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We investigate the Polyakov loop effects on the QCD phase diagram by using the strong-coupling (1/g2)
expansion of the lattice QCD (SC-LQCD) with one species of unrooted staggered quark, including O(1/g4)
effects. We take account of the effects of Polyakov loop fluctuations in Weiss mean-field approximation (MFA),

and compare the results with those in the Haar-measure MFA (no fluctuation from the mean-field). The Polyakov

loops strongly suppress the chiral transition temperature in the second-order/crossover region at small chemical

potential (µ), while they give a minor modification of the first-order phase boundary at larger µ. The Polyakov

loops also account for a drastic increase of the interaction measure near the chiral phase transition. The chiral and

Polyakov loop susceptibilities (χσ, χℓ) have their peaks close to each other in the second-order/crossover region.

In particular in Weiss MFA, there is no indication of the separated deconfinement transition boundary from the

chiral phase boundary at any µ. We discuss the interplay between the chiral and deconfinement dynamics via

the bare quark mass dependence of susceptibilities χσ,ℓ.

PACS numbers: 11.15.Me, 12.38.Gc, 11.10.Wx, 25.75.Nq

I. INTRODUCTION

The phase diagram of quantum chromodynamics (QCD)

at finite temperature (T ) and/or quark chemical potential (µ)

[1, 2] provides a deep insight into the Universe. At the few mi-

croseconds after the big-bang, a quark-gluon plasma (QGP)

is supposed to undergo the QCD phase transition/crossover,

which results in confinement of color degrees of freedom and

the dynamical mass generation of hadrons. In fact, the first

principle calculations based on lattice QCD Monte Carlo sim-

ulations (LQCD-MC) indicates the crossover around Tc =
145 − 195 (MeV) [3]. In compact star cores, a cold-dense

system would appear, where various interesting phases are ex-

pected [4–8].

The QCD phase transition can be investigated in the labo-

ratory experiments [9]: Circumstantial experimental evidence

at the Relativistic Heavy-Ion Collider (RHIC) in Brookhaven

National Laboratory together with theoretical arguments im-

plies that the QGP is created in heavy-ion collisions at√
sNN = 200 GeV, and recent experiments at the Large

Hadron Collider (LHC) in CERN give stronger evidence.

Probing the phase diagram at finite µ, in particular the critical

point (CP) [10], is a central topic in the ongoing and future

heavy-ion collision experiments at the Facility for Antipro-

ton and Ion Research (FAIR) at GSI, the Nuclotron-based Ion

Collider fAcility (NICA) at JINR, and the beam energy scan

program at RHIC [11]. Unfortunately, the first principle stud-

ies by LQCD-MC loses the robustness at finite µ due to the

notorious sign problem [1, 12–15]. Many interesting subjects,

∗kohtaroh.miura@cpt.univ-mrs.fr; miura@kmi.nagoya-u.ac.jp

for example, the location of CP, the equation of state (EOS) at

high density, are still under debate.

The QCD phase diagram may be characterized by two un-

derlying dynamics, the chiral and deconfinement transitions,

which are associated with the spontaneous breaking of the chi-

ral symmetry in the chiral limit and the ZNc center symmetry

of the color SU(Nc) gauge group in the heavy quark mass

limit, respectively. The order parameter is the chiral conden-

sate (σ)/Polyakov loop (ℓ) for the chiral/deconfinement transi-

tion. Although the ZNc symmetry is explicitly broken by the

quark sector (with a finite or vanishing mass), the Polyakov

loops are still important degrees of freedom to be responsi-

ble for the thermal excitation of quarks near the chiral phase

transition. The interplay between the σ and ℓ is under active

scrutiny; the LQCD-MC reports that the chiral and Polyakov

loop susceptibilities show their peaks at almost the same tem-

peratures for µ = 0, and the separation of two dynamics is

proposed at finite µ in several models [2].

We investigate the QCD phase diagram by using the strong-

coupling expansion in the lattice QCD (SC-LQCD), which

provides a lattice-based and well-suited framework for the

chiral and deconfinement transitions without a serious con-

tamination by the sign problem. The SC-LQCD has been suc-

cessful since the beginning of the lattice gauge theory [16–

19], and revisited after the QGP discovery at RHIC as an in-

structive guide to the QCD phase diagram [20–33]. It is re-

markable that a promising phase diagram structure has been

obtained even in the strong-coupling limit (β = 2Nc/g
2 →

∞) with mean-field approximation (MFA) [20, 22, 24], and

exactly determined based on the Monomer-Dimer-Polymer

(MDP) formulation [30] and the Auxiliary Field Monte Carlo

simulation [33]. The MFA results are then shown to be cap-

turing the essential feature of the exact phase diagram.

http://arxiv.org/abs/1610.09288v2
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FIG. 1: (Color online) The summary of the SC-LQCD studies on the QCD phase diagram for color SU(3) using MFA.

In Fig. 1, we summarize the SC-LQCD studies on the color

SU(3) QCD phase diagram using MFA. Based on the success

in the strong-coupling limit (top in the second column), we

have investigated the phase diagram [25, 27] by taking ac-

count of the next-to-leading order (NLO, O(1/g2), middle

in the second column) and the next-to-next-to-leading order

(NNLO,O(1/g4), bottom in the second column) of the strong-

coupling expansion. The chiral phase transition temperature

Tc is strongly suppressed by the NLO effects, and the phase

diagram evolves into the empirical shape with increasing lat-

tice coupling β = 2Nc/g
2, while the NNLO effects give

much milder corrections.

In the works mentioned above (listed in the second col-

umn of Fig. 1), the main focus was put on the chiral dy-

namics, rather than the ZNc deconfinement dynamics, which

is another important dynamics described by the Polyakov

loops ℓ of the pure-gluonic sector. The SC-LQCD has been

well-suited to include both dynamics at the strong-coupling

limit [34–36] (top in third and fourth columns in Fig. 1); the

strong-coupling limit for the quark sector is combined with

the leading-order effect of the Polyakov loops in the pure-

gluonic sector and the quark determinant term provides the

lattice-based derivation of the σ - ℓ coupling. It is intriguing

to include the higher-order of the strong-coupling expansion,

which has been carried out in our previous work [28] (mid-

dle and bottom lines in third and last columns in Fig. 1); we

have shown that the Polyakov loop effects combined with fi-

nite lattice couplings β further suppresses the chiral transition

temperature Tc, which reproduces the results of LQCD-MC

simulations [38–40] at µ = 0 in the certain lattice coupling

range β ∼ 4. Thus, the long-standing problem of the SC-

LQCD - too large Tc - is greatly relaxed by the Polyakov

loops. Moreover, the Polyakov loop sector at the chiral phase

transition ∼ O([1/g2]1/Tc) is found to be comparable with

the quark sector with NLO [O(1/g2)] and NNLO [O(1/g4)]
at Tc(β ∼ 4) ∼ 0.5− 0.6 (in lattice units); the Polyakov loop

effects are necessary to evaluate Tc with respect to the order

counting of the strong-coupling expansion.

In our previous paper [28], however, the analysis was lim-

ited at vanishing chemical potential µ = 0, while the finite µ
region receives a growing interest by the forthcoming exper-

iments focusing the CP and high density phase. The purpose

of the present paper is to extend our previous work [28] to the

finite µ region, and to investigate the Polyakov loop effects on

the whole region of the QCD phase diagram as indicated by

red-solid characters in Fig. 1. We adopt two approximation

schemes for the Polyakov loops, a simple mean-field treat-

ment (Haar-measure MFA) and an improved treatment with

fluctuation effects (Weiss MFA). Through the various compar-

isons indicated by the arrows in Fig. 1, we elucidate the effect

of the Polyakov loop itself, either the effects of the Polyakov

loop fluctuations, as well as the higher-order (NNLO) effects

of the strong-coupling expansion. In particular, we focus on

thermodynamic quantities, which is of great interest in the

study of the equation of state for quark matter but has been

challenging in SC-LQCD. Moreover, we discuss the interplay

between the chiral and deconfinement dynamics at finite µ via

the bare quark mass dependence of susceptibilities χσ,ℓ.

We employ one species (unrooted) of staggered fermion,

which has a Uχ(1) chiral symmetry in the strong-coupling

region and becomes the four flavor QCD with degenerate

masses in the continuum limit. We investigate the Uχ(1)
chiral phase transition/crossover at finite T and µ in color

SU(Nc = 3) gauge group in the 3 + 1 dimension (d = 3).

Our focus is not necessarily put on quantitative prediction of

the realistic phase diagram, but we attempt to clarify which

effects make the SC-LQCD phase diagram being closer to re-

alistic one. Such lattice based arguments would be instructive

to future LQCD-MC studies on the QCD phase diagram, even

though the flavor-chiral structure in the present study is differ-

ent from the real-life QCD with 2+1 flavors.

This paper is organized as follows: In Sec. II, we explain

the effective potential in strong-coupling lattice QCD with

Polyakov loop effects. In Sec. III, we investigate the phase

diagram and related quantities by using the effective poten-

tial. In Sec. IV, we summarize our work and give a future

perspective. Appendix A is devoted to the review of the effec-

tive potential derivation.
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II. STRONG-COUPLING LATTICE QCD WITH

POLYAKOV LOOP EFFECTS

We explain the effective potential of the strong-coupling

lattice QCD including the Polyakov loop effects. The deriva-

tion has been detailed in our previous work [28], and reca-

pitulated in Appendix A in this paper. Here we explain the

essential property of the effective potential. We will work on

lattice units a = 1 in color SU(Nc = 3) gauge and 3+1 dimen-

sion (d = 3). The parameters in the effective potential are the

lattice coupling β = 2Nc/g
2, lattice bare quark mass m0, lat-

tice temperature T = 1/Nt (Nt = temporal lattice extension),

and quark chemical potential µ.

The effective potential FH/W

eff involves the plaquette-driven

Polyakov loop sector FH/W

P and the quark sector FH/W

Q ,

FH/W

eff (Φ, ℓ, ℓ̄;β,m0, T, µ)

= FH/W

P
(ℓ, ℓ̄, β, T ) + FH/W

Q
(Φ, β,m0, T, µ)

+O(1/g6, 1/g2(Nt+2), 1/
√
d) . (1)

The FH/W

P is responsible for the Polyakov loop effects

Lp = N−1
c

∏

τ

U0,τx , U0 = temporal link variable , (2)

which result from the integral over the spatial link vari-

ables for the plaquettes wrapping around the temporal direc-

tion. Such Polyakov loops are dubbed “plaquette-driven,” and

purely gluonic. The effects of Lp is investigated in two MFA

scheme: the Haar measure and Weiss MFA as indicated by the

suffixes “H” and “W”. In the former, the Polyakov loop Lp is

simply replaced with its constant mean-field ℓ, while in the lat-

ter, the mean-field ℓ is introduced via the extended Hubbard-

Stratonovich transformation [25] and the fluctuations from the

mean-field is taken account in the integral over the U0. The

Polyakov loop effective potential of Haar measure MFA is

well-known since the 1980s [41],

FH

P
(ℓ, ℓ̄, β, T )

= −2TdN2
c

(

1

g2Nc

)1/T

ℓ̄ℓ− T logRHaar , (3)

RHaar ≡ 1− 6ℓ̄ℓ− 3
(

ℓ̄ℓ
)2

+ 4
(

ℓNc + ℓ̄Nc
)

, (4)

where the Haar measure in the U0 path integral leads to the

Z3 symmetric term RHaar. Since the RHaar does not couple

to the dynamical quarks, the Z3 symmetry affects the phase

diagram separately from the chiral dynamics in Haar measure

MFA. In sharp contrast to this, there is no counterpart in Weiss

MFA [28],

FW

P
(ℓ, ℓ̄, β, T ) = 2TdN2

c

(

1

g2Nc

)1/T

ℓ̄ℓ . (5)

The Polyakov loop effects other than the quadratic term (5) are

entangled to the dynamical quarks in the quark determinant as

explained in the followings. Thus, the Z3 dynamics is totally

spoiled by the dynamical quarks in Weiss MFA.

In both Haar measure and Weiss MFA cases, the order

counting of the strong-coupling expansion reads,

FH/W

P
∼ O((1/g2)Nt=1/T ) , (6)

and thus depends on the lattice temperature T = 1/Nt, which

is subject to the integer value Nt. However in this paper, we

regard T as a continuous valued given number, which natu-

rally follows in the lattice Matsubara formalism [42]. Around

the chiral transition/crossover temperature Tc, we will show

that the FH/W

P becomes comparable to the NLO or NNLO ef-

fects: O(1/g2/Tc) ∼ O(1/g2−4).
The quark sector FH/W

Q in Eq. (1) is derived by integrat-

ing out the staggered quarks with link/plaquette variables in

each order of the strong-coupling expansion. In this paper, we

consider the LO, NLO, and NNLO effects;

FH/W

Q
∋ O(1/g0) ,O(1/g2) ,O(1/g4) . (7)

The integral is evaluated by introducing several auxiliary

fields Φ, which includes the chiral condensate σ, the order pa-

rameter of the Uχ(1) chiral symmetry, as well as other fields,

Φ =
{

σ, ψτ , ψ̄τ , ψs, ψ̄s, ψτs, ψ̄τs, ψss, ψ̄ss, ψττ , ψ̄ττ

}

, (8)

whose physical meanings are summarized in Tables I and II

in the Appendix A. The coefficients of the effective potential

terms are solely characterized by (β,Nc, d) and O(1/g0−4)
(see Table III). The total quark sector FH/W

Q is then divided

into the auxiliary field part FX and the quark determinant part

FH/W

det . As shown in Eq. (A17) in Appendix A, the FX is com-

posed of the quadratic terms of the auxiliary fields Φ.

The quark determinant term FH/W

det is responsible for the

dynamical quark effects, and includes the quark hoppings

with link variables U0 wrapping around the temporal direc-

tion, which give rise to the “quark-driven” Polyakov loops.

In Haar measure MFA, the quark determinant part becomes

similar to that in the Polyakov-loop-extended Nambu-Jona-

Lasinio (PNJL) model [37, 43] [54] and the Polyakov-loop-

extended Quark-Meson (PQM) model [44]:

FH

det = −NcEq −Nc log
√

Z+Z−

− T
(

logRq(Eq − µ̃, ℓ, ℓ̄) + logRq(Eq + µ̃, ℓ̄, ℓ)
)

, (9)

Rq(x, y, ȳ) ≡ 1 +Nc(ye
−x/T + ȳe−2x/T ) + e−3x/T .

(10)

See Table IV for the quark excitation energy Eq , the shifted

quark chemical potential µ̃, and the wave function renor-

malization factor
√

Z+Z−. In Weiss MFA, the plaquette-

driven and quark-driven Polyakov loops are combined in the

quark determinant, and the U0 path integral accounts for the

Polyakov loop fluctuations. Then we obtain the following ex-

pression,

FW

det = −Nc log
√

Z+Z− − T log

[

∑

I

QI(Φ)PI(ℓ, ℓ̄)

]

,

(11)

PI(ℓ, ℓ̄) =
∞
∑

n=−∞

(

√

ℓ/ℓ̄

)−Ncn+NI
Q

PI
n

(

√

ℓℓ̄

)

, (12)
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where the thermal excitation of a quark and its composite QI ,

the thermal excitation of Polyakov loops PI
n, and the quark

number indexN I
Q are summarized in Table V in Appendix A.

In the heavy quark limit m0 → ∞, Eq. (11) recovers the Z3

symmetry as shown in Appendix A.

The auxiliary fields {Φ, ℓ, ℓ̄} at equilibrium are determined

as a function of (β,m0, T, µ) via the saddle point search of the

effective potential FH/W

eff . In particular, the important quan-

tities to probe the phase diagram are the chiral condensate

σ ∈ Φ, Polyakov loops (ℓ, ℓ̄), and their (dimensionless) sus-

ceptibilities (χσ, χℓ). In the present mean-field framework,

the susceptibilities are evaluated as follows: We consider the

curvature matrix C of the effective potential at equilibrium,

Cij =
1

T 4

∂2FH/W

eff

∂φi∂φj

∣

∣

∣

equilibrium
, (13)

where the field φi represents the dimensionless auxiliary fields

normalized by T and Nc,

φi ∈
{

σ

T 3Nc
,
ψτ

T 3Nc
,
ψ̄τ

T 3Nc
,
ψs

T 6N2
c

,
ψ̄s

T 6N2
c

,

ψτs

T 6N2
c

,
ψ̄τs

T 6N2
c

,
ψss

T 12N4
c

,
ψ̄ss

T 6N2
c

,
ψττ

T 3Nc
,
ψ̄ττ

T 3Nc
, ℓ, ℓ̄

}

.

(14)

Then the chiral and Polyakov loop susceptibilities are given

by

χσ = (C−1)ij=σσ , χℓ = (C−1)ij=ℓℓ̄ . (15)

In addition, we investigate thermodynamic quantities, a pres-

sure p, quark number density ρq , and interaction measure ∆,

p = −
(

FH/W

eff (T, µ)−FH/W

eff (0, 0)
)

, (16)

ρq =
∂p

∂µ
, (17)

∆ =
ǫ− 3p

T 4
, (18)

where ǫ = −p+ Ts+ µρq represents an internal energy with

s = ∂p/∂T being an entropy.

III. RESULTS

We investigate the QCD phase diagram based on the effec-

tive potential explained in the previous section. We show the

phase diagram and related quantities obtained in Haar mea-

sure MFA at next-to-leading order (NLO) in Subsec. III A,

Weiss MFA at NLO in Subsec. III B for the fixed lattice cou-

pling β = 4 in the chiral limit (m0 = 0). We extend our study

to include the finite bare quark mass m0 > 0 in Subsec. III C

with a particular focus on the chiral and Polyakov loop suscep-

tibilities. Then, in Subsec. III D, we show the phase diagram

evolution for various β. Finally, in Subsec. III E, we study the

next-to-next-to-leading order (NNLO) effects in the phase di-

agram. The quark mass m0, temperature T , quark chemical

potential µ, and other quantities are all given in lattice units,

unless explicitly stated otherwise.

A. Haar measure MFA at NLO

We consider the NLO Haar measure MFA, where the

NNLO O(1/g4) terms in the coupling coefficients shown in

Table III and the Polyakov loop fluctuations are ignored. We

concentrate on the chiral limit case m0 = 0. We take the lat-

tice coupling β = 4.0 as a typical value, for which the chiral

transition temperature at vanishing quark chemical potential

Tc,µ=0 [28] becomes close to the LQCD-MC result [38] (For

details on the comparison, see Refs. [28, 31]). The effects

ignored or restricted here will be investigated in later subsec-

tions. The phase diagram in the Haar measure MFA is partly

studied in our previous work [26], and we provide more com-

plete analyses in the followings.
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FIG. 2: (Color online) Upper: The chiral condensates σ, Polyakov

loops (ℓ, ℓ̄), in NLO Haar measure MFA as a function of T at

(β,m0, µ) = (4.0, 0.0, 0.4) in lattice units. Lower: The chiral and

Polyakov loop susceptibilities (χσ and χℓ) in the same condition as

the upper panel in lattice units. For a comparison, the χσ is multi-

plied by 1/1000.

In the upper panel of Fig. 2, we show the chiral conden-

sates (σ/Nc) and Polyakov loops (ℓ, ℓ̄) at finite quark chem-

ical potential µ = 0.4 as a function of temperature T for

(β,m0) = (4.0, 0.0). In the low T region, the chiral broken

(σ 6= 0) and confined (ℓ ∼ 0) phase appears. As T increases,

we observe the second-order chiral phase transition (σ → 0)
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at Tc ≃ 0.44 and the large increase of the Polyakov loops

(ℓ → O(1)). These results are similar to the zero chemical

potential case shown in the previous study [28].

We find that the Polyakov loop is smaller than the anti-

Polyakov loop (ℓ < ℓ̄) in the chiral broken phase. This is

understood from a quark screening effect at high density: A

finite µ leads to a net quark number density at equilibrium,

where putting additional quarks into the system would give a

larger energy cost than antiquarks. Therefore the free energy

of the quark gets larger than that of the antiquark Fq > Fq̄ ,

which attributes to our observation ℓ < ℓ̄ through the relation

(ℓ, ℓ̄) ∝ (e−Fq/T , e−Fq̄/T ).
In the lower panel of Fig. 2, we compare the temperature

dependence of the chiral and Polyakov loop susceptibilities

(χσ, χℓ) which are defined in Eq. (15) in the same condition

as the upper panel. The Polyakov loop susceptibility has two

peaks with a relatively wide width. We note that the action

in the present SC-LQCD (A2) has the Uχ(1) chiral symme-

try, which governs the dynamics of the system. Since the first

peak is found in the vicinity of the chiral phase transition, it

should be associated with the chiral dynamics. For example,

the χℓ rapidly (but continuously) decreases just after the peak,

and its derivative with respect to T is discontinuous. This

property is associated by the second-order chiral phase transi-

tion,

σ(T ) ∝







(

Tc−T
Tc

)βσ=1/2

(T < Tc) ,

0 (T ≥ Tc) ,
(19)

via the potential curvature matrix (13). In general, fluctuation

effects modifies the critical exponent βσ , but the derivative is

still discontinuous in the thermodynamic limit at the second-

order transition. The second peak (or bump) is found in the

chiral restored phase T ≃ 0.53 > Tc, and interpreted as the

remnant of the Z3 deconfinement dynamics as discussed in

the subsection III C.

In the upper panel of Fig. 3, we show the chiral condensates

σ/Nc as a function of chemical potentialµ for three fixed tem-

peratures T = 0.15, 0.20, 0.25. At T = 0.25 (red-solid line),

we find the second-order phase transition. At lower T ∼ 0.20
(blue-dashed line), the chiral symmetry is partially restored

with the first-order phase transition as µ increases, and gets

completely restored with the second-order phase transition at

larger µ. As shown in the previous study [25], the partial chi-

ral restoration (PCR) emerges due to the self-consistent eval-

uation of the finite β effects for the chemical potential: The

effective chemical potential appears as an implicit function of

σ, µ→ µ̃(σ, β) = µ− δµ(σ, β) (see, Table IV), which allows

a stable equilibrium satisfying σ ∼ µ̃(σ), leading to the PCR.

Our finding in the present study is that the PCR is not spoiled

by the Polyakov loop effects, but still exists. As T decreases,

the PCR disappears and the first-order chiral transition domi-

nates as indicated by the T = 0.15 case (dashed-dotted black

line).

In the lower panel of Fig. 3, we pick up the T = 0.25
case from the upper panel and show the µ dependence of

σ/Nc in a wider range. The Polyakov loops (ℓ, ℓ̄) and the

quark number density (ρq/Nc defined by Eq. (17)) are also
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FIG. 3: (Color online) Upper: The chiral condensates σ, Polyakov

loops (ℓ, ℓ̄), in NLO Haar measure MFA as a function of µ
at (β,m0) = (4.0, 0.0) for the selected temperatures T =
0.15, 0.2, 0.25 in lattice units. Lower: The σ, (ℓ, ℓ̄), and quark

number density ρq in NLO Haar measure MFA as a function of µ at

(β,m0, T ) = (4.0, 0.0, 0.25) in lattice units.

displayed. The Polyakov loops increase in the chiral broken

phase µ < µc ≃ 0.59, and the increasing rate stays quite

small compared with the finite T transition case. In contrast,

the quark number density rapidly increases in the vicinity of

the chiral phase transition. After the transition (µ ≥ µc), we

observe a high density system (ρq ∼ Nc) with a little quark

excitation (ℓ ≪ 1). This property as well as the possibility of

two sequential transitions associated with the PCR would be

reminiscent of the original idea of the quarkyonic phase [5].

In the symmetric phase, the Polyakov loops (ℓ, ℓ̄) start de-

creasing with the relation ℓ̄ < ℓ as µ increases. This would

be a saturation artifact on the lattice: As we explained above,

the chiral symmetry restoration leads to a high density sys-

tem ρq > Nc/2 so that more than half of the lattice sites are

filled by quarks. Then the holes - sites without quarks - be-

have like antiquarks, and the system with the quark number

density ρq > Nc/2 would be identical to the system with the

antiquark number density ρq̄ = (Nc − ρq) < Nc/2. There-

fore, the excitation property of quarks and antiquarks becomes

opposite (Fq < Fq̄) as illustrated in Fig 4, and thus ℓ̄ < ℓ
holds. As µ becomes larger after the half-filling, the num-
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(ρq > Nc/2)(ρq < Nc/2)

FIG. 4: (Color online) The half-filled and saturation.

ber of holes decreases and the degrees of freedom get frozen.

Hence the excitations of both quarks and antiquarks are sup-

pressed at larger µ, which results in the decreasing trend of

(ℓ, ℓ̄) as functions of µ.
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FIG. 5: (Color online) Upper: The phase diagram of NLO Haar mea-

sure MFA at (β,m0) = (4.0, 0.0) in lattice units. See texts for de-

tails. Lower: The difference of the Polyakov loop and anti-Polyakov

loop in the phase diagram of the NLO Haar measure MFA.

We show the phase diagram of NLO Haar measure MFA

in the upper panel of Fig. 5 with (β,m0) = (4.0, 0.0). The

first-order chiral phase boundary (red-solid line) emerges in

the low T region and ends up with the tricritical point (TCP,

filled black circle) at (µTCP, TTCP) ≃ (0.577, 0.205), from

which the second-order chiral phase boundary (blue-dashed

line) sets in with increasing temperature (The PCR emerges

just below the TCP, and invisible in the resolution of Fig. 5.

The PCR becomes visible at larger β as seen in Fig. 12). The

lower-green (upper-yellow) band corresponds to the width of

the Polyakov loop susceptibility χℓ at 90% of its first (second)

peak height. The first peak band depends on µ similarly to the

chiral phase boundary: As mentioned above, the peak seems

to be associated with the chiral phase transition. The peak

strength becomes weaker with increasing µ, and disappears at

µ ≃ 0.53 before reaching TCP. The second peak is almost

independent of µ, and starts appearing in µ & 0.17 separately

from the first peak.

The phase diagram in the Haar measure MFA is similar

to that in PQM [44]: When the µ dependence is absent in

the Polyakov loop potential in PQM, the derivative of the

Polyakov mean-field in terms of T at finite µ has double

peaks, which is analogous to our result shown in the lower

panel of Fig. 2 as well as in our previous study [26]. We will

revisit this subject in Weiss MFA case in the next subsection.

The lower panel of Fig. 5 shows the difference of the

Polyakov loop and anti-Polyakov loop (ℓ − ℓ̄) in the T − µ
plane. The relation ℓ < ℓ̄ holds in the whole T, µ > 0 region

in the chiral broken phase as shown by the blue color. The

saturation effect ℓ > ℓ̄ is observed as a general tendency at

large µ region in the chiral restored phase as indicated by the

red color.

As shown in Eq. (6), the plaquette-driven Polyakov loop

action includes the O(1/g2/T ) correction. At the chiral phase

boundary, this effect gives O(1/g2/Tc) . O(1/g4). For the

consistency of the strong coupling expansion, we have to take

account of the NNLO 1/g4 effects for the quark sector, which

will be discussed in the later subsection.

B. Weiss MFA at NLO

We investigate the phase diagram of NLO Weiss MFA,

where the Polyakov loop fluctuations from the mean fields

(ℓ, ℓ̄) are considered, while the NNLO effects O(1/g4) in

the coupling coefficients shown in Table III are ignored. We

compare the Weiss MFA results with the Haar measure MFA

to clarify the effects of the Polyakov loop fluctuations to the

phase diagram. We choose the same parameter set as the Haar

measure MFA case, (β,m0) = (4.0, 0.0).
As shown in Fig. 6, T or µ dependence of (σ, ℓ, ℓ̄, ρq) is

qualitatively the same as the Haar measure MFA results. In

the following, we concentrate on the results which are charac-

teristic of the Weiss MFA.

In Fig. 7, we show the chiral and Polyakov loop susceptibil-

ities (χσ, χℓ) at finite chemical potential µ = 0.4 as a function

of temperature T . Two peaks are almost degenerated, and the

width of χℓ is sharper than the Haar measure MFA case. We

do not see the second (Z3 associated) peak in the chiral sym-

metric phase in sharp contrast to the Haar measure MFA case.

In Fig. 8, we show the phase diagram of NLO Weiss MFA

with (β,m0) = (4.0, 0.0). We find two qualitative differences

between the NLO Weiss MFA and NLO Haar measure MFA
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FIG. 6: (Color online) Upper: The chiral condensates σ, Polyakov

loops (ℓ, ℓ̄), in NLO Weiss MFA as a function of T at (β,m0, µ) =
(4.0, 0.0, 0.4) in lattice units. Lower: The chiral condensates σ,

Polyakov loops (ℓ, ℓ̄), and quark number density ρq/Nc in NLO

Weiss MFA as a function of µ at (β,m0, T ) = (4.0, 0.0, 0.5) in

lattice units.

results: First, the peak of χℓ (green-band showing the width

of χℓ at 90% of the peak height) is more strongly locked to the

chiral phase boundary in Weiss MFA than the Haar measure

MFA case. Second, the remnant of the Z3 dynamics such as

the yellow band in Fig. 5 does not appear at any µ in the Weiss

MFA case. As explained after Eq. (5) in the previous sec-

tion, the plaquette-driven Polyakov loops are combined into

the quark determinant and coupled to the dynamical quark ef-

fects via the U0 path integral. Then, the Weiss MFA does not

admit the remnant of the Z3 symmetry in sharp contrast to

the Haar measure MFA and many other chiral effective mod-

els [37, 43, 44]. It is sometimes argued that the chiral and de-

confinement dynamics might be separated at finite µ [2], but

the Weiss MFA does not support the isolated deconfinement

dynamics from the chiral phase boundary.

Here, we comment on the recent phase diagram study by

the PQM model [44]. In this model, a µ dependence was as-

sumed in the Polyakov loop effective potential based on the

phenomenological insights to describe the backreaction of the

quark-matter to the Polyakov loops at finite density. This pre-

 0

 0.02

 0.04

 0.06
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FIG. 7: (Color online) The chiral and Polyakov loop susceptibilities

(χσ, χℓ) in NLO Weiss MFA as a function of T at (β,m0, µ) =
(4.0, 0.0, 0.4) in lattice units. For a comparison, the chiral suscepti-

bility χσ has been multiplied by 1/200.

scription led to a stronger locking between the peak of dℓ/dT
and the chiral crossover line, and the double peak structure of

dℓ/dT disappeared. These phenomena would be analogous to

our findings in the Weiss MFA. We stress that the Weiss MFA

effective potential directly results from the path integral in the

lattice QCD without additional assumptions. This would be

the advantage of the SC-LQCD based effective potential.
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FIG. 8: (Color online) The phase diagram at (β,m0) = (4.0, 0.0) in

NLO with Weiss MFA in lattice units. See texts for details.

We shall consider the formal limit (ℓ, ℓ̄) → 0 in the ef-

fective potential of Weiss MFA FW

eff : In the second line of

Eq. (11), the thermal excitations (see Table V) carrying a

quark number 0 (I = MMM,MQQ̄) and ±3 (I = B, B̄) re-

mains and the FW

eff reduces into the effective potential which

has been derived in our previous study [25]. We express the

reduced effective potential as FNLO

eff , and the results obtained

by using FNLO

eff will be referred to as NLO without Polyakov

loops in the later discussions. See Eq. (A24) for the expres-

sion of FNLO

eff . Needless to say, the FNLO

eff does not implement

the Polyakov loop dynamics. By comparing the Weiss NLO
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MFA and the NLO without Polyakov loops, the Polyakov loop

effects become more transparent.

In Fig. 8, we compare the chiral phase boundary of the

NLO Weiss MFA and the NLO without Polyakov loops. The

second-order phase boundary of the NLO Weiss MFA (blue-

dashed line) is found in lower T region than that of NLO

without Polyakov loop (magenta-dotted line). As µ becomes

larger, two phase boundaries get closer to each other and

degenerate in the vicinity of the TCP. The first-order phase

boundary is almost independent of the Polyakov loop effects.

This is understood as follows. As explained in the previous

section, the plaquette-driven Polyakov loops gives the contri-

bution of O([1/g2]1/Tc(µ)). At larger µ, this factor decreases

because the Tc(µ) does, and thus the Polyakov loop effects be-

comes higher order effects of the strong-coupling expansion,

and thereby suppressed.

Compared with the Haar measure MFA, the transition tem-

perature Tc(µ) in the Weiss MFA becomes somewhat larger.

Then, the effect of the plaquette-driven Polyakov loops for

β = 4.0 is maximally O([1/g2]1/Tc(µ=0)) = O(1/g3.3),
which is larger than the NNLO effects 1/g4. Thus, the present

NLO approximation for the quark sector is consistent with re-

spect to the order counting of the strong coupling expansion,

at least for β . 4.0.

Next, we investigate the thermodynamic quantities in the

Weiss MFA. In the upper panel of Fig. 9, we show the nor-

malized pressure p/T 4 as a function of T at chemical poten-

tial µ = 0.4, the same condition as Fig. 7. In NLO Weiss

MFA, the p/T 4 (red-solid line) becomes significantly larger

at T & Tc ≃ 0.507 and closer to the Stefan-Boltzmann result

psb
T 4

=
NfNc

6

[

7π2

30
+
µ2

T 2
+

1

2π2

µ4

T 4

]

+
(N2

c − 1)π2

45
.

(20)

We do not see such a large enhance of p/T 4 in the case of

NLO without Polyakov loops (blue-dashed line). Thus, the

Polyakov loop plays an essential role to realize the pressure

enhancement which is expected in the QGP phase at high T .

More specifically, the pressure enhancement is attributed to

the increase of Polyakov loop thermal excitations PI
n(
√
ℓℓ̄)

(see Table V) included in the Weiss MFA effective poten-

tial (11)-(12). This result should be compared with that in

the PQM model, where the pressure is rather suppressed by

Polyakov loops [44]. The different role of Polyakov loops is

understood as follows. First, we recall that a usual NJL (QM)

does not implement a confinement dynamics since quarks are

introduced without gauge interactions. When Polyakov loop

effects are introduced, giving PNJL (PQM), the Boltzmann

factors for quark thermal excitations in the effective poten-

tial [43, 44] are multiplied by the Polyakov loop mean-field ℓ,
which acts as a suppression factor of the quark thermal exci-

tations at low T . In this sense, the role of the Polyakov loop

is to confine quarks at low T in PNJL and PQM, and there-

fore, suppresses the pressure. By comparison in SC-LQCD,

the link integrals admit only color-singlet hadronic states con-

tributing to the effective potential. As a result, the thermal

excitations carrying the quark number N I
Q = ±1 (quark and
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FIG. 9: (Color online) The pressure (upper) and interaction measure

(middle and lower) normalized by T 4 in “NLO Weiss MFA” and

“NLO without Polyakov loops” as a function of T at (β,m0, µ) =
(4.0, 0.0, 0.4) (upper and middle), and (β,m0, µ) = (4.0, 0.0, 0.0)
(lower). In the upper panel, the horizontal axis T is in lattice units.

In the middle and lower panels, the horizontal axis is normalized

by critical temperature Tc. In the lower panel, we have quoted the

Monte Carlo results [40].

antiquark excitations) and ±2 (diquark and anti-diquark exci-

tations) in Table V can emerge only when the Polyakov loop
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mean-fields are taken account. In this sense, the role of the

Polyakov loop is to deconfine quarks at high T in SC-LQCD,

and enhances the pressure. Thus, Polyakov loops play differ-

ent roles in the SC-LQCD and PNLO (PQM).

In the middle panel of Fig. 9, we show the interaction mea-

sure ∆ = (ǫ−3p)/T 4 as a function of T at chemical potential

µ = 0.4. In NLO Weiss MFA, the ∆ has a large peak in the

vicinity of the chiral phase transition T ∼ Tc as expected

with regards to the increasing scale asymmetry in the strongly

interacting quark-gluon plasma (sQGP). This should be com-

pared with the result obtained in NLO without Polyakov loops

(dashed-blue line) staying small and showing just a tiny bump

structure at T ∼ Tc. In the lower panel of Fig. 9, we compare

our results on the interaction measure at vanishing of chemical

potential with those obtained in the Monte Carlo simulations

(four flavor, the chiral limit is taken) [40]. The Monte Carlo

results (green boxes) show the drastic increase in the vicinity

of the chiral phase transition. This feature is qualitatively re-

produced by the NLO Weiss result (red-solid line), but not in

the NLO without Polyakov loops (blue-dashed line). Around

T = Tc, a singular behavior in the derivative of (ǫ − 3p)/T 4

with respect to T is seen only in the chiral limit. This behavior

is associated with the second-order chiral phase transition as

mentioned in Sec. III A.

C. Quark mass dependence

In the previous subsections, we have studied the phase di-

agram in the chiral limit m0 = 0. In this subsection, we in-

vestigate the m0 dependence of the chiral and Polyakov loop

susceptibilities. We choose the same parameter set of β = 4.0
and µ = 0.4 as previous subsections.

In the upper panel of Fig. 10, we show the chiral suscepti-

bility χσ of the NLO Haar measure MFA as a function of T
for various bare quark mass m0 at (β, µ) = (4.0, 0.4). The

peak position defines the chiral crossover temperature at finite

m0. The chiral dynamics becomes weaker as indicated by the

attenuating peak with increasing m0. In the lower panel of

Fig. 10, we show the Polyakov loop susceptibility χℓ in the

same condition as the upper panel. The double peak struc-

ture which we have shown in the chiral limit in Subsec III A

evolves into a single peak with increasingm0. The single peak

grows up in the heavy mass region m0 = 0.9, and comes to

be responsible for the Z3 crossover. Consistently, the chiral

susceptibility does not show any signal there as shown in the

upper panel.

We notice that the Z3 peak of χℓ at m0 = 0.9 locates at the

almost same temperature as the second peak appearing in the

small mass region m0 . 0.01. This implies that the second

peak originates from the remnant of the Z3 dynamics. In fact,

the approximateZ3 symmetry remains even in the chiral limit

in the effective potential of the Haar measure MFA: The Z3

symmetric (Haar measure) term RHaar in Eq. (4) has a large

contribution and does not couple to the dynamical fermion ef-

fects Rq in Eq. (A18), so that the former effect is not horribly

spoiled by the latter. The result is consistent with our previous

work [26].
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FIG. 10: (Color online) The chiral (upper) and Polyakov loop (lower)

susceptibilities as a function of T for various bare quark mass m0 at

(β, µ) = (4.0, 0.4) in NLO Haar measure MFA. All quantities are

in lattice units.

This should be compared with NLO Weiss MFA results,

Fig. 11. The chiral susceptibility χσ (upper panel) is qualita-

tively the same as the Haar measure result, while the Polyakov

loop susceptibility χℓ (lower panel) differs: The Weiss MFA

does not lead to the double-peak structure in χℓ for any m0.

Thus, the scenario with the double-peak, or equivalently, the

deconfinement separated from the chiral phase boundary at

high density would be less supported within the present ap-

proximation. To extract a definite conclusion on the relation

between two susceptibilities χσ,ℓ, we need to investigate the

higher-order effects on the Polyakov loops.

It is worth mentioning that the Polyakov loop effective

potential in the Haar measure MFA, Eq. (3) is similar to

one of the popular choices of the potential in the PNJL

model [37, 43] or PQM models. They could in principle con-

tain the remnant of Z3 dynamics as the Haar measure MFA

does. As explained in the previous subsection, the recent work

based on PQM assumed a certain µ dependence to the coeffi-

cients in the Polyakov loop effective potential [44]. This gives

a phenomenological implementation of a back reaction from

dynamical quark effects. The Weiss MFA effective potential

(especially Eq. (11)) proposes the lattice QCD based solution
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FIG. 11: (Color online) The chiral (upper) and Polyakov loop (lower)
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(β, µ) = (4.0, 0.4) in NLO Weiss MFA. All quantities are in lattice

units.

for the quark back reaction to the Polyakov loops, and opens

a possibility to upgrade the PNJL and PQM models so that

they account for the Polyakov loop and quark degrees of free-

dom more systematically. To invent such a model based on

the Weiss MFA should be one of the future works.

D. Phase diagram evolution with increasing β

So far, we have studied the phase diagram at a fixed cou-

pling, β = 4.0. In this subsection, we investigate the phase

diagram for various lattice coupling ranging 0.0 ≤ β ≤ 6.0,

while we keep the vanishing bare quark mass m0 = 0. For

the chiral phase transition temperature at vanishing chemi-

cal potential Tc,µ=0, the lattice MC data with one species

of staggered fermion are available [30, 38–40] and are com-

pared with Tc,µ=0 evaluated in the strong-coupling expan-

sion [25, 27, 28]. We extend our analyses up to β = 6.0,

for which the physical scale of (Tc, µc) can be extracted by

utilizing the lattice spacing result in Ref. [45].

In the upper panel of Fig. 12, we show the phase diagram
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FIG. 12: (Color online) The phase diagram evolution with the in-

creasing lattice coupling β at NLO Haar measure (upper) and Weiss

(lower) MFA in the chiral limit. We have quoted a−1(β = 0) = 440
(MeV) and a−1(β = 6) = 524 (MeV) from Ref. [45]. In Weiss

MFA (lower), we have also shown our previous result on the tran-

sition temperature at µ = 0 without effects of plaquette-driven

Polyakov loops [25] by the magenta-dashed line.

evolution with increasing β in the case of NLO Haar mea-

sure MFA. In the whole range of 0.0 ≤ β ≤ 6.0, the chi-

ral phase transition is a first-order in the low temperature re-

gion, and it evolves into the second-order at higher T via

TCP. The transition temperature at µ = 0 (Tc,µ=0) acquires

much larger modification with increasing β than the transition

chemical potential at T = 0 (µc,T=0). Resultantly, the ratio

R = µc,T=0/Tc,µ=0 which characterize the shape of the chiral

phase boundary is greatly enhanced. For β ≥ 4, the first-order

transition line goes inside of the second-order transition line

near the TCP, and the PCR explained in the previous subsec-

tion emerges between two lines.
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In the lower panel of Fig. 12, we show the phase diagram

evolution of the NLO Weiss MFA in the chiral limitm0 = 0.0.

The results are qualitatively same as the Haar measure MFA

case.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  1  2  3  4  5  6

µ c
,T

=0
/T

c,
µ=

0

β

Weiss MFA
NLO w.o. (ℓ, −ℓ)

MDP

FIG. 13: (Color online) The ratio R = µc,T=0/Tc,µ=0 as a function

of the lattice bare coupling β = 2Nc/g
2. For a comparison, we show

the MDP results for R in Ref. [31]: We read off the µc,T=0 ≃ 0.72
from Fig. 6 in Ref. [31], and quoted the Tc(β) evaluated by using

the “exponential extrapolation” to calculate the R.

We compare the ratio R = µc,T=0/Tc,µ=0 of NLO Weiss

MFA to that obtained in the “NLO without Polyakov loops”.

At β = 4.0 (6.0), the former (red-solid line) in Fig. 13 be-

comes 1.38 (1.46) times larger than the latter (blue-dashed

line). Thus the ratio R becomes larger by the Polyakov loop

effects. Next, we compare our R with those obtained by the

Monomer-Dimer-Polymer (MDP) simulation [31]. The MDP

(green triangles in Fig. 13) gives a somewhat largerR than our

MFA result in the strong-coupling limit, and becomes closer

to the NLO Weiss MFA at finite β. The increasingR at larger

β is a common trend in both MFA and MDP, and preferable

to be consistent with a realistic QCD phase diagram.

In both Haar measure MFA and Weiss MFAs, the TCP tends

to go into low T region with increasing β, and the second-

order chiral phase boundary becomes dominant. However, the

TCP and PCR evolution at large β in Fig. 12 may be modified

by a number of effects which are missing in the present mean-

field framework at NLO; (1) fluctuation degrees of freedom

from mean-fields, (2) effects of higher-order of the strong-

coupling expansion, and (3) chiral anomaly effects. In the

following, we discuss these corrections in relation to the con-

tinuum limit.

The fluctuation effects become important in critical phe-

nomena and may give a non-negligible correction to the TCP

and PCR obtained in MFA even at a fixed order of the strong-

coupling expansion. This is the ambiguity (1). However, at

least for the strong-coupling region β ≤ 1.5, the basic prop-

erty of the TCP shown in this work would be stable against the

fluctuations; our results show that the TCP exists and it is al-

most independent of β, which is shown to remain intact even

including the fluctuation effects [32, 33]. For the evolution of

TCP/PCR at larger β, only mean-field results (the present and

previous works [25, 27]) are available, and it is desirable to

investigate the fluctuation effects in the near future.

If we assume that the (T)CP (and thereby, the first-order

chiral phase transition) remains in the phase diagram in the

continuum limit, the SC-LQCD including the fluctuation ef-

fects may have a contact to the critical phenomena expected

in the continuum limit. This relies on the following reason-

ing. The SC-LQCD with one species of the staggered fermion

has O(2) symmetry at finite lattice coupling, while the mass-

less two-flavor QCD in the continuum has O(4). Since the

sign of the relevant critical exponent in O(2) is the same as

that in O(4), the ratio of various cumulants for the net baryon

number (χ
(n)
µ ∝ ∂n logZ/∂(Ncµ), Z =partition function)

would be similar to each other. The cumulant ratio has been

investigated only in the strong-coupling limit [47]. The finite

coupling extension is, in principle, possible by combining the

present study with the auxiliary-field Monte Carlo formula-

tion [33].

Let us move on to the ambiguity (2), effects of higher-order

of the strong-coupling expansion. We first comment on the

remarkable properties at NLO; the first-order phase boundary

diminishes with increasing β as shown in Fig. 12, and this

trend becomes rather significant at finite quark mass. For ex-

ample in the Haar measure MFA, we found that the CP asso-

ciated angle arctan(TCP/µCP) at β = 4.0 is 0.34 atm0 = 0.0
and down to 0.31 at m0 = 0.05. Thus, both of the increasing

β and nonzero m0 disfavor the first-order transition at NLO.

The question is a fate of the above properties with higher-

orders. To shed light on this, we quote the LQCD-MC results

on the chiral critical surface [46] in the µ-extended Columbia

plot, where the surface evolution at finite µ implies the ab-

sence of the CP at physical point mass. Thus, the properties at

NLO explained above seems to be compatible to the LQCD-

MC results including all order of β. This implies that the

qualitative feature of the (T)CP at NLO would not be horribly

changed by higher order effects. Of course, this naive expec-

tation should be confirmed by investigating the higher-orders

in future works. We note that the absence of CP at physical

point mass does not necessarily means the absence of critical

phenomena, and the above discussion of the cumulant ratio for

the ambiguity (1) can be compatible to the discussion here.

According to the effective model [48], the chiral phase tran-

sition in the Nf = 4 > 2 system is predicted to be the

first-order due to the chiral anomaly in the chiral limit. In

the SC-LQCD with staggered fermions, however, the chi-

ral anomaly is cancelled out among the species doublers and

therefore missing in the present study. This is the ambiguity

(3), and the anomaly effect may modify the properties of the

TCP/PCR presented in this work. To shed light on this issue,

we need to develop the SC-LQCD formulation with overlap

fermions. We find some pioneering works [49]; it was ar-

gued that a massive flavor-singlet pseudoscaler meson could

appear in SC-LQCD from a Jacobin term associated with a

chirally-covariant transformation of the path-integral measure

over quark fields. This was interpreted as a solution to the

U(1) problem in the SC-LQCD context [49]. Thus, the Ja-

cobian term seems to play an essential role to remedy the

anomaly problem in SC-LQCD but has not been investigated

in the literature of finite T and/or µ (c.f. [50]). This should
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also be the subject studied in future.

Finally, we estimate the (Tc, µc) in physical units by quot-

ing the lattice spacing scale a−1(β = 0) = 440 (MeV) and

a−1(β = 6) = 524 (MeV) from the zero temperature strong-

coupling expansion [45]. In Haar measure MFA, we find

(Tc,µ=0, µc,T=0) ≃ (550, 242) (MeV) in the strong-coupling

limit, and (Tc,µ=0, µc,T=0) ≃ (200, 321) (MeV) at β = 6. In

Weiss MFA, we find (Tc,µ=0, µc,T=0) ≃ (733, 242) (MeV) in

the strong-coupling limit, and (Tc,µ=0, µc,T=0) ≃ (229, 321)
(MeV) at β = 6.0. Although the flavor-chiral structure of the

present system differs from the real-life QCD, it is still inter-

esting that the transition temperature of SC-LQCD gets closer

to the realistic one TMC

c = 145− 195 MeV [3].

E. Haar measure MFA at NNLO

We investigate the phase diagram in the NNLO Haar mea-

sure MFA, where the O(1/g4) terms in the coupling coeffi-

cients (Table III) are considered. We adopt the same param-

eter set (β,m0) = (4.0, 0.05) as that adopted in the previous

work [28]. We investigate the property of the chiral conden-

sates and the Polyakov loops at intermediate and high density

region: µ = 0.4 and 0.7. We compare the NNLO phase dia-

gram with the NLO one, and studies the impact of the NNLO

corrections.

 0
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NNLO Haar Measure MFA. (β, m0) = (4.0, 0.05)
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σ/Nc , µ = 0.4
σ/Nc , µ = 0.7

ℓ  , µ = 0.4
ℓ  , µ = 0.7

FIG. 14: (Color online) Chiral condensates and Polyakov loops in

the NNLO Haar measure MFA for β = 4.0 with m0 = 0.05 as a

function of temperature at the two chemical potentials µ = 0.4 and

0.7. All quantities are in lattice units.

In Fig. 14, we show the chiral condensate and Polyakov

loop as a function of T for the lattice coupling β = 4.0. First,

we consider the µ = 0.4 cases. At low T , the chiral sym-

metry is spontaneously broken (σ/Nc ≫ m0 = 0.05, red-

solid line), and the quarks are confined (ℓ≪ O(1), blue-solid

line). At high T , the chiral symmetry gets restored up to the

finite bare mass effect (σ/Nc → O(m0) ∼ 0.05), and the

quarks becomes deconfined (ℓ ∼ O(1)). The chiral conden-

sate rapidly but smoothly decreases with increasing T , which

indicates the chiral crossover rather than the phase transition.

At larger chemical potential µ = 0.7, the chiral condensate

(red-dashed line) is small and comparable to the bare quark

mass m0 = 0.05 in all T region, and thus the chiral crossover

is absent.

In Fig. 14, we find the clear difference in the Polyakov loop

ℓ at µ = 0.7 and 0.4; the former (blue-dashed line) starts in-

creasing even at a tiny (nonzero) temperature where the latter

(blue-solid line) still remains small. This can be understood in

terms of the presence/absence of the spontaneous breaking of

the chiral symmetry; at µ = 0.4, the broken chiral symmetry

leads to the dynamical quark mass and suppresses the thermal

excitation of the quarks, while at 0.7, there is no suppression

due to the symmetry restoration. Thus, the relatively large ℓ at

low temperature can be a characteristic feature at high density

phase. At higher T , ℓ at µ = 0.7 becomes comparable with

that at µ = 0.4.
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FIG. 15: (Color online) The chiral susceptibility in NNLO Haar mea-

sure MFA with m0 = 0.05 as a function of temperature for various

µ. All quantities are in lattice units at the coupling β = 4.0.

In Fig. 15, we show the chiral susceptibility χσ at β = 4.0
as a function of temperature T for various chemical potential

µ. The peak position of the χσ locates a chiral crossover and

a critical endpoint (CEP). As µ increases from zero, the peak

becomes gradually larger and moves to the smaller T direc-

tion. When the µ reaches around 0.6, the susceptibility shows

a drastic enhancement, which indicates a critical phenomena

associated with the CEP. At larger µ, say 0.7, the system is in

the high-density phase where a peak is not seen for any T .

In Fig. 16, we show the temperature derivative of the chiral

condensate and Polyakov loop as a function of temperature at

µ = 0.4 and 0.7. The lattice coupling β is fixed at 4.0. At

µ = 0.4 (solid lines), the chiral and deconfinement crossovers

almost simultaneously take place as indicated by their peak

positions. This property has been observed at µ = 0 [28]. Our

finding here is that the locking of the chiral and deconfinement

crossovers remains intact at finite µ as long as the spontaneous

symmetry breaking exists. At µ = 0.7, d(σ/Nc)/dT (red-

dashed line) shows no signal at any T due to the absence of

the chiral crossover, and the dℓ/dT (blue-dashed line) tends

to lose peaklike structure.

In our previous studies [28], we have shown that the NNLO
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FIG. 16: (Color online) The temperature derivative of the chiral con-

densates and Polyakov loops in the NNLO Haar measure MFA with

m0 = 0.05 as a function of temperature at µ = 0.4 and 0.7. All

quantities are in lattice units at the coupling β = 4.0.

effects to the chiral phase transition/crossover at µ = 0 are

very small. We shall now investigate the impact of the NNLO

effects to the phase diagram including finite µ. In the left

panel of Fig. 17, we show the phase diagram evolution as a

function of β in NNLO Haar measure MFA. The black points

represent the CEP which separates the chiral crossover region

(higherT , blue-solid lines) and the first-order transition region

(lower T , red-solid lines). Due to the finite coupling effects,

the crossover line and the critical point move in the lower T
direction. For comparison, we show the counterpart at NLO

with m0 = 0.05 in the right panel. It is seen that the NNLO

phase diagram (left) is very close to the NLO one (right).

In the end of the subsection III A, we have mentioned that

the NNLO effects for the quark sector should be included, par-

ticularly in the Haar measure MFA, to be consistent with the

plaquette-driven Polyakov loop sector with respect to the or-

der counting of the strong-coupling expansion. However, the

results in this subsection indicate that the NNLO corrections

are tiny in whole region of the phase diagram. Thus, the NLO

results shown in the previous subsections would be reliable.

IV. SUMMARY

We have investigated the QCD phase diagram in color

SU(Nc = 3) gauge group at finite temperature T and quark

chemical potential µ by using the strong-coupling expansion

of the lattice QCD (SC-LQCD) with one species of stag-

gered fermion. Our effective potential [28] includes the LO

[O(1/g0)], NLO [O(1/g2)], and NNLO [O(1/g4)] effects

of the strong-coupling expansion in the quark sector, and the

LO effects of Polyakov loop O([1/g2]1/T ) in the pure gluonic

sector. The Polyakov loops are evaluated in two approxima-

tion schemes; a simple mean-field treatment (Haar measure

mean-field approximation (MFA)) and an improved treatment

with fluctuation effects (Weiss MFA). In this setup, we have

investigated the whole structure of the SC-LQCD phase dia-

gram with a special emphasis on the Polyakov loops effects.

In both Haar measure and Weiss MFA schemes, the

first-order chiral phase boundary emerges in the low T re-

gion and ends up with the tricritical point (TCP), from

which the second-order chiral phase boundary evolves to

the smaller µ direction with increasing T in the chiral limit

(m0 = 0). The Polyakov loop together with finite β effects

strongly suppresses the critical temperature Tc in the second-

order/crossover region at small µ, while it gives a minor mod-

ification of the first-order phase boundary at larger µ. As a

result, the chiral phase boundary becomes much closer to the

expected one in the real-life QCD as summarized in Fig. 12

(NLO case) and Fig.17 (left: NNLO, right NLO). It is also

remarkable that the NNLO effects are subdominant in whole

region of the phase diagram.

In both Haar measure MFA and Weiss MFAs, the critical

point (CP) tends to go into low T region with increasing β,

and the second-order chiral phase boundary becomes dom-

inant. This trend is also reported in the MDP simulations

[31, 32] and supports the recent MC results based on the crit-

ical surface analysis [46]. However, the trend is opposite to

the anomaly based expectation for Nf = 4 > 2 [48]. The

anomaly effects in the staggered fermion formalism should be

further investigated in the future.

We have investigated thermodynamic quantities, which is

of great interest in the study of EOS of quark matter, which

has however been challenging in SC-LQCD. Our findings are

that a pressure and an interaction measure are drastically en-

hanced by Polyakov loop thermal excitations.

We have found some characteristic features of Polyakov

loops at finite µ. At finite µ in the broken phase, the anti-

Polyakov loop ℓ̄ becomes larger than ℓ, which is interpreted

as a screening effect of quarks at equilibrium with net quark

number density. In the chirally symmetric high density phase,

the Polyakov loop becomes relatively large even at a small

temperature, which can be understood from the absence of

the dynamical quark mass in the symmetric phase.

We have shown that the chiral and Polyakov loop suscep-

tibilities (χσ, χℓ) have their peaks near to each other in the

second-order transition or crossover region. In the vicinity

of the critical point, the peak of the χℓ rapidly diminishes.

We have found two qualitative differences between the Weiss

and Haar measure MFA on the Polyakov loop susceptibili-

ties: First, the peak of χℓ is more strongly locked to the chiral

phase boundary in Weiss MFA than the Haar measure MFA

case. Second, the Z3 deconfinement dynamics artificially re-

mains in the Haar measure MFA and disappears by taking ac-

count of the Polyakov loop fluctuations in Weiss MFA. Our

findings are summarized in Fig. 5 (upper, Haar measure MFA

result) and 8 (Weiss MFA result). The above difference results

from the fact that the effective potential of Weiss MFA does

not admit any remnant of the Z3 symmetric structure in sharp

contrast to the Haar measure MFA and many other chiral ef-

fective models [37, 43, 44]. Thus, the Weiss MFA does not

support the isolated deconfinement transition/crossover from

the chiral phase boundary at large µ.

There are several future directions to be investigated. First,

it is important to evaluate the higher order terms of the strong-
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FIG. 17: (Color online) The phase diagram evolution form0 = 0.05 as a function of β in NNLO Haar-measure MFA (left), which is compared

with the counterpart in NLO Haar-measure MFA (right) with same parameters. The red and blue lines represent the first-order chiral transition

and the chiral crossover, respectively. The black points show the CEP separating the first-order and crossover phase boundaries. The little

fluctuations of the CEP in the NNLO case are due to limited precision in the numerical search of the maximum of chiral susceptibilities as a

function of T and mu. All quantities are in lattice units at a given β.

coupling expansion, and/or to invent a resummation technique

to account for the higher orders. From this viewpoint, we find

recent developments for the Polyakov loop effective poten-

tial [51]. Second, it is desirable to establish the exact evalu-

ation of each order of the strong-coupling expansion beyond

the mean-field approximation and 1/d expansion. This will be

achieved by extending the MDP works [31, 32] to include the

higher-order of expansions as well as the Polyakov loop ef-

fects. Another method to go beyond MFA is the Monte-Carlo

simulations for the auxiliary field integrals at each order of the

expansion [33]. Third, it is interesting to evaluate the complex

phase effect of Polyakov loops; The susceptibilities associated

with the phase may give a new probe of the QCD phase tran-

sition [52]. And finally, the Weiss MFA results, especially the

quark and Polyakov loop thermal excitations summarized in

Table V, may open a possibility to invent an upgraded version

of the PNJL-type model which more reasonably describes the

interplay between the chiral and deconfinement dynamics.
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Appendix A: Effective potential in strong-coupling lattice QCD

We briefly review the derivation of the effective potential

Eq. (1) based on our previous papers [27, 28]. We start from

the lattice QCD action with one species of staggered fermion

(χ) with a current quark mass (m0) and chemical potential

(µ),

ZLQCD =

∫

D[χ, χ̄, Uν ] e
−SLQCD[χ,χ̄,Uν ] , (A1)

SLQCD = SF + SG +m0

∑

x

χ̄xχx , (A2)

where,

SF =
1

2

∑

ν,x

[

ην,xχ̄xUν,xχx+ν̂ − η−1
ν,x(h.c.)

]

, (A3)

ην,x = exp(µ δν0)(−1)x0+···+xν−1 , (A4)

SG = β
∑

P

[

1− 1

2Nc

[

UP + U †
P

]

]

. (A5)

We have employed lattice units a = 1. The Uν,x ∈ SU(Nc)

and UP=µν,x = trc[Uµ,xUν,x+µ̂U
†
µ,x+ν̂U

†
ν,x] represent the

link- and plaquette-variable, respectively. In the chiral limit
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TABLE I: The hadronic composites which appears after the spatial

link integrals.

Symbol Composites

Mx χ̄xχx
(

V +
x , V

−
x

) (

χ̄xe
µU0,xχx+0̂, χ̄x+0̂e

−µU†
0,xχx

)

(

W+
x ,W

−
x

) (

χ̄xe
2µU0,xU0,x+0̂χx+20̂, χ̄x+20̂e

−2µU†

0,x+0̂
U†

0,xχx

)

Lp,x trc
[
∏

τ U0,xτ

]

/Nc

TABLE II: The auxiliary field Φ and (ℓ, ℓ̄) See also Table I.

Symbol Mean Fields Contents

σ −〈M〉
(

ψ̄ττ , ψττ

) (

〈W+〉, 〈W−〉
)

(

ψ̄ss, ψss

) (

〈MM〉, 〈MMMM〉
)

(

ψ̄τs, ψτs

) (

−〈V +V −〉, 2〈MM〉
)

(

ψ̄τ , ψτ

) (

−〈V +〉, 〈V −〉
)

(

ψ̄s, ψs

) (

〈MM〉, 〈MM〉
)

(ℓ, ℓ̄) (〈Lp〉, 〈L̄p〉)

(m0 → 0), the action has the Uχ(1) chiral symmetry, which

is enhanced to SU(Nf = 4) in the continuum limit.

There are four main steps to derive the effective potential

from the lattice QCD action (A1) [28]: First, we carry out

the strong-coupling expansion, and integrate out the spatial

link variables in each order. The effective action is obtained

as a function of various hadronic composites. For the com-

posites including the staggered quarks (χ, χ̄), we take account

of the terms up to O(1/g6), and extract from them the lead-

ing order terms of the 1/d expansion O(1/d0) [53]. For the

pure gluonic composites, we take account of the leading order

TABLE III: The coupling coefficients appearing in the effective ac-

tion/potential. Here, g, Nc = 3, and d = 3 represents the gauge

coupling, number of color, and spatial dimension, respectively. See

Table II for the auxiliary fields (ψ···, ψ̄···).

Symbol Definition

bσ d/(2Nc)

βt
(

d/(N2
c g

2)
)

·
(

1 + 1/(2g2)
)

βs
(

d(d− 1)/(8N4
c g

2)
)

·
(

1 + 1/(2g2)
)

b′σ bσ + 2
[

βssψss + βτsψ̄τs + β′
s(ψs + ψ̄s)

]

β′
t βt + βτsψτs

β′
s βs + 2βssψ̄ss

βττ d/(2N3
c g

4)

βss d(d− 1)(d− 2)/(16N7
c g

4)

βτs d(d− 1)/(2N5
c g

4)

TABLE IV: Quantities which govern the property of the effective

potential. See Table III for the couplings (b′σ, β
′
τ , βττ ) and Table II

for the auxiliary fields (σ, ψτ , ψ̄τ , ψττ , ψ̄ττ ).

Symbol Definition Meanings

m̃q m′
q/
√
Z+Z− dynamical quark mass

m′
q = b′σσ +m0

−βττ (ψ̄ττ + ψττ )√
Z+Z− Z+ = 1 + β′

τ ψ̄τ wave function

+4βττm
′
qψ̄ττ renormalization factor

Z− = 1 + β′
τψτ

+4βττm
′
qψττ

Eq sinh−1 m̃q quark excitation energy

µ̃ µ− log
√

Z+/Z− shifted chemical potential

contributions to the Polyakov-loop [O(1/g2Nτ ), Nτ : lattice

temporal extension]. The hadronic composites are summa-

rized in Table I, and the effective action is expressed by using

these composites,

Seff = SNNLO

eff + SPol
eff , (A6)

with

SPol
eff = −N2

c

(

1

g2Nc

)Nτ=1/T
∑

j,x

[

L̄p,xLp,x+ĵ + h.c.
]

,

(A7)

and

SNNLO

eff =
∑

x

1

2
(V +

x − V −
x ) +

∑

x,j>0

[

− bσ
2d

[MM ]j,x

+
βτ
4d

[V +V − + V −V +]j,x −
∑

k>0,k 6=j

βs[MMMM ]jk,x
2d(d− 1)

− βττ
2d

[W+W− +W−W+]j,x

+
∑

|k|6=j

[

∑

|k|,|l|>0,
|l|6=j,|l|6=|k|

−βss[MMMM ]jk,x[MM ]j,x+l̂

4d(d− 1)(d− 2)

+
βτs[V

+V − + V −V +]j,x
8d(d− 1)

×
(

[MM ]j,x+k̂ + [MM ]j,x+k̂+0̂

)

]

]

. (A8)

We have introduced a short-hand notation

[AB]j,x = AxBx+ĵ , (A9)

[ABCD]jk,x = AxBx+ĵCx+ĵ+k̂Dx+k̂ , (A10)

and the couplings β··· in Eq. (A8) are summarized in Table III.

Second, we introduce the auxiliary fields for the hadronic

composites to bosonize the effective action SNNLO

eff , and per-

form the static mean-field and saddle-point approximations.
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TABLE V: The thermal excitation effects PI
n and QI in the quark determinant of the Weiss MFA, Eq. (A21). The left column represents

the excitation channel with the label I in the text: (M,B,Q,D) stands for (mesonic,baryonic,quark,diquark) excitation. The quark excitation

energy Eq and modified chemical potential µ̃ appearing in the third column are explained in TableIV. In the right column, In represents a

modified Bessel function with the argument x = 4dNc

(

β/(2N2
c )
)1/T

√
ℓℓ̄.

Excitation (I) NI
Q QI(Φ) PI

n

(√
ℓℓ̄
)

MMM 0
(

2 cosh(Eq/T )
)Nc

P MMM
n = I3n − In−2InIn+2 − 2In−1InIn+1 + In−2I

2
n+1 + I2n−1In+2

MQQ̄ 0 2 cosh(Eq/T ) P MQQ̄
n = −2(I3n − In−2InIn+2) + 5In−1InIn+1 − 3(In−2I

2
n+1 + I2n−1In+2)

−In−3InIn+3 + In−1In−2In+3 + In−3In+1In+2

B 3 eNcµ̃/T P B
n = P MMM

n−1

B̄ −3 e−Ncµ̃/T P B̄
n = P MMM

n+1

MMQ 1 eµ̃/T
(

2 cosh(Eq/T )
)2

P MMQ
n = In−1I

2
n + In−3I

2
n+1 − I2n−1In+1 + In−2In−1In+2 − In−3InIn+2 − In−2InIn+1

MMQ̄ −1 e−µ̃/T
(

2 cosh(Eq/T )
)2

P MMQ̄
n = In+1I

2
n + In+3I

2
n−1 − I2n+1In−1 + In−2In+1In+2 − In+3InIn−2 − In+2InIn−1

MD 2 e2µ̃/T 2 cosh(Eq/T ) P MD
n = P MMQ̄

n−1

MD̄ −2 e−2µ̃/T 2 cosh(Eq/T ) P MD̄
n = P MMQ

n+1

DQ̄ 1 eµ̃/T P DQ̄
n = 2(I2n−1In+1 − In−2In−1In+2 + In−3InIn+2)

+I2n−2In+3 − In−1I
2
n − In−3I

2
n+1 − In−3In−1In+3

QD̄ −1 e−µ̃/T P QD̄
n = 2(I2n+1In−1 − In−2In+1In+2 + In−2InIn+3)

+I2n+2In−3 − In+1I
2
n − In+3I

2
n−1 − In−3In+1In+3

The auxiliary fields are summarized in Table II, and the SNNLO

eff
reduces into

SNNLO

eff ≃ SF

eff + SX

eff , (A11)

where

SF

eff =
√

Z+Z−

∑

xy

χ̄xG
−1
xy (m̃q, µ̃)χy , (A12)

G−1
xy (m̃q, µ̃)

= m̃qδxy +
δxy
2

[

eµ̃U0,xδx+0̂,y − e−µ̃U †
0,xδx−0̂,y

]

,

(A13)

SX

eff = NτN
d
s

[

b′σσ
2 +

1

2
β′
τ ψ̄τψτ +

1

2
β′
sψ̄sψs

+ βττ ψ̄ττψττ + βssψ̄ssψss +
1

2
βτsψ̄τsψτs

]

. (A14)

Here, the dynamical quark mass m̃q, the shifted quark chem-

ical potential µ̃, and the wave function renormalization factor
√

Z+Z− are summarized in Table IV, and the Nt(s) repre-

sents the temporal (spatial) lattice extension.

Third, we carry out the Gaussian integral over the staggered

quarks (χ, χ̄) in Eq. (A12) in the antiperiodic boundary con-

dition. The resultant quark determinant at finite T is then cal-

culated by using the Matsubara method in the Polyakov gauge

for temporal link variables [42],

∫

D[χ, χ̄] e−SF
eff =

∏

x

[

eNc(log
√

Z+Z
−
+Eq)/T

× detc

[

(

1 +NcLp,xe
−(Eq−µ̃)/T

)

(

1 +NcL̄p,xe
−(Eq+µ̃)/T

)

]

]

, (A15)

with Eq = sinh−1 m̃q. Temperature T is now considered as a

continuous valued number (see the appendix in Ref. [24] for

details). The Polyakov loop Lp,x has appeared in the deter-

minant via the quark hopping wrapping around the temporal

direction in addition to the Plaquette effects Eq. (A7).

Finally, we evaluate the Lp,x effects in the path integral

over the temporal link variable U0 in two approximation

schemes: Haar measure and Weiss MFA. In the former, we

replace the Polyakov loop Lp,x contained in Eq. (A7) and

(A15) as well as the Haar measure of the U0 path integral

with a constant mean-field (ℓ, ℓ̄) instead of performing the U0

path integral. In the latter, we introduce a mean-field (ℓ, ℓ̄)
via the extended Hubbard-Stratonovich transformation [25] in

Eq. (A7), and exactly carry out the U0 path integral to include

the fluctuation effects from (ℓ, ℓ̄) [28].

As a result, we obtain the effective potential

FH/W

eff (Φ, ℓ, ℓ̄;β,m0, T, µ)

= FX(Φ, β) + FH/W

det (Φ, β,m0, T, µ)

+ FH/W

P
(ℓ, ℓ̄, β, T ) +O(1/g6, 1/

√
d) . (A16)
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The auxiliary field term is given by Eq. (A14) and common in

both Haar measure MFA and Weiss MFA,

FX(Φ, β) = SX

eff/(NtN
3
s ) . (A17)

The quark determinant and the Polyakov loop effects are given

as

FH

det = −NcEq −Nc log
√

Z+Z−

− T
(

logRq(Eq − µ̃, ℓ, ℓ̄) + logRq(Eq + µ̃, ℓ̄, ℓ)
)

,

(A18)

Rq(x, y, ȳ) ≡ 1 +Nc(ye
−x/T + ȳe−2x/T ) + e−3x/T

FH

P
= −2TdN2

c

(

1

g2Nc

)1/T

ℓ̄ℓ− T logRHaar(ℓ, ℓ̄) ,

(A19)

RHaar(ℓ, ℓ̄) ≡ 1− 6ℓ̄ℓ− 3
(

ℓ̄ℓ
)2

+ 4
(

ℓNc + ℓ̄Nc
)

, (A20)

in Haar measure MFA case, and

FW

P
+ FW

det = 2TdN2
c

(

1

g2Nc

)1/T

ℓ̄ℓ

− T log

[

∑

I

QI(Φ)PI(ℓ, ℓ̄)

]

, (A21)

PI(ℓ, ℓ̄) =

∞
∑

n=−∞

(

√

ℓ/ℓ̄

)−Ncn+NI
Q

PI
n

(

√

ℓℓ̄

)

, (A22)

in Weiss MFA case. In Eqs. (A21) and (A22), the index I la-

bels a pattern of thermal excitations of the quark composites,

and the fermionic thermal excitation effects QI , the Polyakov

loop thermal excitation effects PI
n, and the quark number in-

dex N I
Q are summarized in Table V.

As indicated in Eq. (A19) and (A21), the Z3 symmetric

term remains in the Haar measure MFA, but not in the Weiss

MFA up to the first ℓ̄ℓ term. In the latter, the path integral over

the temporal link variable U0 which accounts for the summa-

tion over the Polyakov loop fluctuations spoils the Z3 symme-

try in the presence of the dynamical quarks. In heavy quark

mass limit m0 → ∞, the Z3 symmetry recovers in the Weiss

MFA as follows: In the effective potential of Weiss MFA, the

factor
(
√

ℓ/ℓ̄
)−Ncn+NI

Q in Eq. (A22) gives a unique source

of the explicit Z3 symmetry breaking ((ℓ, ℓ̄) → (Ωℓ,Ω−1ℓ̄),
Ω ∈ Z3). For m0 → ∞ or equivalently Eq ≫ T, µ,

the three mesonic thermal excitation QI=MMM in Table V

becomes dominant, and it does not carry the quark number

N I=MMM
Q = 0. Therefore, the Eq. (11) reduces to

FW

P
+ FW

det = 2TdN2
c

(

1

g2Nc

)1/T

ℓ̄ℓ− T log

[

QI=MMM(Φ)

×
∞
∑

n=−∞

(

√

ℓ/ℓ̄

)−Ncn

PI=MMM
n

(

√

ℓℓ̄

)]

. (A23)

This expression is invariant under the Z3 transformation,

(ℓ, ℓ̄) → (Ωℓ,Ω−1ℓ̄) with the property ΩNcn = 1 forNc = 3.

Finally, we consider the confinement limit (ℓ, ℓ̄→ 0) in the

Weiss MFA. The quark determinant effect (A21) includes the

Polyakov loop thermal excitationPI
n, which are solely charac-

terized by the nth-order modified Bessel functions as shown in

Table V. In the limit (ℓ, ℓ̄→ 0), the 0th-order modified Bessel

function remains finite (I0(x → 0) = 1) while the others

vanish (In6=0(x → 0) = 0). Consequently, the only thermal

excitations which carry the quark number 0 and ±3 survives

in Table V, and the effective potential reduces into the one

which we have derived in our previous work [25],

FW

eff(Φ, ℓ, ℓ̄;β,m0, T, µ)|ℓ,ℓ̄=0 →
FNLO

eff (Φ;β,m0, T, µ) = FX(Φ, β)

− T log

[

(

2 cosh
Eq

T

)Nc

− 4 cosh
Eq

T
+ 2 cosh

Ncµ̃

T

]

.

(A24)

[1] For a recent lattice review of the QCD at finite temperature

and/or density, see O. Philipsen, Prog. Part. Nucl. Phys. 70, 55

(2013).

[2] For a recent review of the QCD phase diagram, see

K. Fukushima and C. Sasaki, Prog. Part. Nucl. Phys. 72, 99

(2013).

[3] For recent results and reviews, see, S. Borsanyi, Z. Fodor,

C. Hoelbling, S. D. Katz, S. Krieg, C. Ratti and K. K. Sz-

abo [Wuppertal-Budapest Collaboration], J. High Energy Phys.

1009, 073 (2010).

[4] D. Bailin and A. Love, Phys. Rept. 107, 325 (1984); R. Rapp,

T. Schafer, E. V. Shuryak and M. Velkovsky, Phys. Rev. Lett.

81, 53 (1998); M. G. Alford, K. Rajagopal and F. Wilczek,

Phys. Lett. B 422, 247 (1998); M. G. Alford, Ann. Rev. Nucl.

Part. Sci. 51, 131 (2001); D. T. Son, Phys. Rev. D 59, 094019

(1999); M. G. Alford, K. Rajagopal and F. Wilczek, Nucl. Phys.

B 537, 443 (1999); J. Berges and K. Rajagopal, Nucl. Phys. B

538, 215 (1999); K. Iida and G. Baym, Phys. Rev. D 63, 074018

(2001) [Erratum-ibid. D 66, 059903 (2002)]; M. Iwasaki and

T. Iwado, Phys. Lett. B 350, 163 (1995).

[5] L. McLerran and R. D. Pisarski, Nucl. Phys. A 796, 83 (2007).

[6] Y. Hidaka, L. D. McLerran and R. D. Pisarski, Nucl. Phys. A

808, 117 (2008); L. McLerran, K. Redlich and C. Sasaki, Nucl.

Phys. A 824, 86 (2009).

[7] L. McLerran, Nucl. Phys. A 830, 709C (2009).

[8] T. Kojo, Y. Hidaka, K. Fukushima, L. D. McLerran and

R. D. Pisarski, Nucl. Phys. A 875, 94 (2012); T. Kojo, Y. Hi-

daka, L. McLerran and R. D. Pisarski, Nucl. Phys. A 843, 37

(2010).

[9] For a recent review, see, C. Gale, S. Jeon and B. Schenke, Int.

J. Mod. Phys. A 28, 1340011 (2013).

[10] M. Asakawa and K. Yazaki, Nucl. Phys. A 504, 668 (1989);



18

M. A. Stephanov, K. Rajagopal and E. V. Shuryak, Phys. Rev.

Lett. 81, 4816 (1998).

[11] B. Mohanty [STAR Collaboration], J. Phys. G 38, 124023

(2011) [arXiv:1106.5902 [nucl-ex]].

[12] For a review of a finite chemical potential on lattice, see

S. Muroya, A. Nakamura, C. Nonaka and T. Takaishi, Prog.

Theor. Phys. 110, 615 (2003).

[13] G. Aarts, PoS LATTICE 2012, 017 (2012) [arXiv:1302.3028

[hep-lat]].

[14] H. Fujii, D. Honda, M. Kato, Y. Kikukawa, S. Komatsu and

T. Sano, JHEP 1310, 147 (2013) [arXiv:1309.4371 [hep-lat]].

[15] M. Cristoforetti et al. [AuroraScience Collaboration], Phys.

Rev. D 86, 074506 (2012) [arXiv:1205.3996 [hep-lat]].

[16] The review of the pioneering works for the strong-coupling

expansion is found in the text book, I. Montvay and

G. Münster, “Quantum Fields on a Lattice,” Cambridge Uni-

versity Press, 1994; M. Creutz, “Quarks, Gluons, and Lattices,”

Cambridge Univ. Press, 1983.

[17] K. G. Wilson, Phys. Rev. D 10, 2445 (1974).

[18] M. Creutz, Phys. Rev. D 21, 2308 (1980); M. Creutz and

K. J. M. Moriarty, Phys. Rev. D 26, 2166 (1982).

[19] G. Münster, Nucl. Phys. B 180, 23 (1981).

[20] K. Fukushima, Prog. Theor. Phys. Suppl. 153, 204 (2004).

[21] Y. Nishida, K. Fukushima and T. Hatsuda, Phys. Rept. 398, 281

(2004).

[22] Y. Nishida, Phys. Rev. D 69, 094501 (2004).

[23] V. Azcoiti, G. Di Carlo, A. Galante and V. Laliena, J. High

Energy Phys. 09, 014 (2003).

[24] N. Kawamoto, K. Miura, A. Ohnishi and T. Ohnuma, Phys. Rev.

D 75, 014502 (2007).

[25] K. Miura, T. Z. Nakano, A. Ohnishi and N. Kawamoto, Phys.

Rev. D 80, 074034 (2009); K. Miura, T. Z Nakano and

A. Ohnishi, Prog. Theor. Phys. 122, 1045 (2009).

[26] K. Miura, T. Z. Nakano, A. Ohnishi and N. Kawamoto,

arXiv:1106.1219 [hep-lat].

[27] T. Z. Nakano, K. Miura and A. Ohnishi, Prog. Theor. Phys. 123,

825 (2010).

[28] T. Z. Nakano, K. Miura and A. Ohnishi, Phys. Rev. D 83,

016014 (2011).

[29] B. Bringoltz, J. High Energy Phys. 03, 016 (2007).

[30] P. de Forcrand and M. Fromm, Phys. Rev. Lett. 104, 112005

(2010).

[31] P. de Forcrand, J. Langelage, O. Philipsen and W. Unger,

arXiv:1406.4397 [hep-lat].

[32] P. de Forcrand, M. Fromm, J. Langelage, K. Miura, O. Philipsen

and W. Unger, arXiv:1111.4677 [hep-lat]; P. de Forcrand,

J. Langelage, O. Philipsen and W. Unger, arXiv:1312.0589

[hep-lat].

[33] T. Ichihara, A. Ohnishi and T. Z. Nakano, PTEP 2014 (2014),

123D02 [arXiv:1401.4647 [hep-lat]]; T. Ichihara, T. Z. Nakano

and A. Ohnishi, Proc. Sci. LAT2013, 143 (2014); A. Ohnishi,

T. Ichihara and T. Z. Nakano, Proc. Sci. LAT2012, 088 (2012).

[34] A. Gocksch and M. Ogilvie, Phys. Rev. D 31, 877 (1985).

[35] E. M. Ilgenfritz and J. Kripfganz, Z. Phys. C 29, 79 (1985).

[36] K. Fukushima, Phys. Rev. D 68, 045004 (2003).

[37] K. Fukushima, Phys. Lett. B 591, 277 (2004).

[38] P. de Forcrand, private communication: For the temporal lattice

extension Nt = 2, the lattice bare coupling associated with the

chiral phase transition (βc) is found to be 3.67 at the bare quark

mass m0 = 0.025 and 3.81 at m0 = 0.05 for one species of

staggered fermion.

[39] G. Boyd, J. Fingberg, F. Karsch, L. Karkkainen and B. Peters-

son, Nucl. Phys. B 376, 199 (1992); R. V. Gavai et al. [MT(c)

Collaboration], Phys. Lett. B 241, 567 (1990); S. A. Gottlieb,

W. Liu, D. Toussaint, R. L. Renken and R. L. Sugar, Phys.

Rev. D 35, 3972 (1987); A. D. Kennedy, J. Kuti, S. Meyer and

B. J. Pendleton, Phys. Rev. Lett. 54, 87 (1985).

[40] J. Engels, R. Joswig, F. Karsch, E. Laermann, M. Lutgemeier

and B. Petersson, Phys. Lett. B 396, 210 (1997).

[41] J. Polonyi and K. Szlachanyi, Phys. Lett. B 110, 395 (1982);

M. Gross, Phys. Lett. B 132, 125 (1983);

J. Bartholomew, D. Hochberg, P. H. Damgaard and M. Gross,

Phys. Lett. B 133, 218 (1983).

[42] P. H. Damgaard, N. Kawamoto and K. Shigemoto, Nucl. Phys.

B 264, 1 (1986).

[43] K. Fukushima, Phys. Rev. D 77, 114028 (2008).

[44] T. K. Herbst, J. M. Pawlowski and B. J. Schaefer, Phys. Lett. B

696, 58 (2011); Phys. Rev. D 88, no. 1, 014007 (2013).

[45] T. Jolicoeur, H. Kluberg-Stern, M. Lev, A. Morel and B. Peters-

son, Nucl. Phys. B 235, 455 (1984).

[46] P. de Forcrand and O. Philipsen, J. High Energy Phys. 0811,

012 (2008).

[47] T. Ichihara, A. Ohnishi and K. Morita, PoS LATTICE 2015,

203 (2016).

[48] R. D. Pisarski and F. Wilczek, Phys. Rev. D 29, 338 (1984).

[49] I. Ichinose and K. Nagao, Nucl. Phys. B 577, 279 (2000); Nucl.

Phys. B 596, 231 (2001).

[50] X. L. Yu and X. Q. Luo, Mod. Phys. Lett. A 22, 537 (2007).

[51] G. Bergner, J. Langelage and O. Philipsen, J. High Energy Phys.

1403, 039 (2014); J. Langelage and O. Philipsen, J. High En-

ergy Phys. 1004, 055 (2010); J. High Energy Phys. 1001, 089

(2010); J. Langelage, G. Munster and O. Philipsen, J. High En-

ergy Phys. 0807, 036 (2008).

[52] P. M. Lo, B. Friman, O. Kaczmarek, K. Redlich and C. Sasaki,

Phys. Rev. D 88, no. 1, 014506 (2013) [arXiv:1306.5094 [hep-

lat]].

[53] H. Kluberg-Stern, A. Morel and B. Petersson, Nucl. Phys. B

215, 527 (1983).

[54] In fact, the PNJL model is invented from the SC-LQCD [37].


