory consumption of a

batch job is constant.
• CPU Usage: CPU usage of a batch job is constant.
• Duration.
• Migration cost.
• Slack. The total amount of time during which it is

interrupted shall not exceed a given slack.
A batch job bi of memory memi, CPU usage cpui, du-
ration di, migration cost migri and slack si is denoted
bi(memi, cpui,di,migri, si).

Server We define a server in this problem as a machine that
hosts the applications. It is characterized by:
• its Memory limit is the total amount of memory that is

shared among the hosted applications.
• its CPU limit is the total amount of processing power that

can be shared among hosted applications.
• its ON (resp. OFF) energy is the constant amount of

energy required to turn the server ON (resp. OFF).

• its load/consumption relation, which relates the CPU load
of the server to its energy consumption.

• its id is a unique integer that identifies each server.
A server i of memory MEMi, CPU limit CPUi, ON energy
Eoni

, OFF energy Eoffi
, load/consumption relation r and id

idi is denoted si(MEMi,CPUi,Eoni
,Eoffi

, ri, idi).

Our goal is to compute an energy efficient configuration
plan for the data center which, while reducing the amount
of brown energy used and increasing the proportion of green
energy, copes with the operational and the business constraints
of different application types. Next definition introduces the
notion of Configuration plan.

Configuration plan Given a time horizon, a set of active and
batch applications and a data center, a configuration plan is a
scheduling that meets the following requirements:
• At any time slot through out the horizon, it specifies for

each active application an allocated server. A migration
occurs when the host of an active application changes
from one time slot to the next.

• It specifies when each batch job starts, when it ends, and
eventual interruption and resumption times. For any batch
job, the configuration plan specifies the hosting server at
any timepoint. A migration occurs when the host changes
from one time slot to the next.

• For each server of the data center, it specifies every time
slot when the server is turned ON or OFF.

The configuration plan is energy efficient when it maximizes
the green energy consumption of the data center. Indeed, the
availability of green energy fluctuates over the time. Typical
example is the solar energy.

Section III formalizes this problem into a constraint model.

III. MODEL OF THE PROBLEM

In this section, we propose a constraint based model to
capture the already mentioned aspects of the green energy
aware scheduling problem in virtualized data centers. Before
detailing different parts of the model, we first shortly recall key
notions of constraint programming in the context of virtualized
data centers.

A. Background on constraint satisfaction problems

Constraint satisfaction problem A constraint satisfaction
problem (CSP) [17] is a triple P = (X,D,C) where :

• X is an tuple of n > 0 variables, X =
〈x0, x1, . . . , xn−1〉.

• D is a tuple of n > 0 domains, D = 〈D0, D1, . . . , Dn−1〉
such that xi ∈ Di.

• C is a tuple of k > 0 constraints C = 〈C0, C1, ..., Ck−1〉.
We now define the notion of constraint.

Constrain Given a CSP P = (X,D,C), a constraint Ci ∈ C
is a pair 〈Ri, Si〉 where Si is a subset of X , and Ri is a
relation over Si. The relation Ri specifies the tuples of values
forbidden among the Cartesian product of the domains of the
variables in Si.



Solution of a CSP Given a CSP P = (X,D,C), a solution
S of P is a tuple 〈v0, v1, ..., vn〉 such that vi ∈ Di and for
every constraint Ci = 〈Ri, Si〉 ∈ C, the relation Ri holds.

B. Constraint programming for the green energy aware
scheduling problem in virtualized data center

Constraint programming is a suitable solution to solve
most scheduling problems [2]. In the case of a green energy
aware scheduling problem, constraint programming is well
suited as it has a good expressiveness to precisely model
each component of the problem. It also enables to add any
new constraint to an existing model. In [13], Hermenier et
al. present four side constraints that may be required by
the administrator of a system or by the users to restrict the
placement of the applications into servers.
• Ban. At a given time t, the system administrator may

want to turn off a server to perform a hardware or a
software maintenance.

• Spread. In order to achieve tolerance to hardware fail-
ures, an application may use replication. For the fault
tolerance, the application and its replication should run
at any time on different servers.

• Lonely. For some reasons, an application may require to
run alone in a server.

• Capacity. Sometimes, due to some shared resources,
it might be useful to limit the number of applications
executed in a server. The capacity constraint is used to
ensure that the number of applications hosted on a given
server is below a given limit.

This list of side constraints is not exhaustive. Besides the
good expressiveness and the flexibility, the solving process
of a constraint satisfaction problem through constraint propa-
gation [17] ensures that all the constraints of the problem are
satisfied.

We now formalize the definition of a green energy aware
scheduling problem.

Green energy aware scheduling problem A green energy
aware scheduling problem (GEASP) is a tuple such that
P = {S,A,B,T,E} where:
• S is a set of servers.
• A is a set of active applications.
• B is a set of batch jobs.
• T is the time horizon: an integer specifying the total

number of time slots to consider.
• E is a time series of length T which specifies the quantity

of green energy available at each time slot.
In Sections III-C up to III-G, we present how we formalize

each aspect of a GEASP into a constraint satisfaction problem.
We will use the toy example III.1 to illustrate our model.

Example III.1. Throughout this paper, we use the following
toy GEASP. P = {S,A,B, T,E} where:

• S = {s0(3, 50, 3, 3, r, 0), s1(3, 50, 3, 3, r, 0)} where we
have r(cpu load) = 10 + cpu load

• A = {ao(1, 20, 2)}

• B = {b0(2, 20, 3, 1, 5), b1(2, 20, 3, 1, 5)}
• T = 10h
• E = 10, 10, 10, 90, 90, 10, 10, 10, 48, 43

An energy efficient configuration for the GEASP is given
below:

• Slot 0 s0 is turned ON,
and a0 is placed on s0.

• Slot 1 No change.
• Slot 2 No change.
• Slot 3 b0 is launched on

s0. s1 is turned ON and
b1 is launched on it.

• Slot 4 No change.
• Slot 5 b0 and b1 are

interrupted and s1 is
turned OFF.

• Slot 6 No change.
• Slot 7 No change.
• Slot 8 b0 is resumed on

s0.
• Slot 9 b1 is resumed and

migrated from s1 to s0.

C. Turning a server ON or OFF
To model the action of turning a server ON and OFF, we

have to consider two aspects. First we need to consider the
inherent energetic costs of these actions, and second we need
to ensure that no application can be scheduled on a switched
off server.

1) Energetic cost: As seen in the definition of a server
in Section II-A, each server has a turning ON/OFF cost.
Let P = {S,A,B, T,E} be a GEASP. For each server
Si(MEMi,CPUi,Eoni

,Eoffi
, ri, idi) ∈ S, a set of T + 1

boolean variables ON(i,t) indicate at each time slot t(t ∈
[−1, T − 1]) if the server is ON or OFF. ON(i,−1) = false
indicates that server Si is initially off.

Turning a server ON or OFF at a time slot t con-
sumes an extra energy at this time t. For each server
Si(MEMi,CPUi,Eoni

,Eoffi
, ri, idi), the model of this en-

ergetic cost relies on T switch task variables. Before we detail
these variables, we first introduce the notion of task.

Task A task i is a tuple taski(si, di, ei, < ri >, hi) where:
• si is the start time of the task.
• di is the duration of the task.
• ei is the end of the task.
• < ri > is the list that contains all the resource require-

ments of the task. A task might consume one or more
resources of different types.

• h is the server hosting the task.

Given a server si(MEMi,CPUi,Eoni
,Eoffi

, ri, idi), the
energy consumption of its switch task at time t depends of
the server si being turned ON or OFF at that time t. It is a
variable switch energyi,t given by :

switch energyi,t = Eoni
∗ (ON (i,t−1) < ON (i,t)

+ Eoffi ∗ (ON (i,t−1) > ON (i,t)). (1)

where a term like ON (i,t−1) > ON (i,t) is interpreted as a
0 − 1 variable that will be assigned value 1 (resp. 0) if the
corresponding conditions holds (resp. doesn’t hold).

Example III.2. According to the configuration plan given in
Example III.1 we have:



• switch energy0,0 = 3 Since server s0 is turned ON at
t = 0.

• switch energy1,3 = 3 Since server s1 is turned ON at
t = 3.

• switch energy1,5 = 3 Since server s1 is turned OFF at
t = 5.

• switch energy0,t = 0 for all t 6= 0 and besides
switch energy1,t = 0 for all t ∈ {0, 1, 2, 4, 6, 7, 8, 9}

2) Availability of a server: The availability of a server is
the constraint that makes a server unavailable for scheduling
at any time slot during which it is switched off. Since any
application consumes a strictly positive amount of memory
on the server on which it runs, a server can not host any
application if it has no free memory available. Thus to make
a server unavailable, we set its available memory to 0. To do
so, we create memory tasks whose aim is to fill any server’s
memory at any time t when the server is off.

In order to avoid creating T extra tasks, we add a memory
resource memi,t to the switch tasks of Section III-C1. The
memory consumption mi,t of the switch task switch(i,t) of
a server si(MEMi, CPUi, Eoni , Eoffi , ri, idi) at time t is
given by :

memi,t = MEMi ∗ (ON(i,t) = 0). (2)

The switch tasks of the model are therefore indexed by
the server index i and the time slot t, they are denoted
switch(i,t)(t,1, t+ 1, < energyi,t,memi,t >, i).

Section III-D here after describes how we model active
and batch applications using the notion of task introduced in
Definition III-C1.

D. Modeling the applications

The most difficult part of a GEASP is the model of the
applications. The model should take into consideration the
following requirements:
• [Host]. At any time t any active application and any

uninterrupted batch job should be hosted on a server.
• [Migration]. Both active and batch applications can be

migrated from one server to another one. These migra-
tions have costs that should be taken into consideration.
Details on how to model the migration costs are given in
Section III-E.

• Active applications are never interrupted.
• Batch jobs can be interrupted as long as the corresponding

slack constraint is not violated.
In order to meet these requirements, we model each active
application ai(memi, cpui,migri) (resp. each batch appli-
cation bi(memi, cpui,di,migri, si)) by a set Sai (resp. Sbi )
of tasks.

1) Active applications: As active applications are not
interrupted, each active application ai(memi, cpui,migri)
is modeled by a set Sai

of T tasks that are denoted
sub(ai,t)(t,1, t+ 1, < memi,t, cpui,t, energyi,t >,hi,t), t
from 0 to T − 1 where:

• memi,t (resp. cpui,t) is the memory consumption (resp.
the CPU usage) of the task ai(memi, cpui,migri) at
time t.

• hi,t is the server that hosts ai(memi, cpui,migri) at
time t.

• energyi,t is the amount of extra energy consumed by the
server hi,t to host sub(ai,t).

2) Batch applications: Since the duration of each batch
job is fixed, any batch job bi(memi, cpui,di,migri, si)
is modeled by a set Sbi of di tasks which are denoted
sub(bi,j)(s(bi,j),1, e(bi,j), < memi,j, cpui,j, energyi,j >,hi,j)
where j ∈ [0, di − 1].

The batch applications can be interrupted and resumed.
Therefore s(bi,j) and e(bi,j) are variables taking values in
[0, T − 1] with the following constraints:

∀j ∈ [1, di − 1], s(bi,j) ≤ e(bi,j−1) (3)

The slack constraint is modeled as follows:

e(bi,di−1) − s(bi,0) − di ≤ slack. (4)

For both active and batch jobs, the variables energyi,t and
energyi,j specify how much extra energy is needed by a server
to host this given application. Its value varies from one host
to another. Details on how this value is set are presented in
Section III-G.

To ensure that a server s in which a task is scheduled at
time t is ON at that time, we add the following constraint for
each active and batch tasks.

∀sub(ai,t)(t, 1, t+1, < memi,t, cpui,t, energyi,t >, hi,t) ∈ Sai
,

hi,t = s⇒ ON(s,t) = 1 (5)

∀sub(bi,j)(j, 1, j+1, < memi,j , cpui,j , energyi,j >, hi,j) ∈ Sbi ,

hi,j = s⇒ ON(s,t) = 1 (6)

E. Migration cost

This section models the migration cost of both
active and batch applications. For any active
application ai(memi, cpui,migri) and any task
sub(ai,t)(t,1, t+ 1, < memi,t, cpui,t, energyi,t >,h(i,t)) ∈
Sai , we create a migration task
migr(ai,t)(t,1, t+ 1, < migr energyi,t >,h(i,t)) where
migr energyi,t is the energy that is consumed whenever this
active task ai is migrated from one server to another at time
t. Its value is given by:

migr energyi,t =

{
0 t = 0

migri ∗ (h(i,t) 6= h(i,t−1)) t > 0

Similarly, we create migration tasks migr(bi,j) for batch
applications.

Example III.3. According to the configuration plan given in
Example III.1, we have:

• migr energyb1,9 = 1 since batch application b1 is
migrated from server s1 to server s0 at slot 9.



F. Memory consumption and CPU usage

Each server has a limited quantity of memory and CPU. An
application can be scheduled on a server si ∈ S at time t if and
only if server si has enough resources to satisfy the application
requirements. To take these constraints into consideration, we
use a cumulative constraint [1], [14].

Cumulative constraint Given a set T of single resource
tasks, the cumulative constraint ensures that at any time t,
the cumulative resource of the set of tasks scheduled at t does
not exceed a fixed limit.

The standard definition of the cumulative constraint given
above assumes that there is one single host for the tasks.
We will instead use the cumulatives constraint [4], a slightly
generalized version of the cumulative constraint which allows
more than one host, i.e. more than one server. The cumulatives
constraint:

cumulatives(Tasks,Machines)

where

• Tasks is a set of single resource tasks of the form
task(start, duration, end, resource, host).

• Machines is a set of fixed resource hosts of the form
machine(id, resource limit).

holds if, for each machine m, at each point t, where at least
one task is assigned to machine m, the cumulative resource
of the set of tasks assigned to m at t is less than or equal to
(respectively greater than or equal to) the capacity associated
with machine m.

The host of a task is the id of the server where it is sched-
uled. Before we detail the use of the cumulatives constraint
in the case of memory and CPU usage, we first introduce the
notion of restriction of a task to a given resource.

Restriction of a task Given a task t(start, duration, end,<
r1, r2, . . . rn >, host) its restriction to the resource r ∈<
r1, r2, . . . rn > is the task t r(start, duration, end, r, host).

To model the memory consumption and CPU usage
of a GEASP, we will use two cumulatives constraint,
cumulatives(Memory Tasks,Memory Machines) and
cumulatives(CPU Tasks, CPU Machines) where:

• Memory Tasks is the set of active tasks, batch tasks
and switch tasks restricted to the memory resource.

• CPU Tasks is the set of active tasks, batch tasks and
switch tasks restricted to the CPU resource plus a set of
complementary tasks that we use to compute the energy
consumption of each server at each time slot. Details on
these complementary tasks are given in Section III-G.

• Memory Machines and CPU Machines are the set
of machines built in the following way:

1 Memory Machines =
{machine mem(idi,MEMi) such that
∃si(MEMi, CPUi, Eoni

, Eoffi , ri, idi) ∈ S}

2 CPU Machines =
{machine cpu(idi, CPUi) such that
∃si(MEMi, CPUi, Eoni , Eoffi , ri, idi) ∈ S}

Example III.4. Figure 2 shows how the cumulatives constraint
takes into consideration the RAM limit of each server at each
time slot in the configuration plan given in Example III.1.
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Fig. 2: cumulatives constraint for the RAM resource limits

G. Minimizing the brown energy consumption
Before we detail how to minimize the brown energy con-

sumption of a data center, we first need to specify how to
compute the energy consumption of a server. We assume server
si is already turned ON at time t ∈ [0, T − 1] and there is no
migration scheduled at time t. Then the energy consumption
ei,t of si at time t is obtained from Equation (7) by:

ei,t = r(loadsi,t) (7)

where loadsi,t is the CPU load in percent of
si at time t. Therefore to know the energy
consumption of a given active (resp. batch) task
sub(ai,t)(t,1, t+ 1, < memi,t, cpui,t, energyi,t >,hi,t)
(resp. subt,1,t+1,<memi,j,cpui,j,energyi,j>,hi,j)) at time t, we
first need to know the CPU capacity of the host hi,t (resp.
hi,j) in which it is scheduled at time t. The problem is that
hi,t (resp. hi,j) is not initially fixed, so we have no way to
know in advance the CPU capacity of the host. To overcome
this issue, we introduce the element constraint [18].

element constraint Given a list L of integer values, two
integer variables index and V , the element(L, index ,V )
constraint ensures that V is the indexth element of L i.e
V = Lindex.

Let CPU Capacities be the list of the CPU capacities of
the servers. The list is sorted in ascending order of servers id’s.
For any time t ∈ [0, T−1] and for any active (resp. batch) task
sub(ai,t)(t,1, t+ 1, < memi,t, cpui,t, energyi,t >,hi,t)
(resp. sub(bj,j)(s(bi,j),1, e(bi,j), < memi,j, cpui,j, energyi,j

>,hi,j)) we state:

element(h,CPU Capacities,HostCapacity) (8)

The energy consumption energy of the task is therefore
given by:

energy = r(
cpu ∗ 100

HostCapacity
) (9)



We now present the energetic model that we used in this
paper to characterize the function r for all the servers.

Energetic model: As seen in Section II-A, each server is
characterized by a relation r that relates its workload to its
energy consumption. In [15], Li et al. experimented multiple
tests on Taurus node at the Lyon site of Grid’5000, a large-
scale and versatile test-bed for experiment driven research.
Each node has 12 cores and each core presents 8.3% overall
CPU utilization. They came out with the conclusion that,
the overall energy consumption of the node depends on the
number of activated cores. Table I summarizes these results.

# cores 0 1 2 3 4 5 6
Power (W) 97 128 150 158 165 171 177
# cores 7 8 9 10 11 12
Power (W) 185 195 200 204 212 220

TABLE I: Experimental energy consumption of a 12 cores
node according to the number of activated cores

Following the idea of the PowerModel of CloudSim [7], we
use Table I to implement the function getPower() in order to
compute the energy consumption of a server. The pseudo code
of getPower() is given in Algorithm 1. We thus have :

energy(h, t) = r(load(h, t)) = getPower(CPUh, cpu usedh,t)
(10)

where CPUh is the CPU capacity of host h and
cpu usedh,t is the amount of CPU used in host h at time
t.

Algorithm 1 Procedure getPower() to compute the energy
consumption of a server according to its CPU load
Require: CPU Capacity . The CPU capacity of the server
Require: CPU Used . CPU usage of the server
Power table← [97, 128, 150, 158, 165, 171, 177, 185, 195,
200, 204, 212, 220]
Step← 1

12 × CPU Capacity
A← 1

Step+1 × CPU Used
B ← min(A+ 1, 13)
EA ← Power tableA
EB ← Power tableB
Energy ← EA + ((EB − EA) × CPU Used ×
10)/(CPU Capacity × 10)
return Energy

The value energy(h, t) only takes into consideration the
load of the host h. To obtain the actual consumption of the
data center, we need to take into consideration all the extra
energy costs resulting from turning the servers ON and OFF,
and migrating the tasks over the different hosts.

Equation 11 states the total energy consumption of the data
center at a given time slot t.

Et =
∑
h

energy(h, t) +
∑
a

migr energy(ai,t)

+
∑
b

migr energy(bi,t) +
∑
h,t

switch energy(h,t) (11)

where:
• migr energy(ai,t) (resp. migr energy(bi,t)) is the extra

energy consumed at time t whenever the active task a
(respectively batch task b) is migrated from one host to
another at time t.

• switch energy(h,t) is the extra energy consumed at time
t when host h is switched ON or OFF at time t.

Equation 12 computes the total amount of brown energy
consumed by the data center at time t.

Bt = max(0, Et −Gt) (12)

where Gt is the amount of green energy available at time
slot t. Finally, Equation 13 computes the total amount of
brown energy consumed by the data center throughout the
time horizon.

B =

T−1∑
t=0

Bt (13)

Example III.5. Figure 3 shows the overall energy con-
sumption of the data center with the configuration plan of
Example III.1. As we can see from the plot, the batch jobs
are run, migration are executed, and servers are turned ON
preferably during time slots when the green energy is highly
available. This is achieved by our heuristic that we present in
Section IV.
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Fig. 3: Energy consumption of the configuration plan. The red
curve is the green energy availability per slot

An energy efficient configuration plan is one that minimizes
the total amount of brown energy B consumed by the data
center throughout the horizon. Thus the overall objective of
the GEASP is to minimize B.

IV. SOLVING THE GEASP

According to the problem size, it might take a long time to
find an optimal solution to a constraint satisfaction problem
and to prove its optimality. To overcome this issue, it is
important to have a dedicated search strategy that speeds up
the process of finding a good solution.



We propose a dynamic heuristic that targets the starts of the
batch tasks. Once these variables are fixed, the other variables
of the problem will be fixed by propagation.

Since the batch tasks are the ones whose start and end
variables are flexible, the intuition of the heuristic is to try
to schedule them at times when the green energy is highly
available. To do so, we proceed as follows.

1) Variables ordering: Let b(mem, cpu, d,migr, slack) be
a batch application modeled by the set Sb of batch tasks of the
form sub(b,i)(s(b,i), 1, e(b,i), < mem, cpu, energy >, h). The
order in which the start variables of the batch tasks in Sb are
fixed is s(b,0), s(b,1), . . . , s(b,d−1). The purpose of this order
is to take into consideration the precedence constraint stated
in Equation 3 through out the search.

2) Values ordering: This part of the search strategies deals
with the order in which values are chosen from the domain
of each start variable. Let s(b,i) be the start of sub(b,i). We
have dom(s(b,i)) = [0, T − 1]. Following the intuition, the
idea is to try to fix s(b,i) to a value t ∈ dom(s(b,i)) when the
green energy availability is maximal. Doing this ensures that
we maximize the green energy consumption. We proceed in
two steps:

1 Sort step. This is the first step that is performed
each time a start variable has to be instantiated.
Let E = e0e1 . . . eT−1 be the green energy of a
GEASP where E(t) = et, t ∈ [0, T − 1] is the
amount of green energy available at time t. We sort
the values et in descending order and obtain the list
SortedE = e(0,t0), e(1,t1), . . . , e(T−1,tT−1) such that
∀e(i,ti) ∈ SortedE,E(ti) = eti = e(i,ti)
This gives the order in which values are chosen from
dom(s(b,i)), namely t0, t1, . . . , tT−1.

2 Update step. This step is performed immediately
after a start variable is fixed. Let a batch task
sub(b,i)(s(b,i), 1, e(b,i), < mem, cpu, energy >, h) and
suppose s(b,i) is fixed to t ∈ [0, T − 1]. Since running
sub(b,i) consumes energy, this step updates the green
energy available at time t. This update is done by
decrementing E(t) by energy. The following constraint
updates the green energy.

E ← e0, e1, . . . , et − energy, et+1, . . . , eT−1 (14)

The Sort step and the Update step presented in this Section
sketch the general idea of the heuristic to solve the GEASP. It
is possible to optimize the Sort step by avoiding a total sorting
over all the indices. The advantage of doing a partial sort is
that, since some tasks are linked through a precedence relation,
it does not delay too much the first tasks of the precedence
chain.

V. EVALUATION

To measure how effective is the model when used in a
small/medium size data center, we run simulations on real
workload traces.

As stated in [6], finding real traces for data center’s activity
is very difficult. For this, we studied anonymized traces
provided by EasyVirt, a French SME monitoring Cloud data
centers. We used 3 real workload data sets. Each data set
reports the activity of a Cloud provider with 55 servers over a
12 hours period. The traces reports client requests for virtual
machines with specified CPU and RAM needs. In the context
of a virtualized data center, the virtual machines are used to
encapsulate the applications that are executed on the physical
machines. Before we present the results of the evaluation, we
first give details on the used data set.

Data set description

Each of the 3 real workload data set is organized as follows:
(1) We have 55 servers, where each server is characterized

by a limited amount of CPU and RAM resource.
(2) A set of 567 active applications to be encapsulated

into virtual machines. As introduced in section III-D,
each active application is executed throughout the time
horizon. In our case, the time horizon is 12 hours. We
see from the traces that the CPU and RAM needs of
an active application may vary from one time slot to
another. This translates into 6804 = 567 × 12 active
tasks to handle. The migration cost in terms of energy
consumption is also specified.

(3) A set of 2268 batch applications to be encapsulated
into virtual machines. Each batch application has a fixed
execution time, a slack value, a fixed start time and a
migration cost. The requirements of the batch applications
also vary from one time slot to another. This translates
into more than 6500 batch tasks to handle.

(4) The renewable energy availability. Each data set includes
a time series of length 12. This time series is the record
of the renewable energy available every hour.

To evaluate our model and to follow the same protocol as
in [15], we compared the results to those of a baseline first
fit algorithm. The first fit algorithm tries to schedule the task
as soon as possible when there is enough resources available.
Both models were implemented in Prolog with the constraint
solver Sicstus Prolog [10].

Figures 4a and 4b show how the model is able to move
a considerable amount of the data center workload to slots
where green energy is available.
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Fig. 4: Workload scheduling.



Total E.C Brown E.C. Green E.C

Baseline 78811 39019 39792
GEASP Model 78694 18500 60194

-0.14% -52.58% +51.27%

TABLE II: Energy saving on the first real trace (W).

Total E.C Brown E.C. Green E.C

Baseline 78309 38699 39610
GEASP Model 78374 18196 60178

+0.08% -51.98% +51.92%

TABLE III: Energy saving on the second real trace (W).

Tables II, III and IV give details on how the GEASP
model significantly reduces the brown energy consumption and
increases the green energy consumption.

Total E.C Brown E.C. Green E.C

Baseline 79100 36195 42905
GEASP Model 78868 14670 64198

-0.29% -59.46% +49.62%

TABLE IV: Energy saving on the third real trace (W).

On average compared to baseline, GEASP model reduces
by 55% the brown energy consumption of the data center and
increases by 50.9% its green energy consumption. Although
PIKA [15] has a much higher green energy consumption as
compared to the baseline algorithm, it does so with two major
drawbacks. First, unlike PIKA [15] that uses opportunistic
scheduling, our model finishes all the tasks not later than the
baseline. This advantage comes from the time horizon that
is fixed such that no task is allowed to be scheduled beyond
it. If the time horizon constraint is dropped, then there will
eventually be room for more optimization. For example, an
amount of the workload at slot 11 of Figure 4b could be
opportunistically postponed to a later slot where there is more
green energy available. But this in turn will result to the tasks
being finished later than with the baseline algorithm. Second,
while the GEASP model slightly decreases the total energy
consumption (Brown + Green), PIKA increases it by up to
31%. Most of this energy consumption increase occurs during
slots that have a high green energy availability, therefore the
green energy integration ratio is increased.

VI. CONCLUSION

Energy consumption and environmental issues have become
major concerns over the recent years in cloud computing. In
this paper, we introduced the green energy aware scheduling
problem (GEASP) to optimize the energy consumption of
a small/medium size data center. Using our model to solve
the GEASP, we could optimize the energy consumption of a
small/medium size data center in three ways. First, we slightly
decrease its overall energy consumption, second we consid-
erably decrease its brown energy consumption and finally we

significantly increase its green energy consumption. To achieve
these results, our solution relies mostly on batch applications
whose execution can sometimes be delayed to periods with
high green energy availability. Active applications on the other
hand can not be suspended. Future work involves optimizing
the energy consumption of active applications, by means of
adapting the quality of service (QoS) with respect to the green
energy availability [12].
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