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Abstract

We study the effects of Horndeski models of dark energy on the observables of the
large-scale structure in the late time universe. A novel classification into Late dark energy,
FEarly dark energy and Farly modified gravity scenarios is proposed, according to whether
such models predict deviations from the standard paradigm persistent at early time in the
matter domination epoch. We discuss the physical imprints left by each specific class of
models on the effective Newton constant u, the gravitational slip parameter 1, the light
deflection parameter 3 and the growth function fog and demonstrate that a convenient
way to dress a complete portrait of the viability of the Horndeski accelerating mechanism
is via two, redshift-dependent, diagnostics: the pu(z) — X(z) and the fog(z) — X(z) planes.
If future, model-independent, measurements point to either ¥ — 1 < 0 at redshift zero or
@t —1< 0 with ¥ —1 > 0 at high redshifts or 4 —1 > 0 with ¥ — 1 < 0 at high redshifts,
Horndeski theories are effectively ruled out. If fog is measured to be larger than expected
in a ACDM model at z > 1.5 then Early dark energy models are definitely ruled out. On
the opposite case, Late dark energy models are rejected by data if 3 < 1, while, if X > 1,
only Early modifications of gravity provide a viable framework to interpret data.
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1 Introduction

Current and future observations aiming at understanding the nature of cosmic acceleration offer
the unique possibility of testing predictions of general relativity (GR) on scales well beyond
those of the solar system, where GR has received its most impressive confirmations. Upcoming
galactic surveys such as DES [1], Euclid [2-4], DESI [5], LSST [6], WFIRST [7] and SKA [8-10)]
are expected to provide unprecedented datasets with which to investigate, in an accurate way,
how structures form and grow, and how light rays bend in the presence of local gravitational
potentials. Anticipating interesting signals of non-standard gravity that could be potentially
detected by such future surveys of the large-scale structure (LSS) of the universe is a crucial
task.

Any deviation from the standard ACDM paradigm will imply some anomalous relation
among the curvature perturbation ¥, the Newtonian potential & and the comoving density con-
trast of non relativistic matter A. These effects can be encoded in time and scale modifications
to the effective Newton’s constant parameter p and to the gravitational slip parameter n [11].
The former quantity describes how fluctuations of the matter fields interact in the universe,
while the latter encapsulates non-standard relation between the Newtonian potential ® (time-
time part of the metric fluctuations) and the curvature potential ¥ (space-space part). From p
and 7 one can derive a further parameter, ¥, of more direct relevance for lensing surveys [12,13].
Y. relates the matter over-density with the lensing (or Weyl) potential &, = (¢ + ¥)/2. An-
other convenient quantity to describe the gravitational clustering of matter is the product of
the linear growth factor f and the rms density fluctuations on a scale of 8o~ Mpc (fog). This



quantity, which can be optimally estimated from the analysis of the redshift space distortions
induced by the large-scale, coherent, in-falling(/out-flowing) of matter into(/out of) high(/low)
density regions, is another key quantity turning galaxy redshift surveys into gravity probes.

While any observed deviation would represent a major discovery in itself, it is important to
understand what type of signals are implied by concrete alternatives to the standard model and
interpret them in terms of fundamental theoretical proposals. In particular, theories containing
one extra scalar degree of freedom and leading to equations of motion of at most second order—
Horndeski theories [14, 15]—despite the freedom in the choice of their free functions and the
richness of their potential phenomenology, have proven to share common features and universal
behaviours. The exclusion of pathologies and instabilities imposes tight constraints and well
defined patterns for the time scaling of relevant observables of the LSS in the universe [16-18].
For instance, it was pointed out in [17] that the linear growth rate of Horndeski theories is
systematically lower, at low redshift, than the value predicted by the standard ACDM model.
In [19] it was shown that Brans-Dicke theories, clustering and interacting dark energy models
follow characteristic paths in the p - 3 plane. It has also been argued [20] that Horndeski
theories are expected to display a systematic sign agreement in the u - ¥ plane across all cosmic
epochs.

Investigating the existence of further general patterns displayed by LSS observables is the
main goal of the present work. To this purpose, we present a complete study of the Horndeski
phenomenology that generalizes in many respects that presented in [17]. First of all, we explore
accelerating cosmologies in which the presence of dark energy is not confined to the late times
[21-39]. At first sight, this is counter intuitive, as the acceleration is a recent phenomenon
and there is no need to invoke dark energy effects at early times. Truth is that, although such
effects are not needed, not to say wanted, they are allowed within the context of Horndeski
theories, therefore they must be thoroughly investigated and systematised. In particular, we
find convenient to highlight three novel possibilities of increasing generality.

e Late-time dark energy (LDE): This is the reference class of models (explored at length
in [17]), in which both the dark energy momentum tensor and the possible modifications
of gravity (i.e. the non-minimal gravitational couplings) become negligible at early times.

e FEarly dark energy (EDE): In these scenarios dark energy can contribute to the total
energy momentum tensor even at early times, while non-minimal gravitational couplings
are kept as a late-time phenomenon.

e Early modified gravity (EMG): Horndeski theories in their full generality. Not only does
dark energy always contribute to the total energy momentum tensor, but modified gravity
effects are also persistent at early times, during matter domination.

On top of singling out the specific phenomenological features of the Horndeski sub-classes
listed above, in this work we extend the analysis of [17] by including different background
expansion histories than the ACDM model. Beside an effective equation of state parameter
w = —1 (roughly, the value preferred by current observations, e.g. [40-42]), we also consider
models with w = —0.9 and w = —1.1. In [17] it was found that viability priors do impose
tight constraints and well defined patterns for the time scaling of relevant observables of the
LSS in the universe. As such, viability criteria can be effectively used to complement data and
observational information in statistical inferences [43]. Testing the consequences of relaxing
some of these restrictions is also a goal of the present study.

The main results of the paper are recapped in Figure 6 as exclusion regions in the parameter
space of LSS observables. In the p-3 plane we highlight regions where the eventual presence of
data would rule out the entire class of Horndeski theories. On the other hand, specific regions in



the fog-X allow to rule out specific subclasses of models (LDE and/or EDE) presented above.
A “complete diagnostic” of Horndeski theories is presented in the other figures of the paper.

The paper’s structure is as follows: in Sec. 2 we introduce the formalism adopted for the
description of the background cosmic evolution, the non-minimal gravitational couplings and
their relations with the LSS observables. In Sec. 3 we present our results in the case of a cosmic
expansion history identical to that of ACDM, for the three classes of models described above.
In Sec. 4 we verify the robustness of our conclusion by considering different equations of state
for dark energy and by relaxing some of our viability conditions. The synthesis of our results
as well as some digressions on future prospects are in Sec. 5.

2 Formalism: the effective theory of dark energy

The effective field theory of dark energy (EFT of DE) [44-50] proves a very powerful mean
to explore the cosmological implications of Horndeski theories (see [51-54] for a numerical
implementation of this formalism and [55-59] for generalizations to beyond-Horndeski and/or
to models with non-minimally coupled dark matter). For such theories, the action up to second
order in cosmological perturbations displays six functions of cosmic time,

5 = Sulgwotl + [atey=5 20 R - 230 — 200"
B)R g% (1)
= 13(0)(69™)* = ps(t) 0Kg™ + ea(t) | OKY OKY — OK* + —=— | |,

M (t) is the “bare planck mass”, C(t) and A(¢) are the contributions of the scalar field to the
background energy momentum tensor, and 3 (t), uz(t) and e4(t) are non-minimal couplings!.

The Brans-Dicke subset of theories is characterized by a time-varying bare Plank mass M (t),
while all other non-minimal couplings are set to zero. A measure of the deviations from general
relativity within the Brans-Dicke sector are more usefully defined by

_ dInM?(t)
M1 = —a (2)

One apparent feature of the above action is that the second line is quadratic in cosmological
perturbations (0K, being the perturbation of the extrinsic curvature of the hypersurfaces at
constant scalar field value, and ®R their intrinsic curvature. We refer the reader e.g. to the
review [49] for more details), which means the first three operators uniquely govern the evolution
of the background. Indeed, by varying the first line with respect to the metric one obtains the
two equations

1 . 2 : Pm
Czi(Hul_Hl_Ml)_H_mv (3)
1 . . P
A=_(bH N+ H+3H -2 4
5 (OHpn + fu + pii) + H+3 Wik (4)

where a dot means a derivative with respect to cosmic time, H(t) = a/a is the Hubble parameter
and only pressureless non-relativistic matter of energy density p,, has been assumed. Note that
w1 is the only non-minimal coupling entering the background evolution. When g vanishes and
M = My, the above equations are particularly transparent, C and A play the role of the kinetic
and potential term of a quintessence field respectively.

!The coupling function p; have the dimension of mass and of order Hubble. u3 appears in cubic galileon and
Horndeski-3 Lagrangians whereas €4 is a dimensionless order one function characterising galileon-Horndeski 4
and 5 Lagrangians.



2.1 Setting the background

The homogeneous background expansion history is characterised by the Hubble rate H(t). We
focus on models with a constant effective equation of state weg, i.e. those with a Hubble rate
that scales as a function of the redshift as

H?(2)
Hg

= Qo1+ 2)% + (1 = Qo) (1 4 2)30+we) (5)

where €, is the present fractional matter density. Without direct relation with the EFT
action (1), the above expression descends from a “standard” Friedmann equation
H? = ——(pm + i) (6)
2 m D )
3Mp,
with pgf o @ 3wert1) - Ag known, observations suggest Qo ~ 0.3, wer ~ —1 [41,60] and
severely constrain any deviations from a ACDM expansion history [61].

In summary, our theories are defined, in their background and perturbation sectors, by two
parameters and four functions of the time,

{Qm,O) Weff, Ml(t)7 Ng(t)v H3(t)7 64(t)} : (7)

To characterise the evolution of the late time universe, we find convenient to use the frac-
tional matter density of the background reference model (5) calculated at any epoch, x, as our
time variable. Expressed as a function of the redshift it reads

Qm,O

"o Qo+ (1 — Qo) (1 + z)3wenr (8)

and its present day value is z(tg) = 2o = Q0.

2.2 Classifying dark energy models

In general, it is natural to define as in [45] the energy density of dark energy through the
equation
2 _
H” = W(pm +pD) - (9)

We note that, as opposed to the definition given e.g. in [56], here pp does not depend on the
matter fields, as much as, since we work in the Jordan frame, p,, is not a functional of the scalar
field ¢. We have now the instruments to define the three different general types of behaviour
for dark energy at early times:

e Late-time dark energy (LDE): This is the minimal model, in which all effects of dark
energy are confined to late times. Not only do non minimal couplings (u1, u3, us, €1)
go to zero at early times—which in the case of the coupling p; implies M going to a
constant—but also the dark energy density pp becomes a sub-dominant component for
t — 0. In other words, the energy density of non relativistic particles p,, must saturate the
Friedmann equations at early time. By comparing (6) and (9) this means that M? /M3 —
1. In summary,

M? 141 13 i3
LDE : < — 1, — — — . 1
{M§1—> ,H—>O,H2—>O,H—>O,e4—>0 . (10)



The above defined class of models generalises the set explored by [17]. Indeed, we allow
the coupling u% to be nonzero over most of cosmic history, i.e. for z # 1, and we also
consider expansion histories different from that of a ACDM model, i.e. weg 7# —1.

e FEarly dark energy (EDE): The dark energy contributes to the total energy momentum
tensor even at early times, when, however, all non-minimal couplings vanish. The only
way this is possible is for dark energy to acquire the same equation of state as dark matter
early on, so that it becomes indistinguishable from the latter as long as the background
evolution is concerned,

M? 11 13 i3
EDE : < — L, = —= — . 11
{Mgl—monst , H—>O, H2—>0, H—>0,e4—>0 o (11)

A caveat must be issued regarding the use we make of the adjective “early”. Our study
is oblivious of the radiation dominated epoch. Therefore “early” for us means always
well after equivalence, say, at z ~ 100, but well before the onset of acceleration, at
z =~ 1. Accordingly, the early non-standard scenarios we are considering evade Big-Bang
Nucleosynthesis (BBN) constraints.?

e Early modified gravity (EMG): This is the most general case. Here we allow also the
asymptotic value of the non-minimal couplings at early times to be different from zero.

2 2
EMG : {]\431 — const. , % -0, % — const. , % — const. , €4 — const. ot
(12)

Note that the Brans-Dicke non-minimal coupling i1 needs a special attention due to its link with
M? (see eq. (2)): for any asymptotic value of j; different than zero, M? would tend to either
zero or plus infinity, corresponding to infinite or zero gravitational coupling respectively. We
thus restrict to the cases when p; — 0. Note that recent observational bounds [62] constraining
the amount of dark energy at early times do not apply here, because the EFT of DE allows
us to explore modified gravity models which only gives rise to modifications in the perturbed
sector while keeping the background evolution to that of the standard model ACDM. Allow-
ing modifications of gravity also deep in matter domination without altering the background
evolution is the novelty of the scenarios EDE and EMG.

The imprints of LDE, EDE and EMG that can be revealed through the analysis of cosmo-
logical observables is discussed in Sec. 3. In appendix C we show how these scenarios can be
implemented in a simplified covariant theory.

2.3 Extracting observables

Extracting observables of the perturbation sector in modified gravity (MG) theories is mostly
straightforward on cosmic comoving Fourier modes well below the non-linear limit and well
above the DE sound horizon. In this regime, linear theory and the quasi-static approrima-
tion [63,64] can be trusted. The latter allows one to neglect time derivatives of scalar and

2 In principle, since the background expansion is fixed to that of ACDM, the time at which neutrinos decouple
and the neutron-proton fluid exits from equilibrium is not modified in our non-standard gravitational scenarios.
However, the time elapsed from this epoch (T' ~ 0.8 Mev) to that when BBN begins (I' ~ 0.1 Mev), which
regulates neutron decays and account for the final neutron-to-proton ratio available for nucleosynthesis, critically
depends on the value of the Newton constant.



metric fluctuations over spatial derivatives. Moreover, in our framework, the extra scalar de-
gree of freedom has the purpose of sourcing cosmic acceleration thus its mass must be of order
Hubble or lighter. Therefore, Fourier modes close to the Hubble scale would be the only ones
affected by these mass scales. Given that surveys of the LSS observe modes generally deep
inside the Hubble horizon, one can thus neglect any scale-dependence in our observables. These
observables can be schematically split into two types, the ones linked to the growth of mat-
ter perturbations and the ones sensitive to the gravitational potentials. Let us briefly present
them, for which we have adopted the following convention for the perturbed metric in Newtonian
gauge:

ds® = —(142®)dt> + a*(1 — 2W)d;;dx'da’ . (13)

o Effective gravitational coupling (p): In most MG theories it is possible to compile a part
of the modifications of gravity in an observer-friendly quantity, an effective gravitational
coupling u. It is defined through the Poisson equation, —S—;@ = AT UGN PmOm. In [17] it
was shown that the Newton constant Gx of an EFT model is defined by:

1
Gy = . 14
N7 B M2 (o)1 + ea(20)]2 (14)
The effective gravitational constant in the EFT formulation then yields:
M(xg)|1 4+ e4(xg 2 ag
Lo (M) e} a0 15)
M1 + ¢4] bo
where
ag = 2C + ,&3 — 2H64 +2Héy + 2(#1 + €4)2 s
. - . (1 + &) (1 —p3)  (p1 — p3)?
by = 2C —2H 2H 2 — 16
0= 2L fig — 2Heat 2t T+es 21+ es)2 (16)
and
ps = fi3+ paps + Hys (17)
€4 = €1+ p1es + Hey . (18)

o Growth function (fog): The effective gravitational constant is naturally part of the
source term in the evolution of the linear density perturbations of matter ¢ :

6+ 2H6 — 4w pGrpmd = 0 . (19)

The § variable is of difficult observability. However its second statistical moment, the
rms of linear density fluctuations on the characteristic scale R = 8Mpc/h, og, and its
logarithmic derivative with respect to the scale factor of the universe, the linear growth
rate f, can be combined in an observable quantity (fog) which is minimally affected my
observational biases.3

3We predict the amplitude of the present-day value of the rms density fluctuations in a given EFT model of

DEFT (4
EFT(Z') — + O_Planck

gravity, by rescaling the Planck best fitting value og(zo) as follows: og DPlanck 55y 08 (z0), where
+ X

D, is the growing mode of linear matter density perturbations.



o Gravitational slip parameter (n): Gathering modifications of gravity in an effective grav-
itational constant does not suffice to model all deviations from GR. The Poisson equation
must be supplemented with an equation for the gravitational slip parameter, namely the
quantity sensitive to differences between the two gravitational potentials, n = ¥/® . In
the EFT of DE it yields as a function of the couplings:

co
=1-—= 20
n 2’ (20)

where .
co = (p1 + €a)(p1 + p3 +2é4) —ea(2C + 13 —2Hey + 2Héy) . (21)

Note that g and n share the same term ag. The implication of this constraint will be
discussed in Sec. 4.

Light deflection parameter (X): In general, observations probing the gravitational poten-
tials, such as weak lensing measurements, are not directly sensitive to the gravitational slip
parameter but to the light deflection parameter 3. In GR, as for 7, it is equal to 1. In MG,
it is not necessarily and is defined through the equation —’;—z(fb + V) = 87X(t, k) GNPmOm.-
It can be expressed straightforwardly as a combination of u and 7

z:%(un). (22)
This theoretical degeneracy between observables of the perturbed sector will be instru-

mental in understanding specific predictions of Horndeski theories.

2.4 Viability criteria

Although asymptotic behaviours of the EFT functions can be changed, not all their possible
time scalings are permitted. A healthy theory must indeed fulfil a set of stability conditions: it
must not be affected by ghosts, nor by gradient instabilities. Furthermore, along the arguments
detailed in [65], we will not allow superluminal propagation speeds for either scalar or tensor
modes. On top of these theoretical requirements, we should exclude models that are already
ruled out by current observations. As for the choice of the background expansion rate, which we
describe via the effective Hubble rate (5), we exploit current limits available in the perturbed
sector of the universe. Notably, the local value of gravitational waves of EFT of DE models has
been recently constrained leading to a bound on the value of e4(zg) ~ 1072 [66], thus we simply

set its present value to 0 for simplicity. In summary,

Stability of the theory,

3
A:(C+2M%)(1+€4)+Z(M1—M3)220
B=1>0

Subluminal propagation speeds,

ghost free,

gradient,

B
= 1 <1 scalar modes, (25)
1
A= <1 tensor modes, (26)
1+e4
Observational requirement (compatibility with current constraints),
64(1’ = .%'0) =0 (27)



Since they impose tight constraints on the functional behaviour of relevant observables
of the LSS, viability criteria can be effectively used to complement data and observational
information in statistical inferences [43]. The dependence of our conclusions on the requirement
of sub-luminal propagation speeds will be assessed in Sec. 4.1. As already discussed in Section
2.2 the models we are considering are ineffective in describing cosmic evolution at such early
epoch as those where BBN could be used to constrain them. However, on the opposite end, i.e.
today, Lunar ranging tests have put constraints on the variation of Newton’s constant, at around
Gn/Gx < 0.02Hy (see [67] for a detailed review). Since we are not considering EFT operators
beyond the linear level, it is difficult to predict how non linearities would affect the definition of
G for our models. It is however misleading to draw the conclusion that the coupling p; would
end up being severely constrained. Indeed variations in the Planck mass could still be relatively
large, although appropriately counter-balanced by the specific timescaling of €4 (and so ¢, see
eq.(14)). Accordingly, we do not consider the Lunar ranging constraint as an additional viability
criteria in our study. We just warn the reader that Horndeski models passing this constraint
would constitute a subsample of the whole set of healthy theories considered in this study.

3 General predictions on LSS observables

In this section, we explore the space of theories following the protocol elaborated by [17]: the
non-minimal couplings are expanded in power series of (x — xp) up to order 2 (see Appendix A),
where each coefficient is randomly chosen within the window [—1, 1] with a flat uniform prior.
This is enough to cover all the rich phenomenology arising in our EFT models. A pre-factor
(1 —z) in the expansion is either switched on or off depending on the DE scenario, i.e whether
a non-minimal coupling needs to vanish at early times or not (see egs. (10), (11) and (12) for
the conditions imposed in the various scenarios). The initial time we consider numerically is set
to z; = 100, where radiation is already sub-dominant. It is for example the time where initial
conditions are set for the integration of growth observables. We reject the theories that do not
pass the viability conditions from early times until today. In addition, to lie within the range
of applicability of the quasi-static approximation only models with ¢2 > 0.1 are kept [64]. With
this procedure we randomly generate 10* viable EFT models of each DE scenario.

For what concerns the class of LDE theories, an important generalization with respect to [17]
is that we also consider here the coupling ,u% not to be equal to zero at all times. The latter,
although not entering the expressions of the relevant observables, controls the effectiveness of
the no-ghost stability condition and thus generally relaxes the selection processes. We then
study the implications of early dark energy scenarios (EDE and EMG).

3.1 LDE scenario

A definite feature emerging from inspecting the first row of panels in figure 1, is the peculiar
S-shape redshift evolution of the effective Newton constant p(z) in LDE models. Notably, one
has u > 1 at both late (z ~ 0) and early epochs (z > 2), while power is suppressed in the
interval 0.5 < z < 1, in the sense that in most theories u is found to be less than 1. This
extremely constrained functional behaviour was already noticed by [17] and confirmed by [6§],
although for a more restricted class of Horndeski models.

The subset of models displaying ;4 > 1 in the interval 0.5 < z < 1, despite having small size
relative to the entire set of simulated models, has not strictly zero measure as was previously
found in [17]. This is the consequence of switching on the non-minimal coupling p3 which, in
the present analysis, it is allowed to vary freely in the interval [—1,1]. Indeed, affecting the
sound speed, and more precisely the no-ghost stability condition (23), this parameter induces



non-negligible back reactions on the LSS observables. From [17] it was understood that the
period of weaker gravity in pu(z) at intermediate redshifts was induced by the 1/M? component
(see eq.(15)). Our current study reveals that switching on 13 is the necessary condition for LDE
models to exhibit M? /Mg1 < 11in a stable way and therefore a subset of theories with p > 1 at
intermediate redshifts, i.e stronger gravity and also deeper gravity potentials than the standard
model. Since under these conditions light should bend more on average, it does not come as a
surprise that models exhibiting x> 1 in z € [0.5, 1] also display n > 0, i.e ® > ¥, or ¥ > 0, as
the inspection of the second and third row of Figure 1 shows.

The bounded evolution history of p has major implications for the growth of structures, as
captured by the fog observable. Indeed the effective Newton constant is part of the source term
in the equation used to compute the growth factor f:

3 3
Bun(L — 2)af' () + f@) + 2 o (L —2) +1)| f(2) = SenGn,  (29)
and also affects the amplitude of og, the r.m.s of the matter density fluctuations. Characteristic
features of u at time x will be seen time translated at later epochs, i.e lower x, in the fog
evolution since the effective source term in eq. (28) is x 1 and since og(z) is an integral quantity
summed from the past (here z; = 100) until 2.

LDE :
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Figure 1: The correlations between u, 1, 3 and fog is displayed at several redshift epochs, from
left to right z = 0, 0.2, 0.5, 1, 2, 3, for 10* EFT models in the LDE scenario. The background
evolution has been set to match that of a flat ACDM model. The ACDM prediction corresponds
to the intersection of the two dashed lines. The gray scale highlights the density of points.
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Figure 1 shows that amplitude of fog expected in a ACDM model is always minimal if
compared to Horndeski expectations for z > 1.5. Interestingly, measurements of low fog ampli-
tudes (with respect to the Planck-extrapolated value) provided by local redshift surveys seem
to be quasi systematic, especially in analyses where the background is decoupled from the per-
turbation sector, see for instance [69-72]. In parallel, recent observations at higher redshifts
z ~ 1.4 [73], seem to be suggestive of an early epoch with an excess of growth with respect to
standard model predictions, although the error bar being too large does not yet allow to draw
any meaningful interpretations. However, it serves as an illustration that, if such values were
to hold up, they would effectively confirm a definitive prediction of Horndeski theories.

The remarkable tightness of the growth rate evolution of fog(z) also deserves a comment.
Despite u, 7 and Y spanning, especially at low redshift, a large range of values, absolute devi-
ations of fog from the ACDM prediction are never larger than 0.2 at all cosmic epochs inves-
tigated. The remarkably low theoretical dispersion, or equivalently, the poor sensitivity of fog
to the variation of the Horndeski couplings, is not however prejudicial, from the observational
side, for the purposes of model identification. Indeed, it is as well remarkable that no single
model displays both fog < 0 and ¥ > 0 for any z > 1. Measurements of fog from redshift
surveys, when combined with lensing estimations of Y, provide thus an interesting diagnostic
tool: evidences of even a single data point lying in the top right quadrant of the fog—3 plane at
redshift larger than 1 would definitely rule out LDE of the Horndeski type as a viable candidate
for theoretical interpretation.

Among the features emerging from Figure 1 is a strong positive correlation between p and
3. at high redshifts, or, even more telling, the lack of theories predicting 4 — 1 and % — 1 of
opposite sign as long as z > 0.5. When the behaviour of the gravitational slip parameter is
closely scrutinized, the fact that n and p cannot be both positive once z > 1 also stands out.

The question is now whether any violation of these features is a smoking gun of the failure
of only the LDE models, or, more interestingly, if it can rule out even more general Horndeski
scenarios. This issue is investigated in the next section.

3.2 EDE and EMG scenarios

The classification scheme proposed in Sec. 2.2 contains the possibility that dark energy is present
at early times, either in the energy momentum tensor (EDE) or also as early modified gravity
(EMG). Figure 2 shows that the presence of modifications of GR at early times alters the values
of LSS observables even in the local universe.

Irrespectively of the specific scenario, viability conditions favour theories with p smaller than
1 for z > 0.5. Despite we are now allowing initial values of M? different than Mgl, the tendency
of having M? > Mgl survives. On the other hand, the EMG scenario is the only possibility to
produce a small subset of models with p > 1 at early times.

This can be understood by expressing the effective gravitational constant as

M?(z0)[1 + ea(o)]? lte (pn—p )
]\402(1_'_64)20 I+ B ! ( 11+€43 _(Ml+€4)) ] (29)

M:

From stability requirements, B > 0 and €4 > —1 (e¢p > 0), i.e respectively no gradient instabili-
ties of scalar and tensor modes, the quantity contained in the squared brackets above is greater
than or equal to 1. Therefore, allowing non vanishing €4 and pus at = 1 pushes up the value
of u at early times. The above expression shows that the value of p at present time, p(xg), is
always greater than or equal to unity whatever the DE scenario, a consequence of the definition
eq.(14). Equation (29) also illustrates the competition between the two major physical mecha-
nism that contribute to the amplitude of the gravitational coupling : (i) the fifth force induced
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by the scalar field, which must always be attractive, hence larger than unity, for a massless spin
0 field (embodied by the term in squared brackets) and (ii) the possibility of realising weaker
gravity through the 1/(M?(1+ €4)?) component, which, as pointed out in [17], is a term related
to the amount of self-acceleration a model produces.

The behaviour of p at early times affects the fog observable at late epochs. For instance, the
amplitude of fog predicted in EDE scenarios is lower than the standard ACDM value for z > 0.5,
as opposed to LDE, for which models systematically flip over ACDM at z 2> 1.5. Therefore,
over almost all the most interesting epochs of the universe, the ACDM growth history appears
as an extremum not only among the whole class of LDE models, but also when EDE scenarios
are considered. Intriguingly, only EDE models manage to strongly suppress the amplitude of
the linear growth function at present time. On the opposite, the only models allowing for a
faster growth than ACDM (with fog more than 20% higher), are the EMG scenarios. This is
not surprising for, as we said, it is the only set-up for which p > 1 at early times.

The asymptotic value of the gravitational slip parameter n at = 1 is, by definition, 1 when
the coupling functions ps and €4 vanish. Therefore, only very mild differences arise between
LDE and EDE at early times. On the contrary, the redshift dependence of n is significantly
affected in the EMG case, since us and €4 are different from zero at all cosmic epochs. As far as
the evolution of ¥ is concerned, the amplitude calculated in LDE and EDE scenarios is always
lower than ACDM for z > 1.5. Once more, the standard model appears as an extremal model.

EMG is the only mechanism enabling ¥ to be grater than unity also at high redshifts.

The marked positive correlation between p and 3 for z > 1.5 persists in EDE models as it
did in LDE models. In fact, since

(2 N gy -t
u—1—<1+n>(2 120, (30)

a clear 45° correlation should be seen as long as 7 is close to unity. This stands out clearly,
at high redshifts, for LDE (see also figure 6 in [17]) and for EDE scenarios, as opposed to the
EMG case which displays slightly more dispersion, for it exhibits larger values of 7. Assuming
a non-standard gravitational signal will be detected by future surveys, we can thus tentatively
conclude from comparing Figs. 1 and 2 that the Horndeski class of models would be ruled out
by high redshit measurement if u and 3 have different sign for z > 1.5. The same conclusion
holds if future estimates should eventually converge on a local (z = 0) value of the effective
Newton constant lower than unity, accordingly to the argument already given below eq.(29).
Interestingly, [20] have argued that Horndeski theories are likely to display a sign agreement
in the p—3 plane across all cosmic epochs. We suggest that these diverging conclusions arise
because they seem to consider as representative only models displaying a gravitational slip
parameter 1 close to unity today. We observe that the range of possible n values progressively
broadens when a larger number of couplings is progressively switched on, and the generality of
the scenarios is increased. We observe a systematic increase in the scatter of the n values, first
when considering the y2 parameter to be not zero at all times in the LDE case, and then when
allowing more generic initial conditions such as in the EDE and EMG scenarios. On top of this,
Figure 4 also shows that the significance of the opposite sign statement is progressively lessened
by relaxing some of our viability conditions. This was also highlighted in Figure 7 of [43], where
CMB data likelihood is plotted for the observables 1 and ¥ calculated at z = 0.

In much the same way as the plane pu—3. provides a diagnostic for the whole class of Horndeski
models, the plane fog—Y allows us to tell apart Horndeski dark energy sub-classes. For example,
if fog > (fos)acpm at z > 1.5, then EDE scenarios are ruled out. Similarly, LDE is not viable
if both fog and ¥ have smaller amplitude than predicted by ACDM for z > 1.5.
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Figure 3: Present day value of og as a function of the fractional matter density today €2, ¢ of
10* EFT models. Here, the value of Q0 per model is left as free parameter and is randomly
generated, as are the coefficients of the coupling functions. The background has been set to
a flat ACDM background. The intersection of the dashed lines corresponds to the Planck
measurements [41].

Identical conclusions follow from the analysis of the amplitude of the og observable alone.
Figure 3 shows the present-day linear extrapolation of the rms fluctuations of the matter den-
sity field, which we assume to be normalized by the Planck measurements at last scattering.
Predictions closely reproduce the ACDM limit in all the LDE models. However, a local mea-
surement of g showing large deviations from the ACDM extrapolation will be instrumental for
disentangling EDE from EMG scenarios. The first would be definitely ruled out if observational
evidences should indicate that ogo 2 0.9.4

In summary, we find the effects of early modification of GR to be conspicuous also at low
redshift. Joint measurements of the 7, ¥ and fog observables would give strong indications as to
the type of DE required for a faithful description of cosmological perturbations. Indeed, comple-
menting an analysis on the growth of structures with lensing observables increases substantially
the discriminating power between models.

4 Discussion

The next issue we tackle concerns the generality and robustness of our findings against changes
in the specific settings and /or assumptions adopted in the analysis. We first explore whether our
diagnostic predictions still stand out so clearly once some viability conditions about propagations
speeds are relaxed. Then, we gauge the effects of considering non-standard evolution of the
background expansion rate. Finally, we discuss additional checks on the generality of our
results and the parametrisation of Horndeski theories.

4.1 Constraining power of viability conditions

When dealing with the dark sector it is still debated if super-luminal propagation in a low-energy
effective theory can be acceptable. We tend to see super-luminality as a serious pathology of
a low-energy theory, following the reasoning in [65]. However, for the sake of generality, in
Figure 4 we show the effects of relaxing the conditions on the propagation speeds of the scalar
and the tensors, eqs. (25) and (26). We never intend to give up either ghost stability (23) nor

“We note that lower values of os are also found in the “kinetic matter mixing” model considered in [59].
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Figure 4: Correlations in the y-¥ and fog-¥ planes for 10* EMG models with the stability
condition S (first two rows), the stability condition S and ¢; < 1 (middle two rows) and the

stability condition S and ¢p < 1 (bottom two rows). The background evolution has been set to
a flat ACDM. The ACDM prediction stands at the intersection of the two dashed lines.

gradient stability (24)—gathered henceforth under the notation S. It is worth noting that, in
our formalism, a theory exhibiting ¢; > 1 can always be tuned back to ¢; < 1 by using the
parameter p3. The latter, we recall, does not enter the expressions of the LSS observables.
Therefore, switching on p3 allows one to include Horndeski models with ¢s > 1 but p3 = 0, in
some sense. This is illustrated in Figure 4 where the predictions with the conditions S and the
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Figure 5: Correlations in the y~Y and fog-X for 10* LDE models (two top rows) and 10* EMG
models (bottom two rows) with the full viability conditions requested but the background e.o.s
set to weg = —1.1. The (w = —1.1)CDM prediction corresponds to the crossing of the two
dashed lines.

condition S + ¢4 are displayed. One can rightfully conclude that the selection criterion ¢s < 1
is useless once a non null 3 is considered.

On the other hand, by writing p as u = (CTCg;O)>4 M;/I(EO) 30 one already appreciates ana-
lytically how cp > 1 strengthens gravity at high redshifts. This is well highlighted by Figure 4,
the correlation lines of in the y—X or fog—X planes are thinner once the ¢r < 1 is implemented,
the upper points being chopped out. The practical conclusion out of this analysis is if a data
point was to be found at hight redshifts in the top left corner of either the p — or fog—> plane,
only a Horndeski model with a ¢ > 1 would be valid. More will be able to be said once cp
is tightly constrained at large redshifts by future measurements of the electromagnetic counter

part of gravitational wave emitting events [74,75].

4.2 Effects of the background expansion history

Does the evolution of perturbed sector observables depend on the acceleration of the background
metric?

What we find is that setting weg = —0.9 does not change the diagnostic described in the
previous section—we thus do not display any plot for the sake of brevity.

The effect of lowering the dark energy equation of state below weg = —1 is also very mild,
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but worth commenting. Crossing the weg = —1 means considering violations of the null energy
condition. As known, such violation can be produced in a stable theory only by switching on the
non-minimal gravitational couplings (see Figs. 1 and 2 of Ref. [16]), and therefore in a region
of the space of theories that is “far” from ACDM where all couplings vanish. Nevertheless,
the effects of modified gravity are not significantly amplified as can be seen by the comparison
between Figure 5 and Figs. 1 and Figure 2 (lower panel). The amplification effect is effectively
compensated by the wide variations of the couplings and by the large volume in the theory space
that we are considering, even in the wegr = —1 case. In summary, we do not find distinctive
definite features of LSS phenomenology related to stable violations of the null energy condition.

4.3 Consistency and robustness checks

To assess the generality of our results we have conducted two consistency checks. From the
analysis undertaken in this paper and in [16,17,43], the ACDM paradigm stands out as an
extremal model among EFT models. However, one could wonder whether our randomly gen-
erated coeflicients within a uniform distribution could end up favouring models that are very
far from the standard paradigm. However, we have checked that the correlations we find are
unchanged even if the coefficients are picked from Gaussian distributions centred around 0 (the
ACDM value) and with a standard deviation of 1.

As a second check, we have noted that our diagnostic is also unchanged under using a
different parametrisations of the couplings. In particular we have considered an alternative
choice of the coupling functions, the so called ”a-parametrisation” first proposed by [76] and
extended by [56-58, 77, 78], as opposed to the ”pu-parametrisation” presented in this paper.
Appendix B contains a dictionary to switch between the two parametrisations.

5 Conclusions

What Horndeski theories have to say about early dark energy? This is the original question
motivating the analysis presented in this paper. Early modifications of GR are found to have
non-negligible, lasting and potentially detectable effects in the LSS observables of the local and
recent universe.

In Figure 6 we summarize our main findings. By tracing the time evolution, from early
epochs (z = 100) down to present day, of fundamental LSS observables such as the reduced
effective Newton constant p, the gravitational slip parameter 7, the lensing parameter > and
the linear growth function of LSS fog we have found that GR extensions contemplating an
additional scalar degree of freedom with second order equations of motion can be definitely
ruled out if one of the following conditions apply (Figure 6, left panel):

e The observables p and ¥ have opposite sign for z > 1.5
o p<latz=0

Specific sub-classes of such theories in which the modified gravity effects are limited to late
times could be discriminated if data at redshift z > 1.5 eventually become available for both
redshift and lensing surveys. Indeed, we find that above that critical redshift (Figure 6, right
panel):

e LDE will be ruled out if fog < (fos)acpm at z > 1.5
e EDE will be ruled out if fog > (fos)acpm at z > 1.5 or fog > (fos)acpm and ¥ > 1 at

z>1.5
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These results are insensitive to the background dark energy e.o.s parameter within the rea-
sonable range weg € [—1.1,—0.9]. Indeed, we have found the diagnostic tool does not lose
predictability when progressively less constraining requirements are imposed.

b-1 fog / (fog)acom- 1
/
Atz>15 Atz>15
Horndeski EDE ruled out
ruled out /
7Z; %
; -3-1 7 ~ - 31
_ Atz =0 Atz>15
HAt zd Ok. andz> 1.5 Atz>15 LDE & EDE
orndeski . LDE ruled out
Horndeski ruled out
ruled out 7 ruled out

Figure 6: Schematics of the fundamental observable planes allowing to discard Horndeski the-
ories (left diagram) and the type of dark energy embedded (right diagram).

Two complementary strategies allow to estimate the likelihood of data given the Horndeski
class of theories. A model-dependent analysis is optimal if one is to exploit theoretical priors
about the physical viability of specific Horndeski models to complement the discriminatory
power of data. Indeed, [43] have shown that by this approach the region of the parameter space
that is not rejected by observations is significantly reduced. An orthogonal approach consists in
implementing model-independent likelihood analysis, parametrising LSS observables in a purely
phenomenological way, blindly of any gravitational theory. The diagnostics developed in this
paper are meant to facilitate theoretical interpretation in these cases. Interestingly, model-
independent analyses have been pursued for example in [13] and more recently in [62] and
preliminary results are suggestive of a negative value of p — 1 at redshift z = 0. Should future,
higher precision data strengthen the statistical significance of these findings, the Horndeski
landscape would face hard times.

Exploring beyond standard GR, and notably the functional space of scalar-field extension
of GR will eventually become less disorienting than previously suspected. However, much must
still be accomplished and a number of improvements would be desirable. We have focused on
scales much smaller than the Hubble radius in this paper. As data improve on ever larger
scales, our analysis should be extended to include possible scale dependent effects coming from
mass terms of the scalar field that are of the order of Hubble. On the contrary, it would be
interesting to evaluate, on small scales, how many models survive once solar system tests are
applied. Lastly, it would be useful to study to which level our diagnostic plots are stable to the
inclusions of more general scenarios in which, for instance, the scalar field is allowed to satisfy
larger than second order equation of motions (the so called beyond Horndeski theories [55,79],
see also [80] for early studies in this direction), or when conformal-disformal couplings of matter
to gravity are considered (the so called effective field theory of interacting dark energy [57]).
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A Parametrisation of the couplings

In this appendix we present how we parametrise the EFT coupling functions in the three different
DE scenarios.

LDE and EDE :

p(z) = H (1-2)

N

p11 + pi2 (x — xo) + p13 (z — xo) 2) (31)

ps(r) = H*(1—ux) (p21 + pa2 (€ — o) + pa3 (x — g 2) (32)
ps(z) = H (1-x) (p:n + p32 (z — 20) + p33 (¥ — o 2) (33)
eg(z) = (1—-2) ( pa2 (€ — xo) + paz (x — x0) ) (34)

p11 log(Q9,)— 610g(1+(1 Q0 )p41)
1 QO +Q?VL log(Q/"L)

For the LDE case the constrain pjs = must be imposed to

enforce M?(x — 1) — Mgl, see [17] for details.

EMG :
px) = H (1-=) (pn +p12 (z — x0) + p13 (v — xo)Q) : (35)
ps(z) = H? <p21 + paz (& — 20) + pa3 (x — 330)2> : (36)
ps(@) = H (po1+pa (@ = w0) +pas (= 20)°) (37)
a@ = pe@-w0)+pe@-2)) . (38)

B Links with the a-parametrisation

The EFT action of Horndeski theories for linear perturbations about an FLRW background can
be also parametrised by

S = /d3

M2 .
3 [5Ki]~6K” — K%+ ®RSN

5vh

(39)
+(1+arp) (<3>Rg) +agH?*N? + 4agH 6K 6N |,
a
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with NV being the lapse function and S, the action of matter perturbations in the Jordan frame.

In this action the EFT couplings stand as a running planck mass M,, the excess speed of
gravitational waves, the kineticity ax and the braiding a;s. It customary to redefine the running
of the planck mass trough the non minimal coupling aj; = % dgﬁf\ﬁf . The alpha parametrisation
has the benefit of attaching the evolution coupling functions to clear physical effects. However,
the theory-friendly view point is lost, subsets of Horndeski theories, such as Brans-Dicke for
instance, are described by more involved combinations of the « functions as compared to the p’s
(see table 1 in [16]). In parallel, the p-parametrisation has the benefit of displaying a Lagrangian

expanded in small perturbations where the couplings are expected to be of order 1.

The mapping with the pu-characterisation is the following.

M, =MyVI+e (40)

2
ax = ch(jf”) (42)
ap = % (43)
€
ar = -1 (44)
(45)

From this, the DE scenarios are characterised by:

M2
LDE:{M;—>1,aM—>O,aK—>0,aB—>O,aT—>O} ,

pl rz—1

M?
EDE : M—;%const.,aM%O,ozK%const.,aB—>O,aT—>O ,
ol x—1

2

EMG : {]\4; — const. , apyr = 0, ag — const. , ap — const. , ar — const.} L

T—r
pl

C A covariant description of the DE scenarios

A simplified Lagrangian in the Horndeski class which encompasses our DE scenarios is, for
example,

A(9)
A3

_ MZ(9)
2

L

R~ S 2(8)3,00"6 — V(6) + 2.7 0,00" 6010 (46)
where M2, Z, V, and A are functions of the scalar field ¢. The energy scale for modelling
cosmic acceleration is typically Ag ~ HgMpl.

Now, say that we are given in the EFT formalism some coupling functions of the time ()
and ps3(t). In this appendix, it is easier to work with the proper time variable ¢. Switching to
the variable x defined in (8) is straightforward. The example that we consider here will allow
us to implement models with ¢4 = 0.

A given background expansion history will be specified through the scale factor a(t) as a
function of the time. From this, one can define a Hubble parameter H and a non-relativistic
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matter density for any given background evolution with some equation of state parameter wes.
In summary, we consider the following input functions:

HY (), ppe(t),  m(t),  ps(t). (47)
The first three functions above allow us to define the following two quantities, by using eq. (3),

pweff
m

2M?2 "’
(5Hwefflul + Nl 4 Ml) Hweff 4 3(Hweff)2 _

(Hwefful fi1 — ) FWett _ (48)

pwcff
m

2M2

(49)

w\»—‘w\H

where M?(t) will be calculated through dln M?(t)/dt = uy(t).

The contributions of the terms in the Lagrangian (46) to the EFT operators can be read off
the dictionary provided in App. C of Ref. [46],

M2(1) = M (9) (50)
MO = 3 |9 (6 318) 2+ veo) 51)
¢t = 1755 [¢9(¢+3H¢) A £ 100 1 2 20 (52)
) = 573575 “Ar (53)

Under a field redefinition ¢ — ¢3(¢), the Lagrangian (46) does not change its structure but just
the defining functions M2, Z,V and A. Therefore we assume to work directly with the field ¢
that is proportional to the time coordinate: ¢(t) = ct, ¢ = c¢. Then, one can express A(¢) as

A0) = 2 py(/0) M2(o10). (54
The potential follows,
V(6) = 22(6/e) (Mo/e) — JH (6/0pa(6/0)) (55)
and, finally,
2(6) = M9 (a0 (0/0) - 31 (0/0Ns0/c) — (6 /es(6/) ~ istofe)) . (36)

where C is defined in (48).
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