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A New Approach for Three-Phase Flows

Jean-Marc Hérard *
EDF-DRD, 78401 Chatou cedez, France

We present here a new model to describe three-field patterns or three-phase flows. The
basic ideas rely on the counterpart of the two-fluid two-pressure model which has been
introduced in the DDT framework, and more recently extended to water-vapour simula-
tions. We show the system is hyperbolic without any constraining condition on the flow
patterns. A detailed investigation of the structure of the Riemann problem is achieved.
Regular solutions of the whole are in agreement with physical requirements on void frac-
tions, densities and internal energies for a rather wide class of equations of state. Even
more, this approach enables to perform computations of standard single pressure three-
phase flow models, using relaxation techniques and coarse meshes. A few computational
results confirm the stability of the whole approach.

I. Introduction

Some simulations in the framework of pressurized power reactors in the nuclear energy require using
two-fluid models, and some others even ask for a three field description of the whole flow (see’? ). This may
happen for instance when predicting the motion of liquid dispersed droplets inside a continuous gas phase,
while some gas-liquid interface is moving in the core. Other applications involving a gaseous phase and two
distinct liquids (for instance oil and water) also urge for the development of three field models.

Some models and tools have already been proposed, which basically rely on the two-fluid single-pressure
formalism. These either assume that liquid droplets velocities and velocities in the surrounding gas phase
are equal, or retain different velocities but assume in any case a local pressure equilibrium between the three
components. A straightforward consequence is that these models suffer from the same deficiencies than
standard two-fluid models. More clearly, the loss of hyperbolicity of the convective subset implies that com-
putations on sufficiently fine grids rather easily enter ”elliptic in time” regions ; as a consequence, even the
most "stable” upwinding schemes lead to a blow up of the code when refining the mesh, though accounting
for stabilizing drag effects (see® for instance for such a numerical experience).

An alternative way to deal with these flows consists in getting rid of the pressure equilibrium between
phases. This was first introduced in the framework of the DDT (see,* !> among others), and more recently
applied to water-vapour predictions (see'®18). One of the main advantages with the latter approach is that
it inherits from the hyperbolic structure of Navier-Stokes equations -which seems quite reasonable- on the
one hand; moreover, the overall entropy inequality provides some better understanding of various interfacial
transfer terms. For all these reasons, it seems appealing to examine whether one might derive a similar
framework to cope with three-phase or three-field flow structures. Such a trial is discussed in this paper.
An underlying idea is that the interface between phases remains infinitely thin when submitted to pure
convective patterns.
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We will first provide the main set of equations which includes source terms, viscous terms and convective
effects. The main properties of the whole set will be examined, including a discussion on the solutions of
the one dimensional Riemann problem. These properties enable to compute the whole set with help of
rough schemes (Rusanov scheme) or more accurate approximate Riemann solvers such as the one introduced
in.!%20 A few computational results illustrate the whole, which issue from the computation of a Riemann
problem.

II. Governing equations

The density, velocity, pressure, internal energy and total energy within phase k£ will be denoted py, Uy,
Py, e, = er(Py, pr) and Ep = 0.5p,UU}. + prey respectively. The volumetric fraction of phase labelled & is
defined as ay, and the three must comply with the constraint:

a1 = 1-— Qg — (3
The governing set of equations is:

(I+ D(W))aavtv + a%(f/)

IG(W) _ Ca—

= =) (1)

+ C(W) o

It requires an initial condition W (z,0) = Wy(z) and suitable boundary conditions. The state variable W,
the fluxes F(W), G(W) and the source terms S(W) lie in R''. We set:

t
W= (ag,a3,a1p1,a2p2,a3p3,a1p1U1,a2p2U2,a3p3U3,a1E1,a2E2,a3E3)
and, noting my = g pg:

FW)t =(0,0,m1Uy,maUs, m3Us, a1 (pUE + Pr),a2(p2U3 + Py), az(psU3 + Ps),
OélUl(El + Pl),a2U2(E2 + Pg),a3U3(E3 + P3))

Second rank tensors C(W), D(W), E(W) lie in R'' 1. The non-conservative convective terms are :

8W 8a2 6(13 8a2 8a3
D(W)a%( )(0 0, 0; 0,0, an —P = —ggﬁ P2a o Pgﬁ) , o
_ a2 a3 (e g
CW)—— =05 = Ui 000P28 Pgax ~Py—2, —P;—-2,0,0,0)

Viscous terms should at least account for the following contributions (thermal fluxes might be included):

aw oUi  OU, QU U U Us

E(W) 9 (Oa0,0,0,0,almwaa2u2%,aaﬂa'W,OélMlUl%a%m@ o yazpzUs ax) (3)

Source terms S(WW) account for mass transfer terms, drag effects, energy loss, and other contributions. To
simplify our presentation, we only retain here the effect of pressure relaxation and drag effects. Thus:

S(W) = (¢27 ¢37 0: 07 0: SU1 ) SUz ) SU3 ) UISU1 ) UISUza UlsUg) (4)
We also set ¢1 = —¢o — ¢3 and we recall that the momentum interfacial transfer terms must comply with:

SU1 (W) + SU2 (W) + SU3 (W) =0
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ITI. Main properties

We focus first on the homogeneous problem associated with the left hand side of (1). We define as usual
specific entropies s and speeds ¢y in terms of the density pj and the internal energy ey:

Oe P, Oe ]37 _
(e = s = (L = Dttt Bt )
95k (P, p) 05k (P, pr)
P =
Ve lk op, + pr O 0

Property 1 :
1.1 The homogeneous system associated with the left hand side of (1) has eigenvalues:
Mp23=Ui, A =Usz, \s =Us, \¢ =U1 —c1, \r =Ui +c1, \g = Us —c2, Ag = Uz + 2, Ao = Uz —c3,A\11 =
Us + c3. Associated right eigenvectors span the whole space R'! unless U; = Uy, + ¢, or Uy = U, — ¢, for
k=2,3.

1.2 Fields associated with eigenvalues A\, with k in (1,2, 3,4, 5) are Linearly Degenerate ; other fields are
Genuinely Non Linear.

The list of Riemann invariants through LD fields associated with £ = 4,5 and GNL fields may be com-
puted quite easily using variable: Z! = (s, a3, s1, 89,53, Uy, U, Us, Py, Py, P3) (see appendices A,B,C in?!).

Property 2 :
2.1 The latter system admits the following Riemann invariants through the 1 —2 — 3 LD wave:

I77PW)=ma(Us—Uy) L, > (W) =ms(Us — Uy)

L2 W)=sy L °7°W)=s3 L 27°(W)=0,

Ié_2_3(W) (&3] P1 + a2P2 + a3P3 + mg(Ul U2)2 + TTL3(U1 — U3)2
L723(W) =260 + 222 + (Ur = Us)® L3> 73(W) =263 + 222 + (UL - Uy)?

2.2 We note A(¢)) =1, — ¢;. Apart from the 1 — 2 — 3 LD wave, the following exact jump conditions hold
for k = 1,2, 3, through any discontinuity separating states [, moving with speed o:

Afay) =

A(mk( k —0)) =0
A(mkUk(Uk - 0’) + OékPk) =0
A(akEk(Uk — 0') + OékPkUk) =0

We need to define:

1,05k (Pr, pr) | Oer(Pr, pr) 1

@ = () (G o) ©)

and: 1, = Log(sk), but also the pair (n, F})) such that : n = —mym — mans — mans, and: F, = —mymU; —
ma2n2Us — mansUs. Drag terms Sy, (W) and source terms ¢y (1) in (1) comply with:

0 S CLQ(Ul — UQ)SU2 (W) + a3(U1 - U3)5U3 (W) (6)

0 < ai(op1Pr + ¢a P + ¢3P3) (7)

Condition (7) reads:
¢2(Pr — P2) + ¢3(P1 — P3) <0
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since @1 + ¢ + ¢p3 = 0 and a; > 0 for standard EOS.

Property 3 :
Closures in agreement with the above mentionned constraints (6),(7) ensure that the following entropy
inequality holds for regular solutions of (1):

on  O0F,
ALk S
5 " ar =V (8)

We from now will assume that the conditions (6) , (7) are fulfilled. For conveniency we will choose here :

2 = fica(W)araz (P — Py)/(Py + P> + P) (9)
¢3 = frs(W)araz(Ps — P)/(Py + P> + P) (10)

where positive scalar functions fr—; (W) denote bounded frequencies. It is easy to check that:
01 Py + g2 Py + ¢p3P3 > 0

Even more, the governing equation of 7 = ajasa3 guarantees that regular solutions ay(z,t) remain in the
admissible range [0, 1]. We will rely on standard closures of the form (see? for instance):

S, (W) = 2 (W)(Ur — Us) (11)
Sus (W) = ¢3(W)(Ur — Us) (12)

where the scalar functions 2 (W), 13(W) should remain positive. Hence (6) and (7) hold.

Property 4 :
We assume perfect gas state law within each phase (k = 1,2,3). We consider a single wave associated
with A\, separating states [,r. If the initial conditions satisfy: (a)r,r(1 — ar)r,r # 0, for £ = 1,2,3 the
connection of states through this wave ensures that all states are in agreement with: 0 < ay, 0 < my, 0 < Py.

Actually, the proof is almost obvious when focusing on a single field connected with eigenvalue A\, where
k = 4 to 11. Turning then to the 1,2, 3-field, the main guidelines (see appendix E in?') are the same as in.'”
Details on some suitable forms of mass and energy transfer terms can be found in appendix F in.?!

IV. Numerical approach

The whole enables to introduce a fractional step approach in agreement with the overall entropy inequality,
which is again the counterpart of the one described in.!” We thus simply compute approximations of the
convective subset :

OW  OF (W) oGW)
(I + D(W))W + pe +C(W) o 0 (13)
and then account for source terms and viscous terms updating values through the step:
ow 0 ow
([+D(W))W —S(W)+%( ( )%) (14)

This fractional step method is in agreement with the whole entropy inequality. When neglecting viscous
contributions, the second one turns to an ordinary differential system .

Our basic approach to compute convective terms relies on the Godunov approach.?2:2% More precisely
here, we use the schemes introduced in'” to compute approximations of the system (13). This is achieved
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with help of either the Rusanov scheme or the approximate Godunov scheme VFRoe-ncv.!? In order to cope
with the standard step (13) which requires discretizing convective effects, a rather efficient way consists in
using the approximate Godunov scheme introduced in'? with the specific variable:

Z' = (a2, 3, 51, 52,83,U1,Us,Us, Py, Py, P3) (15)

(see?® which details the main advantages of such a choice). Computations below have been obtained with
the former scheme, while fulfilling standard CFL conditions.

One must be careful when providing approximations of system (14). Otherwise, the stability of locally
equal-pressure regions may be violated. The connection with the scheme introduced in?* is obvious.

This approach has another advantage, since it also enables to cope with the instantaneous pressure equi-
librium assumption. This is useful to compute models such as those described in? for instance. Owing to the
entropy structure (see appendix D in?!'), one may actually introduce the pressure relaxation step involved in
(14) as a tool to compute the single pressure models detailed in.? This is the counterpart of what has been
achieved in the two-phase framework ( see?® 26 or? for instance).

V. A few computations of the shock tube apparatus

We restrict here to some simple computations of the shock tube apparatus. We use a uniform mesh
with 10000 cells and set CFL = 0.49 in order to avoid the interaction of waves within the cells. In these
computations, all source terms and viscous terms have been neglected, in order to assess the stability of the
whole convective subset.

We assume that the perfect gas law holds within each phase: prer = (vp — 1) Py, setting v1 = 7/5,
7o = 1.05 and 73 = 1. 01 Initial condltlons are : (ao)r, = 0.4, (a3)r, = 0.5, (a2)r = 0.5, (az)r = 0.4,

( 1)L = 100 ( ) = , (Pl) = , (Ul)R = 100, (Tl)R = 8, (Pl)R = 105, (U2)L = 100, (T2)L = ].,
( 2)L = ].0 (Ug) = 100, (TQ)R = 8, (P2)R = 105, (Ug)L = 100, (Tg)L = ]., (Pg) = (Ug)R = 100
(r3)r = 8, (P3)R = 10°, for the first case (fig. (1-3)), and: (a2); = 0.4, (a3)r, = ( 2)R = 05
(a3)r = 04 (U =0, (n)r =1, (P)g, = 10°, (U1)r =0, ()r = 8, (P1)r = 10*, (U ) 0, (r2)r
(P2)r °, (U2)r =0, (2)r =8, (P)r = 10*, (U3)r, =0, (1)1, = 1, (P3)1, = 105, (Us)r =0, (TS)R = 8
(Pg)R = 104 for the second test.

Void fractions alpha2 (squares), alpha3 Partial masses m1 (circles), m2 (squares), m3 Pressures P1 (circles). P2 (squares), P3
CFL=049 _ 10000 cells CFL=049 _ 10000 cclls CFL=049 _ 10000 cells
05 05 1.1e+05

1.05e+05

1e+05

95000

0.4 0 90000
2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

Figure 1. Void fractions a2, a3 Figure 2. Partial masses mi, ma, Figure 3. Pressures Pi, P>, P3
m3
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Velocities U1 (circles), U2 (squares), U3 Partial masses m1 (circles), m2 (squares), m3 Pressures P1 (circles), P2 (squares), P3
Shock tube _ CFL=0.49 _ 10000 cells Shock wbe _ CFL=049 _ 10000 cells Shock tube _ CFL=0.49 _ 10000 ccls
400 05 1405

041 80000
300 b

0.3 60000
200

0.2 40000

01 ._¥_| 20000

0 0
2000 4000 6000 8000 10000 [ 2000 4000 6000 8000 10000 ° 0 2000 4000 6000 8000 10000

100

Figure 4. Velocities Uy, Ua, Us Figure 5. Partial masses mi, ma, Figure 6. Pressures Pi, P>, P3
m3

VI. Conclusion

This new model benefits from important properties. From a physical point of view, an interesting point is
that it preserves the positivity of (expected) positive quantities : void fractions, mass fractions and internal
energies, at least when restricting to sufficiently simple EOS. Its mathematical properties enable us to con-
struct nonlinear stable numerical methods, and thus to explore highly unsteady flow patterns. Conditions
to obtain a existence and uniqueness of the exact solution of the one dimensional Riemann problem cannot
be obtained easily. A specific difficulty is linked with the possible occurence of the resonance phenomena.
Another point, which seems worth being noted, is that the counterpart of the average ”candidate” interface
velocity Vi = (m1Uy + m2Uz)/(my + ma) no longer arises in the three-field framework.

Another part of our current work concerns the comparison with standard single pressure three-field

models, when restricting to coarse meshes. This is achieved using relaxation techniques, following ideas
from.3»24-30
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Appendix

We examine in this appendix the structure of the convective set of equations. Restricting to regular
solutions, we rewrite the convective system issuing from (1), that is:

OW  OF (W) OG(W) _
(Id + D(W))W + e + O(W)T =0
in the form: 87 87

using the specific variable:
Z"' = (a,03,51,82,53,U1, Uz, Us, P1, P2, P3)
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6(12 8a3

This provides a system in reduced form. The occurence of terms proportional to 52 Bz inhibits the fully
symmetrized form, unless pressure-velocity equilibrium is reached. The matrix of convective terms is:
Uy 0 0 0 0 0 0 0 0o 0 0
0 Uy 0 0 0 0 0 0 0o 0 0
0 0 vy 0 O 0 0 0 0o 0 0
0 0 0 U 0 0 0 0 0o 0 0
0 0 0 0 Us 0 0 0 0O 0 0
A(Z) = (P, — Py)/my (Ps — Py)/my 0O 0 0 U 0 0 0 0
0 0 0 0 0 0 U, 0 0 =» O
0 0 0 0 0 0 0 Us 0 0 13
0 0 0 0 0 mhP 0 0O Uy 0 O
Y2 (Us — Up) Py /axs 0 0 0 0 0 7P 0 0 Uy 0
0 v3(Us —U)P3s/as 0 0 0 0 0 m1Ps 0 0 Us

It admits the following right eigenvectors:
T’i = (15 ana ana 0,&7, 07 (Pl - PQ)/ala 011070)

7“5 = (05 1707070707070'87 (Pl - PS)/alaoaall)

rs = (0,0,1,0,0,0,0,0,0,0,0)
ri =(0,0,0,1,0,0,0,0,0,0,0)
rs =(0,0,0,0,1,0,0,0,0,0,0)

’I"é = (05070707037—170707 _017070)

T’tY = (07050705077'17070701)070)

Té = (07070707():077'270)07 _0270)

ré = (0707070707077—2707070270)

riO = (070707070707077-370707 _03)

Til = (07050705070707T37070a03)

noting:
a7 =2 Para(Uz — Uy) [ (a0202) aro = =2 P2 (Us — U1)?/(aads)

ag =3 P33(Us — Uy)/(a3d3) ar1 = —y3P3(Us — U1)?/(a363)
ok = (U — Uh)* — ()’

for £ = 2,3. Recall that ¢ = (7kPka)1/ 2. Obviously, this set of eigenvectors no longer spans the whole
space when either ds or d3 is null.
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