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Boundary Conditions For The Coupling

Of Two-Phase Flow Models

Jean-Marc Hérard
∗

EDF, R&D, 78400, Chatou, France

Olivier Hurisse
†

EDF, R&D, 78400, Chatou, France

We examine in this paper an approach for the interfacial coupling of two distinct two-

phase flow models, namely a two-fluid model and an homogeneous relaxation model. This

is achieved by prescribing specific boundary conditions through the coupling interface be-

tween codes, using an interface ”father” model. The main underlying ideas are given,

together with associated properties. Details on the numerical fluxes are provided, and

some numerical tests are discussed.

I. Introduction

One essential objective of the NEPTUNE project (see16 ) consists in the development of methodologies
for the coupling of pre-existing two-phase flow codes. This represents a challenging research framework. A
first obvious reason is that there exists no concensual model for the description of two-phase flows. Basically,
at least two different approaches are followed by engineers and researchers in the field. The homogeneous
approach provides one possible insight, where one assumes that the mixture of both phases is correctly
represented by a unique velocity field, a unique pressure field, while adding some local instantaneous rela-
tions between phase velocities and pressures, if necessary (see for instance4,17 ). The two-fluid approach is
sometimes prefered for accurate simulations, since it distinguishes both phase velocities (see25 ). A second
reason is that there is little theoretical work available in the current literature for the interfacial coupling of
distinct codes. Some first proposals have nonetheless been recently published, which either rely on the use
of the state coupling (see2,3, 9, 11,15 ), or on the blending of relaxation methods with upwinding techniques
(see1,20,23 ).

The second approach has been retained here in order to perform the coupling of a two-fluid model (which
involves six governing partial differential equations in order to account for mass balance, momentum and
total energy balance within each phase) and an homogeneous relaxation model (with four governing PDE
to desccribe mass balance within each phase, total momentum and total energy for the mixture of both
phases). This is basically motivated by some applications in the framework of French nuclear power plants,
which require computing the flow in the primary coolant circuit with help of both the THYC code and the
NEPTUNE CFD code. The first one provides approximations of solutions of the Homogeneous Relaxation
Model (HRM) (see for instance17 ), whereas the second one computes numerical approximations of the stan-
dard two-fluid model (see28 ). Obviously, an important feature in the coupling methodology is that the
conservative formulation should be preserved when meaningful. Hence, one expects that the three governing

equations for the mass, momentum and total energy of the mixture, which are under conservative form, will

not be affected by the coupling process, even when interfacial transfer terms are active.

The paper is organised as follows. A description of the whole problem is given first (section 2). After-
wards, we will explain the main underlying ideas that sustain the whole methodology (section 3). These
rely on the combined use of the relaxation techniques (see6,8, 26 ) with the notion of upwinding in order not
only to recover stability of the whole coupling method, but also to ensure consistance with the codes to be
coupled. Once that has been done, we will provide the numerical recipes which are necessary to obtain the
numerical fluxes through the coupling interface, and some properties will be exhibited. A brief description of

∗Senior Engineer, Département MFEE, 6 quai Watier, AIAA Member
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sole codes will follow in section 4. A few numerical tests will illustrate our work in the last section. Details
can be found in22 . Other numerical tests have been performed in a more industrial framework (see24 ).

II. A description of the whole problem

The purpose of the present work is the following. We need to define some admissible boundary conditions
on a specific interface that will be called ”coupling interface” in the sequel. This ”coupling interface” seperates
two distinct two-phase flow codes at x = 0. The one on the left hand side (x < 0) is assumed to compute
approximations of solutions of the classical two-fluid model, the governing equations of which are recalled
below:







































∂t (αlρl) + ∂x (αlρlUl) = S2,l

∂t (αlρlUl) + ∂x

(

αlρlU
2
l + αlP

)

− P∂x (αl) = S3,l

∂t (αlEl) + ∂x (αlUl(El + P )) + P∂t (αl) = S4,l

∂t (αvρv) + ∂x (αvρvUv) = S2,v

∂t (αvρvUv) + ∂x

(

αvρvU2
v + αvP

)

− P∂x (αv) = S3,v

∂t (αvEv) + ∂x (αvUv(Ev + P )) + P∂t (αv) = S4,v

(1)

where the total energy within each phase is defined as:

Eφ = ρφeφ(P, ρφ) + ρφ

U2
φ

2
, φ = v, l

We note afterwards ZTFM = (αl, ρl, Ul, ρv, Uv, P ).

On the right-hand side of the ”coupling interface” (x > 0), the second code provides approximate solutions
of an homogeneous two-phase flow model which is classically retained for industrial applications:



















∂t (ρxl) + ∂x (ρxlU) = S2,l

∂t (ρ) + ∂x (ρU) = 0

∂t (ρU) + ∂x

(

ρU2 + P
)

= 0

∂t (E) + ∂x (U(E + P )) = 0

(2)

In system (2), U,P, ρ respectively denote the velocity, the mean pressure and the mean density of the mixture,
while xl stands for the mass fraction of the liquid phase. The total energy of the mixture reads:

E = ρe(P, ρ, xl) + ρU2/2

We note afterwards ZHRM = (ρ, ρxl, ρU, ρE).

Details on source terms will be given in the next section.

III. Boundary conditions for the coupling interface

The basic strategy consists in introducing a father model around the coupling interface. This one should
enable to recover both models in sole codes on each side of the coupling interface through a relaxation
process. The father model arises from the two-fluid two-pressure model, which has been introduced for DDT
applications (see5,27 ), and more recently extended to water-vapour flows (see10,12,13 ).
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A. The interface model

The governing equations of the interface model (subscripts v, l refer to the vapour and liquid phase respec-
tively) read:















































∂t (αl) + VI∂x (αl) = S1,l

∂t (αlρl) + ∂x (αlρlUl) = S2,l

∂t (αlρlUl) + ∂x

(

αlρlU
2
l + αlPl

)

− PI∂x (αl) = S3,l

∂t (αlEl) + ∂x (αlUl(El + Pl)) + PI∂t (αl) = S4,l

∂t (αvρv) + ∂x (αvρvUv) = S2,v

∂t (αvρvUv) + ∂x

(

αvρvU2
v + αvPv

)

− PI∂x (αv) = S3,v

∂t (αvEv) + ∂x (αvUv(Ev + Pv)) + PI∂t (αv) = S4,v

(3)

Interfacial transfer terms are accounted for through the contributions Sk,φ, for k = 2, 3, 4 and φ = l, v. Using
standard notations, αv, ρv, ρl, Uv, Ul, Pl and Pv respectively stand for the void fraction of the vapour phase,
the densities, the velocities and the pressures. We note Z = (αl, ρl,Ul,Pl, ρv,Uv,Pv). Void fractions must
agree with the constraint αl + αv = 1. Total energies El and Ev can be written in terms of internal energies
ev and el as:

Eφ = ρφeφ(Pφ, ρφ) + ρφ

U2
φ

2
, φ = v, l (4)

The temperature within phase k can be expressed as:

T−1
φ = ∂eφ

(sφ)|ρφ

noting:

sφ = CV,φln

(

Pφ + P∞,φ

ρ
γφ

φ

)

(5)

as soon as one considers stiffened gas equations of state (EOS) within each phase:

(γφ − 1)ρφeφ = Pφ + γφP∞,φ, φ = v, l (6)

We restrict here to the following closure laws for the interfacial velocity VI and the interfacial pressure
PI . We set:

VI = δUl + (1 − δ)Uv (7)

where the parameter δ takes one value among the following three:

δ = 0 or δ = 1 or δ =
αlρl

αlρl + αvρv
(8)

For a given value of δ, one can derive that:

PI =
(1 − δ)alPl + δavPv

(1 − δ)al + δav
(9)

noting
aφ = (∂Pφ

(eφ)|ρφ
)−1∂Pφ

(sφ)|ρφ
, φ = l, v

so that a physically relevant entropy inequality holds for the whole system, including source terms and vis-
cous contributions (which are not detailed here). The reader is refered to10 for details pertaining to VI and PI .

The closure laws for Sk,l and Sk,v (for k = 1 − 4), which comply with:

Sk,l + Sk,v = 0 pour k = 2, 3, 4

are the following:

S1,l = A

S2,l = Γ

S3,l = B + VIΓ

S4,l = C + VIB + HIΓ

(10)
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where A, B, C and Γ agree with:

Γ = (τ1)
−1 1

T−1

l
µl+T−1

v µv

αlρlαvρv

αlρl+αvρv
(T−1

l µl − T−1
v µv)

A = (τ2)
−1 αlαv

Pl+Pv
(Pl − Pv)

B = (τ3)
−1 αlρlαvρv

αlρl+αvρv
(Uv − Ul)

C = (τ4)
−1 αlρlCV,lαvρvCV,v

αlρlCV,l+αvρvCV,v
(Tv − Tl)

(11)

All time scales τk are positive. We have set here for φ = l, v:

µφ = −gφ +

(

(Uφ − VI)
2

2
+

(

HI −
V 2

I

2

))

and :

gφ =

(

eφ +
Pφ

ρφ

)

− Tφsφ

We also set:

HI −
V 2

I

2
= 0

From now on, we will consider the choice δ = 1 that is relevant for water-vapour simulations when the vapour
phase is assumed to be dilute:

VI = Uv , HI =
U2

v

2
et PI = Pl (12)

B. Main properties of the interface model

The above mentioned model enjoys the following properties (see10,12,18,19 for details):

Properties of the interface model :

• The convective part of the system (3) is hyperbolic. The eigenvalues are:







































λ1 = ul − cl

λ2 = ul

λ3 = ul + cl

λ4 = uv − cv

λ5 = λ6 = uv

λ7 = uv + cv

(13)

The fields labelled 1, 3, 4, 7 are genuinely non linear. Other fields are linearly degenerated.

• The regular solutions of system (3) comply with the entropy inequality

∂t (η) + ∂x (Fη) < 0

while introducing the entropy-entropy flux pair (η, Fη):

η = −(αvρvsv + αlρlsl) et Fη = −(αvρvsvUv + αlρlslUl)

• Owing to the specific choice (7) , the jump conditions asociated with system (3) are uniquely defined
in all fields (see10,12 ).
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C. Boundary conditions for the coupling interface

1. Definition 1

Boundary conditions for the coupling interface are simply provided by solving the one-dimensional Riemann
problem corresponding to the interface model through the coupling interface.

This one is associated with the left-hand side of system (3) together with initial conditions:

{

Z(x < 0, t = 0) = ZL

Z(x > 0, t = 0) = ZR

(14)

Hence the conservative form is preserved for the mass fractions, the total momentum and the total energy

equations.

2. Definition 2

• The definition of ZL is obtained in a straightforward way. For a given value:

Z−
TFM

= (α−
l , ρ−l , U−

l , ρ−v , U−
v , P−)

in the cell on the left side of the interface, one derives:

ZL = (α−
l , ρ−l , U−

l , P−, ρ−v , U−
v , P−)

• The computation of ZR = (α+
l , ρ+

l , U+
l , P+, ρ+

v , U+
v , P+) requires inverting a local set of coupled equa-

tions. Starting from a given value:

Z+
HRM

= (ρ+, ρ+x+
l , ρ+U+, E+)

and defining ρε = E − ρU2/2, one needs to ensure that a pressure-velocity-temperature equilibrium
holds, and that the partial masses, and the momentum and total energy of the mixture are preserved.
This results in :







































P+
l = P+

v = P+

U+
l = U+

v = U+

Tl(P
+, ρl(P

+, T+)) = Tv(P+, ρv(P+, T+)) = T+

α+
l ρl(P

+, T+) = ρ+x+
l

(1 − α+
l )ρv(P+, T+) = ρ+(1 − x+

l )

α+
l ρl(P

+, T+)εl(P
+, T+) + (1 − α+

l )ρv(P+, T+)εv(P+, T+) = (ρε)+

(15)

A direct elimination leads to a non linear scalar equation in terms of P+, which admits a unique solution
(see22 ) in agreement with 0 ≤ P+ + P∞,φ. Other unknown components α+

l , T+ are immediately
deduced:



















T+ =
α+

l
(P++P∞,l)

ρ+x+

l
CV,l(γl−1)

α+
l = 1

1+ψ(P+)

ψ(P+) =
(1−x+

l
)(CV,v)(γv−1)(P++P∞,l)

x+

l
(CV,l)(γl−1)(P++P∞,v)

(16)

These are obviously relevant, since α+
l lies in [0, 1] and T+ is positive. Moreover, densities are positive:

ρv(P+, T+) =
ρ+(1−x+

l
)

(1−α+

l
)

, and: ρl(P
+, T+) =

ρ+x+

l

α+

l

. Hence, we obtain:

ZR = (α+
l , ρl(P

+, T+), U+, P+, ρv(P+, T+), U+, P+)
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3. Numerical implementation of boundary conditions at the coupling interface

In practice, we compute boundary conditions at the coupling interface using either the Rusanov scheme or the
approximate Godunov scheme VFRoe-ncv proposed in7 . Hence, in order to compute the non conservative
system:

∂t (W ) + ∂x (F (W )) + A(W )∂x (G(W )) = 0 (17)

we proceed as follows:

• We either advance in time using the numerical flux (FRus)n
i+1/2:

(FRus)n
i+1/2 =

F (Wn
i+1) + F (Wn

i )

2
− max(S+

i , S+
i+1)

Wn
i+1 − Wn

i

2

The scalar S+
i is the spectral radius of C(W ) = (∂W (F (W )) + A(W )∂W (G(W ))) in cell i.

• Otherwise we may use the flux provided by the approximate Godunov scheme VFRoe-ncv. In that
case, one has to compute the exact solution of the linear Riemann problem (18):

∂t (Z) + J((Zi + Zi+1)/2)∂x (Z) = 0, Z(x, t = 0) =

{

Zi if x < 0

Zi+1 if x > 0
(18)

at the coupling interface between cells i and i + 1, noting J(Z) = ∂W (Z) C(W (Z))∂Z (W ).

IV. Algorithms in sole codes

Similar numerical procedures are used in both codes in order to compute approximate solutions of sys-
tems of PDEs. Both algorithms are based on the fractional step approach.

A. Algorithms used for the TFM

The basic ideas of the following algorithm are those detailed in21 . Hence, in order to compute the two-fluid
model (TFM), for x < 0, the sequence is as follows :

1. initialize the state variable of (3) using equal pressure values for P1 and P2 ;

2. a ) compute convective contributions first (LHS of (3)) ;

b ) account for physical source terms (mass transfer, momentum and energy interfacial transfer) in
the second step.

3. At last, an instantaneous relaxation step enforces the pressure equilibrium in each cell at the end of
the time step, as detailed in reference21 . In fact, it corresponds to the simulation of the ODE:















































∂t (αl) = A

∂t (αlρl) = 0

∂t (αlρlUl) = 0

∂t (αlEl) + P∂t (αl) = 0

∂t (αvρv) = 0

∂t (αvρvUv) = 0

∂t (αvEv) + P∂t (αv) = 0

(19)

assuming a null time scale τ2.
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In practice, the cell scheme which is used within step 3 is given by:


















































Pn+1
l = Pn+1

v = Pn+1

(αlρl)
n+1 = (α̃lρ̃l)

(αlρlUl)
n+1 = (α̃lρ̃lŨl)

(

(αlρl)
n+1el(P

n+1, ρn+1
l ) − α̃lρ̃lel(P̃l, ρ̃l)

)

+ Pn+1(αn+1
l − α̃l) = 0

(αvρv)n+1 = (α̃vρ̃v)

(αvρvUv)n+1 = (α̃vρ̃vŨv)
(

(αvρv)n+1ev(Pn+1, ρn+1
v ) − α̃vρ̃vev(P̃v, ρ̃v)

)

+ Pn+1(αn+1
v − α̃v) = 0

(20)

For stiffened gas EOS, this implies:

αn+1
φ =

α̃φ

γφ

(

(γφ − 1) +
P̃φ + P∞,φ

Pn+1 + P∞,φ

)

, φ = l, v (21)

and

Pn+1 + P∞,v =
−C1 +

√

C2
1 − 4C2C0

2C2
(22)

while noting :
∣

∣

∣

∣

∣

∣

∣

C2 = α̃l

γl
+ α̃v

γv
> 0

C1 = − α̃l

γl
(P̃l + P∞,v) − α̃v

γv
(P̃v + P∞,l)

C0 = − α̃v

γv
(P∞,l − P∞,v)(P̃v + P∞,v) < 0

(23)

(we assume with no loss of generality that P∞,v ≤ P∞,l). Hence both Pn+1 and αn+1
l are physically relevant.

B. Algorithms used for the HRM

A similar procedure is used to advance the numerical solution of the homogeneous model HRM. The main
difference concerns the instantaneous relaxation step, and of course the initialization of state variables.
Hence, for x < 0 we:

1. initialize the state variable Z of (3) using equal pressures P1 = P2 = P , equal velocities U1 = U2 = U
and equal temperatures T1 = T2 = T within the region corresponding to the homogeneous model, in
agreement with (16); then:

2. a ) compute convective contributions of (3) first ;

b ) compute physical source terms (mass transfer) in the second step.

3. Eventually, another instantaneous relaxation step enforces the pressure-velocity-temperature equilib-
rium in each cell at the end of the time step, as detailed in reference22 .

V. Numerical results

A. Two-dimensional flows

1. A two-dimensional flow with no mass transfer

The EOS in this test case are characterized by:

γl = γv = 1.24 and P∞,l = P∞,v = 0

CV,l = 3036 et CV,v = 31680

We only account for interfacial drag effects τ3 = 10−4, which means that (τ1)
−1 = (τ4)

−1 = 0 -and of course
τ2 = 0 -. We use a uniform square grid with 3600 regular cells. We intend to examine the pollution due to the
coupling interface located at x = 0 when the flow is tangent to the coupling interface. For this very coarse
mesh, numerical approximations show that the main variables remain almost uniform along the x−axis. The
relative velocity (which is null for x > 0) is the only component that enables to track the coupling interface.
(see figures (2), (4), (3), (6), (5), (7)).
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α
ρ

P

U
V

l

l

l,v

l,v

l,v

=0.995
ρv=800 =76,667

=0
=0
=155.10

5

6 équations 4 équations

α
ρ

P

U
V

l

l

l,v

l,v

l,v

=0.995
ρv

=0
=0

5

=700

=150.10

=67,083

Figure 1. Sketch and initial conditions

2. A two-dimensional flow with mass transfer

This one corresponds to the flow in a square cavity and a one dimensional pipe. The governing equations
in the cavity correspond to the HRM, whereas the TFM governs evolutions in the pipe. The mass transfer
terms are no longer omitted now. The coupling interface is located at the junction between the end of the
pipe and the cavity. A spherical Riemann problem is initiated in the square cavity, and waves propagate
everywhere afterwards. Computational results for the pressure field and the mean density are displayed
below (see figures (8) and (9)).

Figure 2. Isolines for the density of the mixture ρ = αlρl + αvρv.
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Figure 3. Isolines for the vertical velocity Vy (αlρlUl + αvρvUv)/ρ.

Figure 4. Isolines for the horizontal velocity Vx (αlρlUl + αvρvUv)/ρ.
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Figure 5. Isolines for the vertical component of the relative velocity Uv − Ul

Figure 6. Isolines for the horizontal component of the relative velocity Uv − Ul
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Figure 7. Pressure distribution P

Figure 8. Isovalues of the pressure

B. One dimensional flows

We now wish to examine the behaviour of the coupling boundary conditions when the main direction of the
flow is normal to the coupling interface. The best way to do that consists in computing one dimensional
flows, since disturbances will not be smeared by the multi-dimensional approach. The situation is almost
the same. The TFM region is on the left of the coupling interface (still located at x = 0), and the HRM
model is on the right-hand side. A Riemann problem is initiated inside the TFM region (x = −0.15), so
that a right-going shock wave and a right-going contact wave will hit the coupling interface after a while.
The initial conditions are recalled in the table below.
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Figure 9. Isovalues of the mean density, αlρl + αvρv

TFM TFM HRM

αl 0.995 0.995 0.995

ρl 800 700 700

Ul 0 0 0

Pl 155e5 150e5 150e5

ρv 76.667 67.083 67.083

Uv 0 0 0

Pv 155e5 150e5 150e5

Meshes contain 100, 500, and 10000 cells respectively.

For each mesh size, we show the results pertaining to :

• the approximate solution provided by the HRM code on the whole domain (black)

• the approximate solution provided by the TFM code on the whole domain (red)

• the approximate solution provided by the coupled case TFM/HRM (green)

The last figure enables to compare solutions obtained on the three meshes in the coupled case. Actually,
results are again very satisfactory, for all waves propagating in the computational domain. The only difference
that can be noticed concerns the liquid mass fraction xl. The strange pattern around the coupling interface
that arises is due to the fact that the relative velocity suddenly goes to zero when x > 0. It is unsteady and
decreases - in L1 norm - when the mesh is refined and / or when the time increases. The introduction of a
drift velocity in the HRM code will smooth this undesirable pattern.

VI. Conclusion

The boundary conditions which have been defined in order to perform coupled simulations of the homo-
geneous relaxation model and the two-fluid model can be easily implemented. They basically rely on the use
of a ”father” interface model. Numerical experiments confirm that computations are stable with respect to
mesh refinement, when considering highly unsteady flows. The work24 , which examines the straightforward
use of these boundary conditions in a more industrial framework, leads to similar conclusions. It is not
clear for that kind of coupling whether one might define the counterpart of the ”state coupling” proposed in
references2,11,15 . Attempts to achieve that are currently investigated.
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Figure 10. Mesh including 100 cells - black=HRM, red=TFM, green=coupled case
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Figure 11. Mesh including 500 cells - black=HRM, red=TFM, green=coupled case
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Figure 12. Mesh including 10000 cells - black=HRM, red=TFM, green=coupled case
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Figure 13. Computations of the coupled case for the three meshes 100, 500 and 10000 cells (black, red,green)
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12T. Gallouët, J.M. Hérard and N. Seguin, Numerical modelling of two-phase flows using the two-fluid two-pressure ap-

proach, Math. Mod. Meth. in Appl. Sci., vol. 14, pp. 663-700, 2004.
13S. Gavrilyuk and R. Saurel, Mathematical and numerical modelling of two phase compressible flows with inertia, Journal

of Computational Physics, vol.175, pp. 326-360, 2002.
14E. Godlewski and P. A. Raviart, The Numerical interface coupling of nonlinear hyperbolic systems of conservation laws:

1.The scalar case, Numerische Mathematik, vol. 97, pp. 81-130, 2004.
15E. Godlewski, K. C. Le Thanh and P. A. Raviart, The Numerical interface coupling of nonlinear hyperbolic systems of

conservation laws: 2.The case of systems, Math. Mod. Num. Anal., vol. 39, pp. 649-692, 2005.
16A. Guelfi, D. Bestion, M. Boucker, P. Boudier, P. Fillion, M. Grandotto, J.M. Hérard, E. Hervieu and P. Péturaud,

NEPTUNE: a new software platform for advanced nuclear thermal hydraulics, Nuclear Science and Engineering, vol.156, 2007.
17A. Guelfi and S. Pitot, THYC (ThermoHYdraulique des Composants) Version 4.1 - Note de Principe, EDF report
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