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A Numerical Tool To Compute

Hybrid Euler-Lagrange Compressible Models

Jean-Marc Hérard
∗

EDF-DRD, 78401 Chatou cedex, France

We present in this paper a numerical tool which provides approximations of solutions

of hybrid Euler-Lagrange models. The basic underlying ideas of the whole scheme are

presented, which rely on the use of relaxation techniques and on a previous investigation of

second-moment realisable closures. Numerical tests involving shock and rarefaction waves

confirm the suitability of the present approach. The impact of the turbulent noise and the

influence of the mesh size are examined.

I. Introduction

Hybrid PDF methods perfectly compute the Reynolds stress closures and any other correlation, on the
basis of a modeled transport equation for the joint PDF (see17,18,21,22 for instance). One main advantage is
that one gets rid of inter-realisability problems, and it also seems to be much more accurate when one aims at
computing predictions of turbulent reactive flows. Monte-Carlo methods have become recently quite popular
in order to compute approximations of the PDF. Nonetheless, these methods also require the development of
accurate and stable enough Finite Volume schemes in order to compute the mean values (i.e. mean density,
mean velocity and mean total energy when restricting to compressible flows). The consistent hybrid approach
proposed in19,20 provides some way to achieve that. It takes advantage of the fact that many upwinding tech-
niques have been developed over the past thirty years in order to compute approximations of Euler equations.

The main objective here is to present another possible way to achieve computations of mean values,
assuming a given discrete PDF, or more simply pointwise values of Reynolds stress components. The start-
ing point is the following. When focusing on second-moment closures, it has already been checked (see4,5

but also the recent work by Audebert and Coquel1,2) that standard Euler solvers may fail in some standard
situations corresponding to real complex flows. More precisely, the fan of waves in second-moment closures is
richer than the one associated with Euler type equations. As a result, wall boundary conditions for instance
may generate time-space oscillations, which is due to the fact that some among these waves are actually
”ghost waves” for upwinding Euler-type solvers. If one turns then to the work,4,5 it occurs that an obvious
way to stabilize the whole process simply consists in accounting for the true solution of the exact Riemann
problem associated with the governing set of equations for both first and second-order moments. Hence,
approximate Riemann solvers may be easily implemented, and these enable to compute approximations of
full Reynolds stress models. If one assumes that the prediction of second moments is less trustable than the
one asociated with the discrete PDF, this simply suggests to drop second-order moments and to account for
moments obtained with help of the PDF instead. This will be very simply achieved with help of a relaxation
technique (see9 and15).

Thus, we will focus here on the computation of hybrid models which require computing approximations
of mean values of the density < ρ >, the momentum (< ρU >,< ρV >,< ρW >) and the total energy
< E >:

< E >=< ρe(P, ρ) > + < ρ(U2 + V 2 + W 2) > /2 + (R11 + R22 + R33)/2 (1)

where the Reynolds stress components are denoted Rij . The whole must be complemented with some
averaged EOS. We consider here an averaged perfect gas equation of state (EOS):
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< ρe(P, ρ) >=<
P

(γ − 1)
>=

< P >

(γ − 1)
(2)

where γ is a given constant greater than one. From now on we will drop all ã and < a > notations (used
for Favre averaging and Reynolds averaging respectively) and we will use obvious notations.

The paper is organised as follows. We first present the standard approach which is used to predict first
and second-order moments in order to account for turbulence within the flow field. We then introduce a
sketch of the whole scheme which is grounded on the use of upwinding algorithms and on instantaneous
relaxation techniques. Some results will be displayed, which include regular or noisy signals for Reynolds
stress closures. We emphasize that our main objective here is to derive a stable tool with respect to mesh
refinement and/or noise reduction.

II. The basic problem

A. Standard approaches

One may consider first that the best estimate for the Reynolds stress tensor is given by a Lagrange com-
putation of fluctuations, which provides the full Reynolds stress tensor among other information, at each
(space-time) point. In that case, the governing set of Euler equations to be solved in order to get first order
moments is:

∂ρ

∂t
+

∂ρUj

∂xj
= 0 (3)

∂ρUi

∂t
+

∂ρUiUj

∂xj
+

∂P

∂xi
+

∂RLag
ij

∂xj
= 0 (4)

∂E

∂t
+

∂Uj(E + P )

∂xj
+

∂UiR
Lag
ij

∂xj
= 0 (5)

Of course the signal RLag
ij (X, t) must be provided by some Lagrangian code. In any case, it will fulfill the

realisability requirement, that is
0 ≤ niR

Lag
ij nj (6)

for any vector n in R
3.

A very important point to note is that the above mentionned set of PDE is under conservative form,
which implies that exact jump conditions are available. In a one dimensional framework , these may be
written as:

−σ[ρ] + [ρUn] = 0 (7)

−σ[ρUn] + [ρUnUn + P ] = −ni[R
Lag
ij ]nj (8)

−σ[ρUτ ] + [ρUnUτ ] = −τi[R
Lag
ij ]nj (9)

−σ[E] + [Un(E + P )] = −[UiR
Lag
ij ]nj (10)

setting Un = Uini, Uτ = Uiτi, where we note nj (resp. τj) the components of the unit normal vector
aligned with (resp. normal to) the propagation of the plane shock wave, and denoting σ the speed of the
shock wave.

An alternative classical approach simply consists in a simple Euler prediction of Reynolds stress closures,
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on the basis of objective closures:25

∂ρ

∂t
+

∂ρUj

∂xj
= 0 (11)

∂ρUi

∂t
+

∂ρUiUj

∂xj
+

∂P

∂xi
+

∂Rij

∂xj
= 0 (12)

∂E

∂t
+

∂Uj(E + P )

∂xj
+

∂UiRij

∂xj
= 0 (13)

∂Rij

∂t
+

∂UkRij

∂xk
+ Rik

∂Uj

∂xk
+ Rjk

∂Ui

∂xk
=

φij

τ1

(14)

The closure φij may for instance rely on the early proposal by Lumley (16), which takes the form:

φij = ψ1(I, II, III)Rij + ψ2(I, II, III)R2
ij/I + ψ3(I, II, III)R3

ij/I2 (15)

where I = trace(R) = Rll, II = trace(R2) = RlkRkl, and : III = trace(R3) = RlkRkmRml. τ1 stands for
the time scale for the turbulent dissipation. The ψk are non dimensional bounded functions of I, II, III.

It should of course agree with the constraint :

φll ≤ 0 (16)

In that case, it is known that the regular solutions of the system ((11)-(14)) comply with the over-realisability
constraint (see,23,12,13,514). This is still true in the limit of weak enough shocks (4). For further details, one
may also refer to the recent work by Audebert (1,2).

B. An alternative approach

We now propose a way to account for both approaches. This simply consists in computing approximations
of turbulent fluctuations, which enable to compute RLag

ij , and meanwhile to compute approximations of
solutions of the system:

∂ρ

∂t
+

∂(ρUj)

∂xj
= 0 (17)

∂ρUi

∂t
+

∂(ρUiUj)

∂xj
+

∂P

∂xi
+

∂Rij

∂xj
= 0 (18)

∂E

∂t
+

∂(Uj(E + P ))

∂xj
+

∂(UiRij)

∂xj
= 0 (19)

∂Rij

∂t
+

∂(UkRij)

∂xk
+ Rik

∂Uj

∂xk
+ Rjk

∂Ui

∂xk
= µ1

φij

τ1

+ µ2M
(Rik − RLag

ik )Rkj + (Rjk − RLag
jk )Rki

τ2I
(20)

where :

M =
(RLag

kl Rlk − RklRlk)

(|RLag
kl Rlk| + RklRlk)

(21)

and µk stands for some value in [0, 1], and τk designs some positive time scale for a return to equilibrium.

The couple (µ1, µ2) = (1, 0) has been already investigated (see above). Focus will be given here on
(µ1, µ2) = (0, 1) or any couple (µ1, µ2) such that µ1µ2 is non zero.

C. An overall entropy inequality

We now introduce the specific entropy s in agreement with :

ρ
∂s(P, ρ)

∂ρ
+ γP

∂s(P, ρ)

∂P
= 0 (22)
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and set :

η = ρLog(s) (23)

F i
η = ρUiLog(s) (24)

The following holds for regular solutions of ((17)-(20)) :

∂η

∂t
+

∂F i
η

∂xi
=

∂Log(s(P, ρ))

∂P
∂e(P, ρ)

∂P

(µ1

φkk

2τ1

− µ2

(RLag
kl Rlk − RklRlk)2

(|RLag
kl Rlk| + RklRlk)τ2I

) (25)

Since φkk < 0, the whole provides the entropy inequality :

∂η

∂t
+

∂F i
η

∂xi
≤ 0 (26)

for all regular solutions of ((17)-(20)), using standard equations of state.

This entropy inequality is compulsory if one aims at selecting physically relevant solutions through shock
waves.

III. The coupling scheme

We restrict now to statistical two-dimensional turbulence in the (x, y) plane, thus setting : R13 = R23 = 0,

and of course W = 0, and
∂φ

∂z
= 0, whatever φ is. The EOS thus reads : E = ρe(P, ρ) + ρ(U2 + V 2)/2 +

(R11 + R22 + R33)/2, where:
(γ − 1)ρe(P, ρ) = P (27)

The scheme requires computing solutions of an evolution step which is followed by a relaxation step, both
of which are in agreement with the overall entropy inequality.

A. Evolution step:

The evolution step corresponds to the simulation of ((17),(20)) while setting µ2 = 0, using the closures (1)
and (2).

The structure of the evolution step guarantees that both regular solutions and shock solutions will be
endowed with the over-realisability property. The last Reynolds stress component R33 is fully uncoupled.

B. Relaxation step:

The relaxation step consists in computing approximations of the following:

∂ρ

∂t
=

∂ρU

∂t
=

∂ρV

∂t
=

∂E

∂t
= 0 (28)

∂Rij

∂t
= µ2M

(Rik − RLag
ik )Rkj + (Rjk − RLag

jk )Rki

τ2I
(29)

In the limit of a vanishing time scale τ2 = 0, the relaxation step simply ensures that:

Rij = RLag
ij (30)

at any time for every point.
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IV. Numerical approach and sample results

A. Numerical schemes

The overall algorithm first requires computing approximations of the evolution step. This is achieved by
integrating governing equations of the evolution step over control volumes, and using approximate Riemann
solvers to provide intermediate states through interfaces between cells. Structured or unstructured meshes
may be used. The approximate Riemann solver requires some classical limitation on the time step to comply
with the CFL condition. In pratice, we use CFL = 0.5.

The Riemann solver is obtained while neglecting transverse derivatives. This actually makes sense since
the whole system is invariant under frame rotation. Thus, if n designs the direction normal to some interface
between two cells, one needs to construct the solution of the one-dimensional Riemann problem associated
with:

∂ρ

∂t
+

∂ρUn

∂n
= 0 (31)

∂ρUn

∂t
+

∂ρU2
n + P + Rnn

∂n
= 0 (32)

∂ρUτ

∂t
+

∂ρUnUτ + Rnτ

∂n
= 0 (33)

∂E

∂t
+

∂Un(E + P ) + UnRnn + UτRnτ

∂n
= 0 (34)

∂Rnn

∂t
+

∂(UnRnn)

∂n
+ 2Rnn

∂Un

∂n
= µ1

φnn

τ1

(35)

∂Rττ

∂t
+

∂(UnRττ )

∂n
+ 2Rnτ

∂Uτ

∂n
= µ1

φττ

τ1

(36)

∂Rnτ

∂t
+

∂(UnRnτ )

∂n
+ Rnτ

∂Un

∂n
+ Rnn

∂Uτ

∂n
= µ1

φnτ

τ1

(37)

∂R33

∂t
+

∂(UnR33)

∂n
= µ1

φ33

τ1

(38)

together with :

E =
P

γ − 1
+ ρ(U2

n + U2
τ )/2 + (Rnn + Rττ + R33)/2

If the turbulence vanishes, the governing equations obviously coincide with Euler equations.

The most tricky part is connected with the approximations of solutions of the evolution step. We recall
very briefly that the homogeneous left hand side is an hyperbolic system, whose eigenvalues are :

λ1 = Un − c1 (39)

λ2 = Un − c2 (40)

λ3 = λ4 = λ5 = λ6 = Un (41)

λ7 = Un + c2 (42)

λ8 = Un + c1 (43)

We note here as usual :

c1 = (
γP + 3Rnn

ρ
)1/2 (44)

c2 = (
Rnn

ρ
)1/2 (45)

There are only two Genuinely Non Linear fields which are connected with λ1 and λ8. Other fields are
Linearly Degenerated. If one assumes that the field only contains weak enough shocks in genuinely non lin-
ear fields, the one dimensional Riemann problem admits a unique entropy consistent solution, as detailed in.4
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For practical reasons, we need to extend the notion of upwinding schemes developed within the conser-
vative framework to the frame of non-conservative schemes. For all considerations refereing to the latter
item, we thus refer to6 for instance, and to,4,5 which provide details of the computation of Reynolds stress
models in an unsteady framework, and also to,3.1 For sake of simplicity, the approximate Godunov scheme
introduced in7 has been used here to predict solutions in the evolution step. We also emphasize that there
are many simple numerical schemes which provide approximations that comply with the over-realisability
concept, when one incorporates the source terms on the RHS of ((31),(37)).

B. Numerical results

The results presented herein correspond to the simulation of a Riemann problem with discontinuous initial
data for the mean density, the mean velocity and the mean pressure, on each side of x = 0.5.

ρL = 1. and ρR = 0.25 (46)

UL = 0. and UR = 0. (47)

VL = 0. and VR = 0. (48)

PL = 105 and PR = 2. 104 (49)

R11,L = R22,L = R33,L = 103 and R11,R = R22,R = R33,R = 103 (50)

R12,L = 5. 102 and R12,R = 5. 102 (51)

The Rij components are given as:

Rij(x, t) = R0
ij(1 + RMS(x)sin(ω1x − ω2t) + RMS1(x)rand(x, t)) (52)

The constant γ is set to 7/5.

The first test case corresponds to the following data: ω1 = 1000, ω2 = 0, RMS(x) = 0.1, RMS1(x) = 0.,
for x ∈ [0.25, 0.75], and RMS(x) = RMS1(x) = 0 otherwise. Meshes contain 100 cells up to 100000
cells. Results displayed here have been obtained using 5000 cells. A shock wave propagates to the right,
and one recognizes the classical profile for the mean density (figure 1), and for the mean axial velocity
(figure 2). Due to gradients of Rij components, the transverse velocity (figure 2), which has been set to
zero everywhere in the computational domain, develops now. Obviously results are much depending on the
mesh size, when one focuses on rather coarse meshes (see figure 3, which displays mean pressure results
when using 500 cells and 10000 cells). This is expected since the frequency of the signal Rij is rather high
here. Once the mesh size is in agreement with the Shannon frequency, the dependence becomes much weaker.

Similar results which have been obtained using ”random” Reynolds stress data are displayed on figures
(4,5,6), while setting: RMS(x) = 0.1, RMS1(x) = 0.02, for x ∈ [0.25, 0.75], and RMS(x) = RMS1(x) = 0
otherwise. .

V. Conclusion

This new numerical tool takes advantage of some recent work in order to compute hybrid Euler-Lagrange
compressible models. This work is still in progress. Up to now, we have been focusing on the ”classical”
effect of mesh refinement, whenever one considers regular Reynolds stress profiles, or alternatively noisy
signals. Actually, many basic computations seem to confirm that the whole scheme is still stable when using
random data for Rij components. We are also currently investigating the impact of the evolution step on
computational results. The latter is of major concern. Preliminary results show that computational results
are independent of the choice of the evolution step, which is indeed crucial, but still requires further inves-
tigation for confirmation.

A companion work8 is devoted to a similar approach in order to compute hybrid Euler-Lagrange models
for the prediction of two-phase flows.

6 of 10

American Institute of Aeronautics and Astronautics



Figures

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Riemann problem using imposed Reynolds stress profile (CFL = 0.5)

Mean density   _   5000 cells _ First coupling method 

Figure 1. Mean density when solving a Riemann problem with sinusoidal signal
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Figure 3. Effect of mesh refinement - Mean pressure when solving a Riemann problem with sinusoidal signal
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Figure 4. Mean velocities when solving a Riemann problem with random data
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Figure 5. Mean pressure when solving a Riemann problem with random data
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