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OPTIMAL LOCATION OF SENSORS AND ACTUATORS

FOR WAVE AND HEAT PROCESSES

par

Yannick Privat, Emmanuel Trélat & Enrique Zuazua

Résumé. — We investigate the problem of optimizing the shape and location of
sensors and actuators for evolution systems driven by distributed parameter systems

or partial differential equations (PDE). We consider wave, Schrödinger and heat equa-

tions on an arbitrary domain Ω, in any space dimension, and with suitable boundary
conditions (if there is a boundary) which can be of Dirichlet, Neumann, mixed or

Robin type. This kind of problem is frequently encountered in applications where

one aims, for instance, at maximizing the quality of reconstruction of the solution,
using only a partial observation. From the mathematical point of view, using prob-

abilistic considerations we model this problem as that of maximizing the so-called

randomized observability constant, over all possible subdomains of Ω having a pre-
scribed measure. The spectral analysis of this problem reveals intimate connections

with the theory of quantum chaos. More precisely, we provide a solution to this

problem when the domain Ω satisfies suitable quantum ergodicity assumptions.
This proceedings paper is a short exposition and survey of results published in a

series of works [17, 18, 19, 20, 21], in which we solved the above issues. The second
author gave a talk on that subject in a workshop organized in Monastir in 2013.

1. Introduction

Our objective is to model and solve the problem of optimizing the shape and loca-
tion of sensors and actuators for processes modeled by a PDE on any open bounded
connected subset of a Riemannian manifold, with various possible boundary condi-
tions. Our results reveal intimate connections with quantum ergodicity issues. They
strongly depend on the nature of the PDE under consideration.

1.1. The context. — The literature on optimal observation or sensor location
problems is abundant in engineering applications (see, e.g., [3, 10, 13, 14, 23, 25,
26, 27] and references therein), where the aim is often to optimize the number,
the place and the type of sensors in order to improve the estimation of the state
of the system. Fields of applications are very numerous and concern for example
active structural acoustics, piezoelectric actuators, vibration control in mechanical



structures, damage detection and chemical reactions, just to name a few of them. In
most of these applications the method consists in approximating appropriately the
problem by selecting a finite number of possible optimal candidates and of recasting
the problem as a finite-dimensional combinatorial optimization problem. In many of
these contributions the sensors have a prescribed shape (for instance, balls with a
prescribed radius) and then the problem consists of placing optimally a finite number
of points (the centers of the balls) and thus is finite-dimensional, since the class of
optimal designs is replaced with a compact finite-dimensional set.

In the present paper our objective is to run the search over all possible subsets, in
other words we optimize not only the placement but also the shape of the sensors or
actuators.

Among the existing approaches, the closest one to ours consists of considering trun-
cations of Fourier expansion representations. Adopting such a Fourier point of view,
the authors of [11, 12] studied optimal stabilization issues of the one-dimensional
wave equation and, up to our knowledge, these are the first articles in which one can
find characterizations of the optimal set whenever it exists, for the problem of de-
termining the best possible shape and position of the damping subdomain of a given
measure. In [5] the authors investigate the problem modeled in [23] of finding the
best possible distributions of two materials (with different elastic Young modulus and
different density) in a rod in order to minimize the vibration energy in the structure.
For this optimal design problem in wave propagation, the authors of [5] prove exis-
tence results and provide convexification and optimality conditions. The authors of
[1] also propose a convexification formulation of eigenfrequency optimization prob-
lems applied to optimal design. In [8] the authors discuss several possible criteria for
optimizing the damping of abstract wave equations and derive optimality conditions
for a certain criterion related to a Lyapunov equation.

From the mathematical point of view, the issue of studying a relaxed version of
optimal design problems for the shape and position of sensors or actuators has been
investigated in a series of articles. In [16], the authors study a convexified version
of the optimal location of controllers for the heat equation problem, noticing that
such problems are often ill-posed. In [2], the authors consider a similar problem and
study the asymptotic behavior as the final time T goes to infinity of the solutions of
the relaxed problem; they prove that optimal designs converge to an optimal relaxed
design of the corresponding two-phase optimization problem for the stationary heat
equation. We also mention [15] where, for fixed initial data, numerical investigations
are used to provide evidence that the optimal location of null-controllers of the heat
equation problem is an ill-posed problem. In [20] we proved that, for fixed initial data
as well, the problem of optimal shape and location of sensors is always well-posed for
heat, wave or Schrödinger equations, and we solved it, showing that the complexity of
the optimal set depends on the regularity of the initial data; in particular we showed
that, even for smooth initial data the optimal set can be fractal.

A huge difference between these works and the approach developed here is in the
fact that all criteria introduced in the sequel take into consideration all possible initial



data, and moreover the optimization will run over all possible measurable subsets in
UL. It is the idea developed in [18, 17, 19, 21] where the problem of the optimal
location of an observation subset ω among all possible subsets of a given measure or
volume fraction of Ω was addressed and solved for wave and Schrödinger equations
and also for general parabolic equations. A relevant spectral criterion, viewed as a
measure of eigenfunction concentration and not depending on the initial conditions
was considered, in order to design an optimal observation or control set in an uniform
way, independent of the data and solutions under consideration, as explained next.
Such a kind of uniform criterion was earlier introduced for the one-dimensional wave
equation in [11, 12] in view of investigating optimal stabilization issues.

1.2. Problem formulation. — To begin with, let us focus on a particular case of
our study, starting from a practical problem. Assume that Ω is a given bounded open
subset of IRn, representing for instance a cavity in which some signals are propagating
according to the wave equation

(1) ∂tty = 4y,

with Dirichlet boundary conditions. Having for example in mind some reconstruction
inverse problem, assume that one is allowed to place some sensors in the cavity, in
order to make some measurements of the signals propagating in Ω over a certain
horizon of time. We assume that we have the choice not only of the placement of the
sensors but also of their shape. Let us address the question of knowing what is the best
possible shape and location of sensors, achieving the best possible observation, in some
sense to be made precise. This problem of optimal observability, inspired by control
theoretical considerations, is intimately related to those of optimal controllability and
stabilization.

At this step, the question is too much informal and a first challenge is to settle
it properly in the mathematical world, so that the resulting problem will be both
mathematically solvable and relevant in view of practical issues.

A first obvious but important remark is that, for any problem consisting of opti-
mizing the observation, certainly the best policy consists of observing the solutions
over the whole domain Ω. This is however clearly not reasonable and in practice the
domain covered by sensors is limited, due for instance to cost considerations. From
the mathematical point of view, we model this basic limitation by considering as
the set of unknowns, the set of all possible measurable subsets ω of Ω that are of
Lebesgue measure |ω| = L|Ω|, where L ∈ (0, 1) is some fixed real number. Any such
subset represents the sensors put in Ω, and we assume that we are able to measure
the restrictions of the solutions of (1) to ω.

2. Modeling and problem formulation

Let us model the notion of best observation. For all (y0, y1) ∈ L2(Ω,C) ×
H−1(Ω,C), there exists a unique solution y ∈ C0(0, T ;L2(Ω,C))∩C1(0, T ;H−1(Ω,C))



of (1) such that y(0, ·) = y0(·) and yt(0, ·) = y1(·). Let T > 0. We say that (1) is
observable on ω in time T if there exists C > 0 such that

(2) C‖(y0, y1)‖2L2×H−1 6
∫ T

0

∫
ω

|y(t, x)|2 dxdt,

for all (y0, y1) ∈ L2(Ω,C) × H−1(Ω,C). This inequality is called an observability
inequality, and is of great importance in view of showing the well-posedness of some
inverse problems. It is well known that within the class of C∞ domains Ω, this ob-
servability property holds if the pair (ω, T ) satisfies the Geometric Control Condition
in Ω (see [4]), according to which every ray of geometrical optics that propagates in
the cavity Ω and is reflected on its boundary ∂Ω intersects ω within time T . The
observability constant CT (χω) is defined as the infimum of the quantities∫ T

0

∫
Ω
χω(x)|y(t, x)|2 dx dt
‖(y0, y1)‖2L2×H−1

over all initial data (y0, y1) ∈ L2(Ω,C) × H−1(Ω,C) \ {(0, 0)}. It is the largest
possible constant for which (2) holds. It depends both on the time T (the horizon
time of observation) and on the subset ω on which the measurements are done. Here,
the notation χω stands for the characteristic function of ω.

A priori, it might appear natural to model the problem of best observability as
that of maximizing the functional χω 7→ CT (χω) over the set

UL = {χω | ω ⊂ Ω measurable, |ω| = L|Ω|}.(3)

However, this choice of model leads to a mathematical problem that is difficult to
handle from the theoretical point of view, and more importantly, it is not relevant in
view of practical issues. Let us explain these two difficulties.

First of all, a spectral expansion of the solutions shows the emergence of crossed
terms that are difficult to treat. Indeed, let (φj)j∈IN∗ be a Hilbert basis of L2(Ω)
consisting of eigenfunctions of the Dirichlet-Laplacian operator on Ω, associated with
the negative eigenvalues (−λ2

j )j∈IN∗ . Then any solution y of (1) can be expanded as

(4) y(t, x) =

+∞∑
j=1

(
aje

iλjt + bje
−iλjt

)
φj(x),

where the coefficients aj and bj account for initial data. It follows that 2C
(W )
T (χω) is

the infimum of the quantities∫ T

0

∫
ω

∣∣∣∣∣∣
+∞∑
j=1

(
aje

iλjt + bje
−iλjt

)
φj(x)

∣∣∣∣∣∣
2

dx dt

over all possible sequences (aj) and (bj) of `2(C) such that
∑+∞
j=1(|aj |2 + |bj |2) = 1.

Then, maximizing this functional over UL appears to be very difficult from the theo-
retical point of view, due to the crossed terms

∫
ω
φjφk dx measuring the interaction

over ω between distinct eigenfunctions.



The second difficulty with this model is its lack of relevance in practice. Indeed,
the observability constant CT (χω) is deterministic and provides an account for the
worst possible case. Hence, in this sense, it is a pessimistic constant. In practice
when realizing a large number of measures, it may be expected that this worst case
does not occur so often, and one would like that the observation be optimal for
most of experiments. This leads us to consider rather an averaged version of the
observability inequality over random initial data. In few words, we define what we call
the randomized observability constant 2CT,rand(χω) as the infimum of the quantities

E
∫ T

0

∫
ω

∣∣+∞∑
j=1

(
βν1,jaje

iλjt + βν2,jbje
−iλjt

)
φj(x)

∣∣2 dx dt
over all possible sequences (aj) and (bj) of `2(C) such that

∑+∞
j=1(|aj |2 + |bj |2) = 1,

where (βν1,j)j∈IN∗ and (βν2,j)j∈IN∗ are two sequences of (for example) i.i.d. Bernoulli
random laws on a probability space (X ,A,P), and E is the expectation over the X
with respect to the probability measure P. It corresponds to an averaged version
of the observability inequality over random initial data. We refer to [19] for more
details and properties of the randomization procedure. The following result gives a
characterization of the randomized observability constant.

Theorem 1 ([19]). — For every measurable subset ω of Ω, there holds

2CT,rand(χω) = T inf
j∈IN∗

∫
ω

φj(x)2 dx.

It is interesting to note that there always holds

CT (χω) 6 CT,rand(χω),

and that the inequality is strict for instance in any of the following cases:

– in 1D, with Ω = (0, π) and Dirichlet boundary conditions, whenever T is not an
integer multiple of π;

– in multi-D, with Ω stadium-shaped, whenever ω contains an open neighborhood

of the wings (in that case there even holds C
(W )
T (χω) = 0).

Taking into account the fact that, in practice, it is expected that a large number
of measurements is to be done, we finally model the problem of best observability in
the following more relevant way:

Maximize the functional

(5) J(χω) = inf
j∈IN∗

∫
ω

φj(x)2 dx

over the set UL.

The functional J appears as a criterion giving an account for eigenfunctions con-
centration properties.

It can be noted that J can be as well recovered by considering, instead of an
averaged version of the observability inequality over random initial data, a time-
asymptotic version of it. More precisely, we claim that, if the eigenvalues of the



Dirichlet-Laplacian are simple (which is a generic property), then J(χω) is the largest
possible constant such that

C‖(y0, y1)‖2L2×H−1 6 lim
T→+∞

1

T

∫ T

0

∫
ω

|y(t, x)|2 dx dt,

for all (y0, y1) ∈ L2(Ω,C)×H−1(Ω,C) (see [19]).

3. Solving the problem

In view of solving the uniform optimal design problem

sup
χω∈UL

J(χω),

we first consider a convexified version, by considering the convex closure of the set
UL for the L∞ weak star topology, that is

UL = {a ∈ L∞(Ω, [0, 1]) |
∫

Ω

a(x) dx = L|Ω|}.

The convexified problem then consists of maximizing the (relaxed) functional

J(a) = inf
j∈IN∗

∫
Ω

a(x)φj(x)2 dx

over UL. Clearly there exists a maximizer, but since the functional J is not lower
semi-continuous it is not clear whether or not there may be a gap between the problem
(5) and its convexified version. The following result shows that, under appropriate
spectral assumptions, there is no gap. Note that µj = φ2

j dx is a probability measure,
for every integer j.

Theorem 2 (No-gap and optimal value of J [19]). — We make the following
assumptions:

– ∂Ω is Lipschitz.
– Quantum Unique Ergodicity (QUE) on the base. The whole sequence

of probability measures µj = φ2
j dx converges vaguely to the uniform measure

1
|Ω| dx.

– Uniform Lp-boundedness. There exist p ∈ (1,+∞] and A > 0 such that
‖φj‖L2p(Ω) 6 A, for every j ∈ IN∗.

Then

sup
χω∈UL

inf
j∈IN∗

∫
ω

φj(x)2 dx = L,

for every L ∈ (0, 1).

At this step, it follows from Theorems 1 and 2 that, under appropriate spectral
assumptions, the maximal possible value of CT,rand(χω) (over the set UL) is equal to
TL/2.

The question of knowing whether the supremum is reached (existence of an optimal
set) is investigated in the next section.



Remark 1. — Actually, this statement holds true as well whenever the set UL is
replaced with the set of all measurable subsets ω of Ω, of measure |ω| = L|Ω|, that are
moreover either open with a Lipschitz boundary, or open with a bounded perimeter,
or Jordan measurable (i.e., whose boundary is of measure zero).

Remark 2. — The assumptions of Theorem 2 hold true in dimension one. Indeed,
the eigenfunctions of the Dirichlet-Laplacian operator on Ω = (0, π) are given by

φj(x) =
√

2
π sin(jx), for every j ∈ IN∗. Therefore, clearly, the whole sequence (not

only a subsequence) (φ2
j )j∈IN∗ converges weakly to 1/π for the weak star topology of

L∞(0, π).
In dimension greater than one the situation is widely open. Our assumptions are

related with ergodicity properties of Ω. We recall the definition:

Quantum Ergodicity (QE) on the base property. There exists a
subsequence of the sequence of probability measures µj = φ2

j dx of density

one converging vaguely to the uniform measure 1
|Ω|dx.

Here, density one means that there exists I ⊂ IN∗ such that #{j ∈ I | j 6 N}/N
converges to 1 as N tends to +∞. It is well known that, if the domain Ω (seen as
a billiard where the geodesic flow moves at unit speed and bounces at the boundary
according to the Geometric Optics laws) is ergodic, then QE is satisfied. This is
the contents of Shnirelman’s Theorem, proved in [7, 9, 22, 28] in various contexts
(manifolds with or without boundary, with a certain regularity), and which is actually
stronger because it is established in the framework of pseudodifferential operators,
whereas, here, we are concerned with a version of the statement restricted to the
configuration space Ω (whence the wording “on the base”).

To the best of our knowledge, nothing seems to be known on the uniform Lp-
boundedness property.

Remark 3. — The assumptions made in Theorem 2 are sufficient conditions imply-
ing the no-gap, but they are however not sharp. Indeed, we have (see [19]):

1. Assume that Ω = (0, π)2 is a square of IR2, and consider the usual Hilbert basis
of eigenfunctions of 4 made of products of sine functions. Then QUE on the
base is not satisfied. However, the no-gap holds true.

2. Assume that Ω is the unit disk of IR2, and consider the usual basis of eigenfunc-
tions of 4 defined in terms of Bessel functions. Then, for every p ∈ (1,+∞],
the uniform Lp-boundedness property is not satisfied, and QUE on the base is
not satisfied as well. However, the no-gap holds true.

The result on the square could be expected, since the square is nothing else but a ten-
sorised version of the one-dimensional case. The result in the disk is more surprising,
having in mind that, among the quantum limits in the disk, one can find the Dirac
measure along the boundary which causes the well known phenomenon of whispering
galleries. This strong concentration feature could have led to the intuition that there
exists an optimal set, concentrating around the boundary; the calculations show that
it is however not the case, and the no-gap is proved to hold.



Remark 4. — We are not aware of any example in which there is a gap between the
problem (5) and its convexified version.

Our results eventually show intimate connections between domain optimization
and fine spectral properties or quantum ergodicity properties of Ω. Such a relation
was suggested in the early work [6] concerning the exponential decay properties of
dissipative wave equations.

4. Nonexistence of an optimal set and remedies

The maximum of J over UL is clearly reached (in general, in an infinite number of
ways). The question of the reachability of the supremum of J over UL, that is, the
existence of an optimal classical set, is a difficult question in general. In particular
cases it can however be addressed using harmonic analysis.

For instance in dimension one, we can prove that the supremum is reached if and
only if L = 1/2 (and there is an infinite number of optimal sets).

Other (partial) results are given in [19].
In larger dimension, the question is completely open, and we conjecture that, for

generic domains Ω and generic values of L, the supremum is not reached and hence
there does not exist any optimal set. It can however be noted that, in the two-
dimensional Euclidean square, if we restrict the search of optimal sets to Cartesian
products of 1D subsets, then the supremum is reached if and only if L ∈ {1/4, 1/2, 3/4}
(see [19]).

In view of that, it is then natural to study a finite-dimensional spectral approxi-
mation of the problem, namely:

Maximize the functional

JN (χω) = min
16j6N

∫
ω

φj(x)2 dx

over the set UL.

The existence and uniqueness of an optimal set ωN is then not difficult to prove, as
well as a Γ-convergence property of JN towards J for the weak star topology of L∞.
Moreover, the sets ωN have a finite number of connected components, expected to
increase in function of N . In particular, the sets ωN constitute a maximizing sequence
for the (convexified) problem of maximizing J over UL, and this, without geometric
or ergodicity assumptions on Ω. Of course, then, under the assumptions of Theorem
2, these sets constitute a maximizing sequence for the problem of maximizing J over
UL.

The numerical simulations of Fig. 1 show the shapes of these sets; their increasing
complexity which can be observed as N increases is in accordance with the conjecture
of the nonexistence of an optimal set maximizing J . On this figure, we have taken
Ω = (0, π)2, with the normalized eigenfunctions of the Dirichlet-Laplacian given by
φj,k(x1, x2) = 2

π sin(jx1) sin(kx2), for all (x1, x2) ∈ (0, π)2.



Figure 1. Ω = (0, π)2. Row 1: L = 0.2; row 2: L = 0.4; row 3: L = 0.6.
From left to right: N = 2 (4 eigenmodes), N = 5 (25 eigenmodes), N = 10
(100 eigenmodes), N = 20 (400 eigenmodes). The optimal domain is in

green.

It can be noted that, in the one-dimensional case, for L sufficiently small, loosely
speaking, the optimal domain ωN for N modes is the worst possible one when consid-
ering the truncated problem with N + 1 modes (spillover phenomenon; see [12, 17]).

This intrinsic instability is in some sense due to the fact that in the definition of
the spectral criterion (5) all modes have the same weight, and the same criticism
can be made on the observability inequality (2). Due to the increasing complexity
of the geometry of highfrequency eigenfunctions, it could indeed be expected that
the optimal shape and placement problem would be complicated. This leads to the
intuition that lower frequencies should be more weighted than the higher ones, and
then it seems relevant to introduce a weighted version of the observability inequality
(2), by considering the (equivalent) inequality

CT,σ(χω)
(
‖(y0, y1)‖2L2×H−1 + σ‖y0‖2H−1

)
6
∫ T

0

∫
ω

|y(t, x)|2 dx dt,

where σ > 0 is some weight. There holds CT,σ(χω) 6 CT (χω), and considering as
before an averaged version of this weighted observability inequality over random initial

data leads to 2C
(W )
T,σ,rand(χω) = TJσ(χω), where the weighted spectral criterion Jσ is



defined by

Jσ(χω) = inf
j∈IN∗

σj

∫
ω

φj(x)2 dx,

with σj = λ2
j/(σ + λ2

j ) (increasing sequence of positive real numbers converging to
1; see [19] for details). The truncated criterion Jσ,N is then defined accordingly, by
keeping only the N first modes. We then have the following result.

Theorem 3 ([19]). — Assume that the whole sequence of probability measures µj =
φ2
j (x) dx converges vaguely to the uniform measure 1

|Ω| dx (Quantum Unique Ergodic-

ity assumption), and that the sequence of eigenfunctions φj is uniformly bounded in
L∞(Ω). Then, for every L ∈ (σ1, 1), there exists N0 ∈ IN∗ such that

max
χω∈UL

Jσ(χω) = max
χω∈UL

Jσ,N (χω) 6 σ1 < L,

for every N > N0. In particular, the problem of maximizing Jσ over UL has a unique
solution χωN0 , and moreover the set ωN0 has a finite number of connected components.

Note that the conclusion of Theorem 3 holds true as well in a hypercube with
Dirichlet boundary conditions when one considers the usual Hilbert basis made of
products of sine functions, although QUE is not satisfied in such a domain (see [19]).

The theorem says that, for the problem of maximizing Jσ,N over UL, the sequence
of optimal sets ωN is stationary whenever L is large enough, and ωN0 is then the
(unique) optimal set, solution of the problem of maximizing Jσ. It can be noted that
the lower threshold in L depends on the chosen weights, and the numerical simulations
that we will provide indicate that this threshold is sharp in the sense that, if L < σ1

then the sequence of maximizing sets loses its stationarity feature.
As a conclusion, this weighted version of our spectral criterion can be viewed as

a remedy for the spillover phenomenon. Note that, of course, other more evident
remedies can be discussed, such as the search of an optimal domain among a set of
subdomains sharing nice compactness properties (such as having a uniform perimeter
or BV norm), however our aim is here to investigate domains as general as possible
(only measurable) and rather to discuss the mathematical, physical and practical
relevance of the criterion encoding the notion of optimal observability.

Let us finally note that all our results hold for wave and Schrödinger equations
on any open bounded connected subset of a Riemannian manifold (then replacing
4 with the Laplace-Beltrami operator), with various possible boundary conditions
(Dirichlet, Neumann, mixed, Robin) or no boundary conditions in case the manifold is
compact without boundary. The abstract framework and generalizations are described
in details in [19].

5. THE CASE OF PARABOLIC PDE’S

We report here on results of [21]. Instead of dealing with a general parabolic
model, for the sake of simplicity we consider the heat equation

(6) ∂ty −4y = 0, (t, x) ∈ (0, T )× Ω,



with Dirichlet boundary conditions. For any measurable subset ω of Ω, we observe
the solutions of (6) restricted to ω over the horizon of time [0, T ], that is, we consider
the observable z(t, x) = χω(x)y(t, x), where χω denotes the characteristic function of
the subset ω.

For a given measurable subset ω of Ω, the heat equation (6) is said observable on
ω in time T whenever there exists C > 0 such that

(7) C

∫
Ω

y(T, x)2 dx 6
∫ T

0

∫
ω

y(t, x)2 dx dt,

for every solution of (6) such that y(0, ·) ∈ D(Ω). It is well known that, if Ω is C2

or rectangular then this observability inequality holds (see [24]). The observability
constant CT (χω) is defined as the largest possible constant such that (7) holds, that
is the infimum of the quantities ∫ T

0

∫
ω
y(t, x)2 dx dt∫

Ω
y(T, x)2 dx

over all y(0, ·) ∈ D(Ω) \ {0}. As before, randomizing the initial data leads to the
definition of the randomized observability constant

(8) CT,rand(χω) = inf
j∈IN∗

e2λjT − 1

2λj

∫
ω

φj(x)2 dx,

with the significant difference that every integral is multiplied by the weight e2λjT−1
2λj

.

This implies completely different results. As before, instead of considering as a cri-
terion the deterministic observability constant, we find more relevant to model the
problem of best observation domain as that of maximizing the functional CT,rand(χω)
over the set UL.

Theorem 4 ([21]). — Assume that ∂Ω is piecewise C1. There exists a unique
optimal observation set ω∗, solution of the problem of maximizing the functional
CT,rand(χω) over the set UL. Moreover, we have

CT (χω∗) < CT,rand(χω∗).

Here, it is understood that the optimal set ω∗ is unique within the class of all
measurable subsets of Ω quotiented by the set of all measurable subsets of Ω of zero
measure.

Note that this existence and uniqueness result holds for every orthonormal basis of
eigenfunctions of the Dirichlet-Laplacian, but the optimal set depends on the specific
choice of the Hilbert basis.

It is remarkable that the optimal observation set ω∗ can be built from a finite-
dimensional spectral approximation, by keeping only a finite number of modes. The
precise result is the following.



Theorem 5 ([21]). — For every N ∈ IN∗, there exists a unique set ωN such that
χωN ∈ UL maximizes the functional

χω 7−→ inf
16j6N

e2λjT − 1

2λj

∫
ω

φj(x)2 dx

over UL. Moreover ωN is semi-analytic, and thus, in particular, it has a finite number
of connected components. Furthermore, the sequence of optimal sets ωN is stationary,
and there exists N0 ∈ IN∗ such that ωN = ω∗ if N > N0.

In particular, it follows that the optimal set ω∗ of Theorem 4 is semi-analytic as
well and hence has a finite number of connected components. This property is in
strong contrast with the results established for wave and Schrödinger equations. For
the latter equations, the fact that all frequencies have the same weight causes a strong
instability of the optimal sets ωN , in particular the spillover phenomenon mentioned
previously. For parabolic equations this instability phenomenon does not occur, and
the sequence of maximizers ωN is constant as soon as N is large enough, equal to ω∗.
This property is of particular interest in view of designing the best observation set ω∗

in practice.

On Figure 2, we compute the optimal domain ωN in the case Ω = (0, π)2, L = 0.2
and T = 0.05, for N = 1, . . . , 6. We can observe the expected stationarity property
of the sequence of optimal domains ωN from N = 4 on (i.e., 16 eigenmodes).

Figure 2. Optimal thermometer in the square. On this figure, Ω =
(0, π)2, L = 0.2, T = 0.05, and A0 is the Dirichlet Laplacian. Row 1,
from left to right: optimal domain ωN (in green) for N = 1, 2, 3. Row 2,
from left to right: optimal domain ωN (in green) for N = 4, 5, 6.



These results can be established as well for more general parabolic equations (see
[21]), involving in particular anomalous diffusion equations and Stokes equations. Let
us mention in particular an interesting feature occuring for the anomalous diffusion
equation

∂ty + (−4)αy = 0

in Ω, where (−4)α is some positive power of the Dirichlet-Laplacian, with arbitrary
boundary conditions implying y|∂Ω = 0. It is proved in [21] that:

– in the Euclidean square Ω = (0, π)2, when considering the usual Hilbert basis
of eigenfunctions consisting of products of sine functions, for every α > 0 there
exists a unique optimal set (as in Theorem 4), which is moreover open and
semi-analytic;

– in the Euclidean disk Ω = {x ∈ IR2 | ‖x‖ < 1}, when considering the usual
Hilbert basis of eigenfunctions parametrized in terms of Bessel functions, for
every α > 0 there exists a unique optimal measurable set ω∗ (as in Theorem
4), which is moreover open, radial, with the following additional surprising
property:
• if α > 1/2 then ω∗ consists of a finite number of concentric rings that are

at a positive distance from the boundary;
• if α < 1/2 (or if α = 1/2 and T is small enough) then ω∗ consists of an

infinite number of concentric rings accumulating at the boundary!

These surprising results show that the complexity does not only depend on the oper-
ator under consideration but also on the geometry of the domain Ω.

6. CONCLUSION

We have surveyed our results for the optimal shape and placement of sensors.
Similar results can be derived for actuators (see [18, 19, 21]), using, in particular,
duality arguments. Our main contribution is to have highlighted a precise relation
between those kinds of shape optimization problems and concentration properties of
eigenfunctions (quantum ergodicity issues). Many interesting open questions remain
to be investigated, such as:

– Generic nonexistence of an optimal set.
– Other relevant shape optimization problems avoiding the spillover phenomenon.
– Control consequences for random initial data.
– Optimal stabilization and optimal choice of dampers.
– Optimization of the deterministic observability constant.
– Discrete versions of optimization problems above.

The latter issue might be particularly important in applications both because dis-
crete models are often employed, and also because numerical approximation schemes
necessarily end up becoming of discrete nature. In particular, the following type of
questions arise as discrete versions of those we have considered in this paper in the
continuous setting. Let A be a real symmetric matrix. The problem of the optimal



choice of an observation operator B over a certain class B can be formulated as

sup
B∈B

inf

{
〈Bx, x〉
‖x‖2

| ∃λ, Ax = λx

}
.

In the context of our paper, B is the (infinite-dimensional) Gramian of observation
over ω. But the problem can be generalized in the above more abstract form, al-
lowing us in particular to formulate in an appropriate context the following open
question: under which assumptions do the optimal designs commute with discretiza-
tion schemes?
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Country-Spain (zuazua@bcamath.org).


	1. Introduction
	2. Modeling and problem formulation
	3. Solving the problem
	4. Nonexistence of an optimal set and remedies
	5. THE CASE OF PARABOLIC PDE'S
	6. CONCLUSION
	Références

