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A New Approa
h for Three-Phase Flows

Jean-Mar
 H�erard

�

EDF-DRD, 78401 Chatou 
edex, Fran
e

We present here a new model to des
ribe three-�eld patterns or three-phase 
ows. The

basi
 ideas rely on the 
ounterpart of the two-
uid two-pressure model whi
h has been

introdu
ed in the DDT framework, and more re
ently extended to water-vapour simula-

tions. We show the system is hyperboli
 without any 
onstraining 
ondition on the 
ow

patterns. A detailed investigation of the stru
ture of the Riemann problem is a
hieved.

Regular solutions of the whole are in agreement with physi
al requirements on void fra
-

tions, densities and internal energies for a rather wide 
lass of equations of state. Even

more, this approa
h enables to perform 
omputations of standard single pressure three-

phase 
ow models, using relaxation te
hniques and 
oarse meshes. A few 
omputational

results 
on�rm the stability of the whole approa
h.

I. Introdu
tion

Some simulations in the framework of pressurized power rea
tors in the nu
lear energy require using

two-
uid models, and some others even ask for a three �eld des
ription of the whole 
ow (see

1, 2

). This may

happen for instan
e when predi
ting the motion of liquid dispersed droplets inside a 
ontinuous gas phase,

while some gas-liquid interfa
e is moving in the 
ore. Other appli
ations involving a gaseous phase and two

distin
t liquids (for instan
e oil and water) also urge for the development of three �eld models.

Some models and tools have already been proposed, whi
h basi
ally rely on the two-
uid single-pressure

formalism. These either assume that liquid droplets velo
ities and velo
ities in the surrounding gas phase

are equal, or retain di�erent velo
ities but assume in any 
ase a lo
al pressure equilibrium between the three


omponents. A straightforward 
onsequen
e is that these models su�er from the same de�
ien
ies than

standard two-
uid models. More 
learly, the loss of hyperboli
ity of the 
onve
tive subset implies that 
om-

putations on suÆ
iently �ne grids rather easily enter "ellipti
 in time" regions ; as a 
onsequen
e, even the

most "stable" upwinding s
hemes lead to a blow up of the 
ode when re�ning the mesh, though a

ounting

for stabilizing drag e�e
ts (see

3

for instan
e for su
h a numeri
al experien
e).

An alternative way to deal with these 
ows 
onsists in getting rid of the pressure equilibrium between

phases. This was �rst introdu
ed in the framework of the DDT (see,

4{15

among others), and more re
ently

applied to water-vapour predi
tions (see

16{18

). One of the main advantages with the latter approa
h is that

it inherits from the hyperboli
 stru
ture of Navier-Stokes equations -whi
h seems quite reasonable- on the

one hand; moreover, the overall entropy inequality provides some better understanding of various interfa
ial

transfer terms. For all these reasons, it seems appealing to examine whether one might derive a similar

framework to 
ope with three-phase or three-�eld 
ow stru
tures. Su
h a trial is dis
ussed in this paper.

An underlying idea is that the interfa
e between phases remains in�nitely thin when submitted to pure


onve
tive patterns.

�

Resear
h Engineer, D�epartement MFTT, 6 quai Watier, and Asso
iate Resear
h Dire
tor, CNRS, LATP, AIAA Member
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We will �rst provide the main set of equations whi
h in
ludes sour
e terms, vis
ous terms and 
onve
tive

e�e
ts. The main properties of the whole set will be examined, in
luding a dis
ussion on the solutions of

the one dimensional Riemann problem. These properties enable to 
ompute the whole set with help of

rough s
hemes (Rusanov s
heme) or more a

urate approximate Riemann solvers su
h as the one introdu
ed

in.

19, 20

A few 
omputational results illustrate the whole, whi
h issue from the 
omputation of a Riemann

problem.

II. Governing equations

The density, velo
ity, pressure, internal energy and total energy within phase k will be denoted �

k

, U

k

,

P

k

, e

k

= e

k

(P

k

; �

k

) and E

k

= 0:5�

k

U

k

U

k

+ �

k

e

k

respe
tively. The volumetri
 fra
tion of phase labelled k is

de�ned as �

k

, and the three must 
omply with the 
onstraint:

�

1

= 1� �

2

� �

3

The governing set of equations is:

(I +D(W ))

�W

�t

+

�F (W )

�x

+ C(W )

�G(W )

�x

= S(W ) +

�

�x

(E(W )

�W

�x

) (1)

It requires an initial 
ondition W (x; 0) = W

0

(x) and suitable boundary 
onditions. The state variable W ,

the 
uxes F (W ), G(W ) and the sour
e terms S(W ) lie in R

11

. We set:

W

t

= (�

2

; �

3

; �

1

�

1

; �

2

�

2

; �

3

�

3

; �

1

�

1

U

1

; �

2

�

2

U

2

; �

3

�

3

U

3

; �

1

E

1

; �

2

E

2

; �

3

E

3

)

and, noting m

k

= �

k

�

k

:

F (W )

t

= (0; 0;m

1

U

1

;m

2

U

2

;m

3

U

3

; �

1

(�

1

U

2

1

+ P

1

); �

2

(�

2

U

2

2

+ P

2

); �

3

(�

3

U

2

3

+ P

3

);

�

1

U

1

(E

1

+ P

1

); �

2

U

2

(E

2

+ P

2

); �

3

U

3

(E

3

+ P

3

))

Se
ond rank tensors C(W ); D(W ); E(W ) lie in R

11�11

. The non-
onservative 
onve
tive terms are :

8

>

<

>

:

D(W )

�W

�t

= (0; 0; 0; 0; 0; 0; 0; 0;�P

2

��

2

�t

� P

3

��

3

�t

; P

2

��

2

�t

; P

3

��

3

�t

)

C(W )

�G(W )

�x

= (U

1

��

2

�x

; U

1

��

3

�x

; 0; 0; 0; P

2

��

2

�x

+ P

3

��

3

�x

;�P

2

��

2

�x

;�P

3

��

3

�x

; 0; 0; 0)

(2)

Vis
ous terms should at least a

ount for the following 
ontributions (thermal 
uxes might be in
luded):

E(W )

�W

�x

= (0; 0; 0; 0; 0; �

1

�

1

�U

1

�x

; �

2

�

2

�U

2

�x

; �

3

�

3

�U

3

�x

; �

1

�

1

U

1

�U

1

�x

; �

2

�

2

U

2

�U

2

�x

; �

3

�

3

U

3

�U

3

�x

) (3)

Sour
e terms S(W ) a

ount for mass transfer terms, drag e�e
ts, energy loss, and other 
ontributions. To

simplify our presentation, we only retain here the e�e
t of pressure relaxation and drag e�e
ts. Thus:

S(W ) = (�

2

; �

3

; 0; 0; 0; S

U

1

; S

U

2

; S

U

3

; U

1

S

U

1

; U

1

S

U

2

; U

1

S

U

3

) (4)

We also set �

1

= ��

2

� �

3

and we re
all that the momentum interfa
ial transfer terms must 
omply with:

S

U

1

(W ) + S

U

2

(W ) + S

U

3

(W ) = 0
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III. Main properties

We fo
us �rst on the homogeneous problem asso
iated with the left hand side of (1). We de�ne as usual

spe
i�
 entropies s

k

and speeds 


k

in terms of the density �

k

and the internal energy e

k

:

(


k

)

2

=




k

P

k

�

k

= (

P

k

(�

k

)

2

�

�e

k

(P

k

; �

k

)

��

k

)(

�e

k

(P

k

; �

k

)

�P

k

)

�1




k

P

k

�s

k

(P

k

; �

k

)

�P

k

+ �

k

�s

k

(P

k

; �

k

)

��

k

= 0

Property 1 :

1:1 The homogeneous system asso
iated with the left hand side of (1) has eigenvalues:

�

1;2;3

= U

1

, �

4

= U

2

, �

5

= U

3

, �

6

= U

1

� 


1

, �

7

= U

1

+ 


1

, �

8

= U

2

� 


2

, �

9

= U

2

+ 


2

, �

10

= U

3

� 


3

,�

11

=

U

3

+ 


3

. Asso
iated right eigenve
tors span the whole spa
e R

11

unless U

1

= U

k

+ 


k

or U

1

= U

k

� 


k

, for

k = 2; 3.

1:2 Fields asso
iated with eigenvalues �

k

with k in (1; 2; 3; 4; 5) are Linearly Degenerate ; other �elds are

Genuinely Non Linear.

The list of Riemann invariants through LD �elds asso
iated with k = 4; 5 and GNL �elds may be 
om-

puted quite easily using variable: Z

t

= (�

2

; �

3

; s

1

; s

2

; s

3

; U

1

; U

2

; U

3

; P

1

; P

2

; P

3

) (see appendi
es A,B,C in

21

).

Property 2 :

2:1 The latter system admits the following Riemann invariants through the 1� 2� 3 LD wave:

I

1�2�3

1

(W ) = m

2

(U

2

� U

1

) I

1�2�3

2

(W ) = m

3

(U

3

� U

1

)

I

1�2�3

3

(W ) = s

2

I

1�2�3

4

(W ) = s

3

I

1�2�3

5

(W ) = U

1

I

1�2�3

6

(W ) = �

1

P

1

+ �

2

P

2

+ �

3

P

3

+m

2

(U

1

� U

2

)

2

+m

3

(U

1

� U

3

)

2

I

1�2�3

7

(W ) = 2e

2

+ 2

P

2

�

2

+ (U

1

� U

2

)

2

I

1�2�3

8

(W ) = 2e

3

+ 2

P

3

�

3

+ (U

1

� U

3

)

2

2:2 We note �( ) =  

r

�  

l

. Apart from the 1� 2� 3 LD wave, the following exa
t jump 
onditions hold

for k = 1; 2; 3, through any dis
ontinuity separating states l; r moving with speed �:

�(�

k

) = 0

�(m

k

(U

k

� �)) = 0

�(m

k

U

k

(U

k

� �) + �

k

P

k

) = 0

�(�

k

E

k

(U

k

� �) + �

k

P

k

U

k

) = 0

We need to de�ne:

a

k

= (s

k

)

�1

(

�s

k

(P

k

; �

k

)

�P

k

)(

�e

k

(P

k

; �

k

)

�P

k

)

�1

(5)

and: �

k

= Log(s

k

), but also the pair (�; F

�

) su
h that : � = �m

1

�

1

�m

2

�

2

�m

3

�

3

, and: F

�

= �m

1

�

1

U

1

�

m

2

�

2

U

2

�m

3

�

3

U

3

. Drag terms S

U

k

(W ) and sour
e terms �

k

(W ) in (1) 
omply with:

0 � a

2

(U

1

� U

2

)S

U

2

(W ) + a

3

(U

1

� U

3

)S

U

3

(W ) (6)

0 � a

1

(�

1

P

1

+ �

2

P

2

+ �

3

P

3

) (7)

Condition (7) reads:

�

2

(P

1

� P

2

) + �

3

(P

1

� P

3

) � 0
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sin
e �

1

+ �

2

+ �

3

= 0 and a

1

> 0 for standard EOS.

Property 3 :

Closures in agreement with the above mentionned 
onstraints (6),(7) ensure that the following entropy

inequality holds for regular solutions of (1):

��

�t

+

�F

�

�x

� 0 (8)

We from now will assume that the 
onditions (6) , (7) are ful�lled. For 
onvenien
y we will 
hoose here :

�

2

= f

1�2

(W )�

1

�

2

(P

2

� P

1

)=(P

1

+ P

2

+ P

3

) (9)

�

3

= f

1�3

(W )�

1

�

3

(P

3

� P

1

)=(P

1

+ P

2

+ P

3

) (10)

where positive s
alar fun
tions f

k�l

(W ) denote bounded frequen
ies. It is easy to 
he
k that:

�

1

P

1

+ �

2

P

2

+ �

3

P

3

> 0

Even more, the governing equation of � = �

1

�

2

�

3

guarantees that regular solutions �

k

(x; t) remain in the

admissible range [0; 1℄. We will rely on standard 
losures of the form (see

2

for instan
e):

S

U

2

(W ) =  

2

(W )(U

1

� U

2

) (11)

S

U

3

(W ) =  

3

(W )(U

1

� U

3

) (12)

where the s
alar fun
tions  

2

(W ),  

3

(W ) should remain positive. Hen
e (6) and (7) hold.

Property 4 :

We assume perfe
t gas state law within ea
h phase (k = 1; 2; 3). We 
onsider a single wave asso
iated

with �

m

, separating states l; r. If the initial 
onditions satisfy: (�

k

)

L;R

(1 � �

k

)

L;R

6= 0, for k = 1; 2; 3 the


onne
tion of states through this wave ensures that all states are in agreement with: 0 � �

k

, 0 � m

k

, 0 � P

k

.

A
tually, the proof is almost obvious when fo
using on a single �eld 
onne
ted with eigenvalue �

k

where

k = 4 to 11. Turning then to the 1; 2; 3-�eld, the main guidelines (see appendix E in

21

) are the same as in.

17

Details on some suitable forms of mass and energy transfer terms 
an be found in appendix F in.

21

IV. Numeri
al approa
h

The whole enables to introdu
e a fra
tional step approa
h in agreement with the overall entropy inequality,

whi
h is again the 
ounterpart of the one des
ribed in.

17

We thus simply 
ompute approximations of the


onve
tive subset :

(I +D(W ))

�W

�t

+

�F (W )

�x

+ C(W )

�G(W )

�x

= 0 (13)

and then a

ount for sour
e terms and vis
ous terms updating values through the step:

(I +D(W ))

�W

�t

= S(W ) +

�

�x

(E(W )

�W

�x

) (14)

This fra
tional step method is in agreement with the whole entropy inequality. When negle
ting vis
ous


ontributions, the se
ond one turns to an ordinary di�erential system .

Our basi
 approa
h to 
ompute 
onve
tive terms relies on the Godunov approa
h.

22, 23

More pre
isely

here, we use the s
hemes introdu
ed in

17

to 
ompute approximations of the system (13). This is a
hieved
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with help of either the Rusanov s
heme or the approximate Godunov s
heme VFRoe-n
v.

19

In order to 
ope

with the standard step (13) whi
h requires dis
retizing 
onve
tive e�e
ts, a rather eÆ
ient way 
onsists in

using the approximate Godunov s
heme introdu
ed in

19

with the spe
i�
 variable:

Z

t

= (�

2

; �

3

; s

1

; s

2

; s

3

; U

1

; U

2

; U

3

; P

1

; P

2

; P

3

) (15)

(see

20

whi
h details the main advantages of su
h a 
hoi
e). Computations below have been obtained with

the former s
heme, while ful�lling standard CFL 
onditions.

One must be 
areful when providing approximations of system (14). Otherwise, the stability of lo
ally

equal-pressure regions may be violated. The 
onne
tion with the s
heme introdu
ed in

24

is obvious.

This approa
h has another advantage, sin
e it also enables to 
ope with the instantaneous pressure equi-

librium assumption. This is useful to 
ompute models su
h as those des
ribed in

2

for instan
e. Owing to the

entropy stru
ture (see appendix D in

21

), one may a
tually introdu
e the pressure relaxation step involved in

(14) as a tool to 
ompute the single pressure models detailed in.

2

This is the 
ounterpart of what has been

a
hieved in the two-phase framework ( see

25, 26

or

3

for instan
e).

V. A few 
omputations of the sho
k tube apparatus

We restri
t here to some simple 
omputations of the sho
k tube apparatus. We use a uniform mesh

with 10000 
ells and set CFL = 0:49 in order to avoid the intera
tion of waves within the 
ells. In these


omputations, all sour
e terms and vis
ous terms have been negle
ted, in order to assess the stability of the

whole 
onve
tive subset.

We assume that the perfe
t gas law holds within ea
h phase: �

k

e

k

= (


k

� 1)P

k

, setting 


1

= 7=5,




2

= 1:05 and 


3

= 1:01. Initial 
onditions are : (�

2

)

L

= 0:4, (�

3

)

L

= 0:5, (�

2

)

R

= 0:5, (�

3

)

R

= 0:4,

(U

1

)

L

= 100, (�

1

)

L

= 1, (P

1

)

L

= 10

5

, (U

1

)

R

= 100, (�

1

)

R

= 8, (P

1

)

R

= 10

5

, (U

2

)

L

= 100, (�

2

)

L

= 1,

(P

2

)

L

= 10

5

, (U

2

)

R

= 100, (�

2

)

R

= 8, (P

2

)

R

= 10

5

, (U

3

)

L

= 100, (�

3

)

L

= 1, (P

3

)

L

= 10

5

, (U

3

)

R

= 100,

(�

3

)

R

= 8, (P

3

)

R

= 10

5

, for the �rst 
ase (�g. (1-3)), and: (�

2

)

L

= 0:4, (�

3

)

L

= 0:5, (�

2

)

R

= 0:5,

(�

3

)

R

= 0:4, (U

1

)

L

= 0, (�

1

)

L

= 1, (P

1

)

L

= 10

5

, (U

1

)

R

= 0, (�

1

)

R

= 8, (P

1

)

R

= 10

4

, (U

2

)

L

= 0, (�

2

)

L

= 1,

(P

2

)

L

= 10

5

, (U

2

)

R

= 0, (�

2

)

R

= 8, (P

2

)

R

= 10

4

, (U

3

)

L

= 0, (�

3

)

L

= 1, (P

3

)

L

= 10

5

, (U

3

)

R

= 0, (�

3

)

R

= 8,

(P

3

)

R

= 10

4

, for the se
ond test.

0 2000 4000 6000 8000 10000
0.4

0.42

0.44

0.46

0.48

0.5

Void fractions alpha2 (squares), alpha3

CFL=0.49 _  10000 cells 

Figure 1. Void fra
tions �

2

, �

3

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

Partial masses m1 (circles), m2 (squares), m3

CFL=0.49 _  10000 cells 

Figure 2. Partial masses m

1

, m

2

,

m

3

0 2000 4000 6000 8000 10000
90000

95000

1e+05

1.05e+05

1.1e+05

Pressures P1 (circles), P2 (squares), P3

CFL=0.49 _  10000 cells 
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VI. Con
lusion

This new model bene�ts from important properties. From a physi
al point of view, an interesting point is

that it preserves the positivity of (expe
ted) positive quantities : void fra
tions, mass fra
tions and internal

energies, at least when restri
ting to suÆ
iently simple EOS. Its mathemati
al properties enable us to 
on-

stru
t nonlinear stable numeri
al methods, and thus to explore highly unsteady 
ow patterns. Conditions

to obtain a existen
e and uniqueness of the exa
t solution of the one dimensional Riemann problem 
annot

be obtained easily. A spe
i�
 diÆ
ulty is linked with the possible o

uren
e of the resonan
e phenomena.

Another point, whi
h seems worth being noted, is that the 
ounterpart of the average "
andidate" interfa
e

velo
ity V

I

= (m

1

U

1

+m

2

U

2

)=(m

1

+m

2

) no longer arises in the three-�eld framework.

Another part of our 
urrent work 
on
erns the 
omparison with standard single pressure three-�eld

models, when restri
ting to 
oarse meshes. This is a
hieved using relaxation te
hniques, following ideas

from.

3, 24{30

A
knowledgments

This work has re
eived �nan
ial support from the NEPTUNE proje
t, whi
h has been laun
hed by EDF

(El�e
tri
it�e de Fran
e) and CEA (Fren
h Atomi
 Agen
y), and bene�ts from a 
omplementary part from

IRSN and FRAMATOME-ANP. Olivier Hurisse is also a
knowledged for his help.

Referen
es

1

S. Jayanti and M. Valette, Predi
tion of dryout and post dry-out heat transfer at high pressure using a one-dimensional

three-�eld model, Int. J. of Heat and Mass Transfer, 2004, vol.47-22, pp. 4895-4910.

2

M. Valette and S. Jayanti, Annular dispersed 
ow 
al
ulations with a two-phase three �eld model, European Two

phase Flow Group Meeting, Norway, 2003, internal CEA report DTP/SMTH/LMDS/2003-085.

3

J.M. H

�

erard and O. Hurisse, A simple method to 
ompute standard two-
uid models, submitted, 2005.

4

N. Andrianov and G. Warne
ke, The Riemann problem for the Baer Nunziato two-phase 
ow model, J. of Comp.

Physi
s., vol. 195, pp 434{464, 2004

5

M.R. Baer and J.W. Nunziato, A two phase mixture theory for the de
agration to detonation transition (DDT) in

rea
tive granular materials, Int. J. Multiphase Flow, 1986, vol. 12-6, pp. 861{889.

6

F. Coquel and S. Cordier, CEMRACS en 
al
ul s
ienti�que 1999 , MATAPLI 62, pp. 27-58, 2000.

7

S. Gavrilyuk, H. Gouin and Y. V. Perepe
hko, A variational prin
iple for two 
uid models, C. R. A
ad. S
i. Paris,

1997, vol. IIb-324, pp. 483-490 .

8

S. Gavrilyuk and R. Saurel, Mathemati
al and numeri
al modelling of two phase 
ompressible 
ows with mi
ro inertia,

J. of Comp. Phys. , 2002, vol.175, pp.326 -360.

6 of 8

Ameri
an Institute of Aeronauti
s and Astronauti
s



9

S. Gavrilyuk, A
ousti
 properties of a two-
uid 
ompressible mixture with mi
ro-inertia, European J. of Me
hani
s /

B, 2005, vol. 24-3, pp. 397-406 .

10

J. Glimm, D. Saltz and D.H. Sharp, Two phase 
ow modelling of a 
uid mixing layer, J. Fluid Me
h., 1999, vol. 378,

pp. 119{143.

11

H. Gouin and S. Gavrilyuk, Hamilton's prin
iple and Rankine Hugoniot 
onditions for general motions of mixtures,

Me
hani
a, 1999, vol. 34, pp. 39{47.

12

A.K. Kapila, S.F. Son, J.B. Bdzil, R. Menikoff and D.S. Stewart, Two phase modeling of a DDT: stru
ture of the

velo
ity relaxation zone, Phys. of Fluids , 1997, vol. 9-12, pp. 3885{3897.

13

J.B. Bdzil, R. Menikoff, S.F. Son, A.K. Kapila and D.S. Stewart, Two phase modeling of a de
agration-to-

detonation transition in granular materials: a 
riti
al examination of modeling issues, Phys. of Fluids , 1999, vol. 11, pp. 378{

402.

14

A.K. Kapila, R. Menikoff, J.B. Bdzil, S.F. Son and D.S. Stewart, Two phase modeling of DDT in granular materials:

redu
ed equations, Phys. of Fluids , 2001, vol. 13, pp. 3002{3024.

15

R. Saurel and R. Abgrall, A multiphase Godunov method for 
ompressible multi
uid and multiphase 
ows, J. of

Comp. Physi
s., vol. 150, pp 450{467, 1999

16

F. Coquel, T. Gallou

�

et, J.M. H

�

erard and N. Seguin, Closure laws for a two 
uid two-pressure model, C. R. A
ad.

S
i. Paris, 2002, vol. I-332, pp. 927{932.

17

T. Gallou

�

et, J.M. H

�

erard and N. Seguin, Numeri
al modelling of two phase 
ows using the two-
uid two-pressure

approa
h, M3AS, vol. 14, n

Æ

5, pp. 663-700, 2004.

18

J.M. H

�

erard, Numeri
al modelling of turbulent two phase 
ows using the two-
uid approa
h, AIAA paper 2003-4113,

2003.

19

T. Buffard, T. Gallou

�

et and J.M. H

�

erard, A sequel to a rough Godunov s
heme. Appli
ation to real gas 
ows,

Computers and Fluids, 2000, vol. 29-7, pp. 813{847.

20

T. Gallou

�

et, J.M. H

�

erard and N. Seguin, On the use of symetrizing variables for va
uum, Cal
olo, vol. 40, pp.

163-194, 2003.

21

J.M. H

�

erard, A simple hyperboli
 model for multiphase 
ows, internal EDF report HI-81/04/11A, 2004.

22

E. Godlewski and P.A. Raviart, Numeri
al approximation for hyperboli
 systems of 
onservation laws, Springer Verlag,

1996.

23

S.K. Godunov, A di�eren
e method for numeri
al 
al
ulation of dis
ontinous equations of hydrodynami
s, Sbornik, 1959,

pp. 271{300. In Russian.

24

F. Coquel, K. El Amine, E. Godlewski, B. Perthame and P. Ras
le, A numeri
al method using upwind s
hemes

for the resolution of two phase 
ows, J. of Comp. Phys., vol. 136, pp 272{288, 1997.

25

P. Bagnerini, F. Coquel, E. Godlewski, P. Marmignon and S. Rouy, A void fra
tion relaxation prin
iple for averaged

two phase 
ow models, preprint laboratoire Dieudonn�e, 2002.

26

M. Baudin, C. Berthon, F. Coquel, P. Ho
he, R. Masson and H. Tran, A relaxation method for two-phase 
ow

models with hydrodynami
 
losure law , preprint MAB 02-02, Universit�e de Bordeaux I, 2002.

27

F. Caro, F. Coquel, D. Jamet and S. Kokh, DINMOD : a di�use interfa
e model for two-phase 
ows modelling,

internal CEA report DEN/DM2S/SFME/LETR, 2004.

28

F. Caro, F. Coquel, D. Jamet and S. Kokh, Phase 
hange simulation for isothermal 
ompressible two-phase 
ows ,

AIAA paper 2005-4697, 2005.

29

F. Caro, F. Coquel, D. Jamet and S. Kokh, A simple Finite Volume method for 
ompressible isothermal two-phase


ows simulation, submitted for publi
ation, 2005.

30

F. Coquel and B. Perthame, Relaxation of energy and approximate Riemann solvers for general pressure laws in Fluid

Dynami
s, SIAM J. of Num. Analysis., vol. 35, pp 2223{2249, 1998.

Appendix

We examine in this appendix the stru
ture of the 
onve
tive set of equations. Restri
ting to regular

solutions, we rewrite the 
onve
tive system issuing from (1), that is:

(Id+D(W ))

�W

�t

+

�F (W )

�x

+ C(W )

�G(W )

�x

= 0

in the form:

�Z

�t

+A(Z)

�Z

�x

= 0

using the spe
i�
 variable:

Z

t

= (�

2

; �

3

; s

1

; s

2

; s

3

; U

1

; U

2

; U

3

; P

1

; P

2

; P

3

)
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This provides a system in redu
ed form. The o

uren
e of terms proportional to

��

2

�x

,

��

3

�x

inhibits the fully

symmetrized form, unless pressure-velo
ity equilibrium is rea
hed. The matrix of 
onve
tive terms is:

A(Z) =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

U

1

0 0 0 0 0 0 0 0 0 0

0 U

1

0 0 0 0 0 0 0 0 0

0 0 U

1

0 0 0 0 0 0 0 0

0 0 0 U

2

0 0 0 0 0 0 0

0 0 0 0 U

3

0 0 0 0 0 0

(P

2

� P

1

)=m

1

(P

3

� P

1

)=m

1

0 0 0 U

1

0 0 �

1

0 0

0 0 0 0 0 0 U

2

0 0 �

2

0

0 0 0 0 0 0 0 U

3

0 0 �

3

0 0 0 0 0 


1

P

1

0 0 U

1

0 0




2

(U

2

� U

1

)P

2

=�

2

0 0 0 0 0 


2

P

2

0 0 U

2

0

0 


3

(U

3

� U

1

)P

3

=�

3

0 0 0 0 0 


3

P

3

0 0 U

3

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

It admits the following right eigenve
tors:

r

t

1

= (1; 0; 0; 0; 0; 0; a

7

; 0; (P

1

� P

2

)=�

1

; a

10

; 0)

r

t

2

= (0; 1; 0; 0; 0; 0; 0; a

8

; (P

1

� P

3

)=�

1

; 0; a

11

)

r

t

3

= (0; 0; 1; 0; 0; 0; 0; 0; 0; 0; 0)

r

t

4

= (0; 0; 0; 1; 0; 0; 0; 0; 0; 0; 0)

r

t

5

= (0; 0; 0; 0; 1; 0; 0; 0; 0; 0; 0)

r

t

6

= (0; 0; 0; 0; 0; �

1

; 0; 0;�


1

; 0; 0)

r

t

7

= (0; 0; 0; 0; 0; �

1

; 0; 0; 


1

; 0; 0)

r

t

8

= (0; 0; 0; 0; 0; 0; �

2

; 0; 0;�


2

; 0)

r

t

9

= (0; 0; 0; 0; 0; 0; �

2

; 0; 0; 


2

; 0)

r

t

10

= (0; 0; 0; 0; 0; 0; 0; �

3

; 0; 0;�


3

)

r

t

11

= (0; 0; 0; 0; 0; 0; 0; �

3

; 0; 0; 


3

)

noting:

a

7

= 


2

P

2

�

2

(U

2

� U

1

)=(�

2

Æ

2

) a

10

= �


2

P

2

(U

2

� U

1

)

2

=(�

2

Æ

2

)

a

8

= 


3

P

3

�

3

(U

3

� U

1

)=(�

3

Æ

3

) a

11

= �


3

P

3

(U

3

� U

1

)

2

=(�

3

Æ

3

)

Æ

k

= (U

k

� U

1

)

2

� (


k

)

2

for k = 2; 3. Re
all that 


k

= (


k

P

k

�

k

)

1=2

. Obviously, this set of eigenve
tors no longer spans the whole

spa
e when either Æ

2

or Æ

3

is null.
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