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We introduce a class of two-fluid models that complies with a few theoretical require-
ments that include : (i) hyperbolicity of the convective subset, (ii) entropy inequality, (iii)
uniqueness of jump conditions for non-viscous flows. These specifications are necessary
in order to compute relevant approximations of unsteady flow patterns. It is shown that
the Baer-Nunziato model belongs to this class of two-phase flow models, and the main
properties of the model are given, before showing a few numerical experiments.

I. Introduction

The Baer-Nunziato model (called BN model afterwards) was introduced in the early eighties in order
to provide a suitable representation of gas-particle granular flows, when compressible effects cannot be ne-
glected, and more precisely in order to tackle deflagration to detonation transition. This model has been
examined in detail since the early paper4 ; we must at least mention Kapila and co-workers (5,22,23 ), Gavri-
lyuk and Saurel,12 but also Glimm and co-workers,14,15,21 among others (see24,25,28 also). Many papers have
been devoted to the numerical simulation of this model, among which we may point out those by Saurel and
Abgrall,30 Gonthier and Powers,16 Toro,33 Andrianov and Warnecke,3 Lowe,27 Schwendemann et al,31 who
proposed various approximate Riemann solvers, but also Coquel et al,1,2 who suggested to use relaxation
schemes as a keystone for such a purpose. Some recent computational results can be found in32 and19 for
instance.

It was in fact shown in6,11 that the BN model is one among a few two-fluid models that benefit from
several essential properties. Actually, noting as usual αk (such that αl+αv = 1), Uk, ρk, mk = αkρk, Ek and
Pk the statistical void fractions, velocities, densities, partial masses, total energies and pressures respectively
(for k = l, v, where l and v subscripts respectively refer to the liquid and vapour phases), but also:

W = (αl,ml,mv,mlUl,mvUv, αlEl, αvEv)
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and starting from the open set of PDEs, for k = l, v:
∂t (αk) + Vi(W )∂x (αk) = φk(W ) ;

∂t (αkρk) + ∂x (αkρkUk) = 0 ;

∂t (αkρkUk) + ∂x
(
αkρkU

2
k

)
+ αk∂x (Pk) + (Pk − Pi(W ))∂x (αk) = Dk(W ) ;

∂t (αkEk) + ∂x (αkUk(Ek + Pk)) + Pi(W )∂t (αk) = ψk(W ) + VIDk(W ) .

(1)

where Dk(W ) and ψk(W ) enable to take drag effects and heat transfer into account, authors of the latter
reference introduced three distinct couples (Pi(W ), Vi(W )) which enable to achieve the following require-
ments:

• The two-fluid model is hyperbolic without any restriction on the space of physical states (other than
those already existing for single-phase flow models);

• Smooth solutions of the whole set of partial differential equations are governed by a meaningful entropy
inequality;

• Unique jump conditions can be exhibited within each isolated field;

• The model generates smooth solutions that comply with positivity constraints.

The first point is physically relevant, and it is indeed mandatory to compute solutions of a well-posed initial
value problem, when tracking unsteady flow patterns. The second point is not only desirable from a physical
point of view, but it also introduces a nice tool in order to control smooth but also shock solutions. The
third one introduces an important difference with other classical two-fluid models, for instance those that
assume a local instantaneous pressure equilibrium between phases: actually, this third property will also
guarantee that (stable enough) schemes will converge towards the same solution when refining the mesh,
which is of course implicitly assumed by users... We emphasize that these specifications have also been used
in order to model granular flows and flows in porous media (see10,13,17). The BN model is suitable for many
water-vapour flows, for instance for standard computations in the primary circuit of nuclear power reactors,
since the liquid flow is expected to contain a very small amount of vapour bubbles in standard conditions.
It is also relevant for some applications where the vapour phase is dominant and when few liquid droplets
are present in the field. In the first case, the closure laws for the couple (Pi(W ), Vi(W )) should be (Pl, Uv),
and in the second case one should use (Pv, Ul) reversely.

However, there are some applications where the BN model can hardly be used. This may happen in at
least two distinct configurations:

• when the flow contains different regions in terms of topology at the beginning of the computation: this
may happen in many practical cases;

• when some change occurs in the flow during the time interval which is of interest: this is the case
for instance when heating a liquid flow through a wall boundary (this will correspond to the so-called
boiling crisis in the nuclear safety framework).

These situations have led to the present proposition, which aims at providing a general framework which:

• complies with the four above-mentionned criteria;

• contains the BN model.

We present in the sequel this general framework.18 Next we detail the main properties of the two-fluid model.
We eventually discuss a few numerical experiments that illustrate the whole approach.
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II. Governing set of equations of the two-fluid model

The new framework that is proposed in this paper introduces a non-dimensional scalar variable β that
characterizes the flow regime. This variable is lying in the interval [0, 1]. Setting mk = αkρk, the governing
set of equations reads:

∂t (β) +W(W,β)∂x (β) = Tβ(W,β) ;

∂t (αk) + Vi(W,β)∂x (αk) = φk(W ) ;

∂t (mk) + ∂x (mkUk) = 0 ;

∂t (mkUk) + ∂x
(
mkU

2
k

)
+ αk∂x (Pk) + (Pk − Pi(W,β))∂x (αk) = Dk(W ) ;

∂t (αkEk) + ∂x (αkUk(Ek + Pk)) + Pi(W,β)∂t (αk) = ψk(W ) + V I(W )Dk(W ) .

(2)

for k = l, v, noting Ek = ρk(ek(Pk, ρk) +U2
k/2) the total energy within phase k, and assuming some relevant

equation of state for ek(Pk, ρk). Terms on the right-hand side must follow the standard rule:∑
k=l,v

ψk(W ) = 0 ;
∑
k=l,v

Dk(W ) = 0 ;
∑
k=l,v

φk(W ) = 0 . (3)

which means that these contributions account for interfacial transfer terms. The derivation of the governing
open equation for αk can be found in18 ; the reader is also refered to20 and12 for that particular topic. Source
terms φk(W ), Dk(W ), ψk(W ) will be detailed in the next section, and we note here:

V I(W ) = (Ul + Uv)/2.

The so-called interface velocity Vi(W,β) will be defined according to:

Vi(W,β) = µ(W,β)Ul + (1− µ(W,β))Uv, with µ ∈ [0, 1]. (4)

A straightforward consequence is that U1(x, t) = U2(x, t) = U implies Vi(x, t) = U locally. We will also
assume that the following holds:

Tβ(W,β = 0) = Tβ(W,β = 1) = Tβ(W,β = 1/2) = 0,

whatever W would be.

A. Closure laws for Pi and interfacial transfer terms

If we note ck and Sk the sound velocity and the specific entropy within phase k, we may introduce the
entropy-entropy flux couple (S, fS) as follows :

S = mlSl +mvSv; fS = mlSlUl +mvSvUv. (5)

We also introduce temperatures Tk such that :

1/Tk = (∂Pk
(Sk(Pk, ρk)))(∂Pk

(ek(Pk, ρk)))−1, (6)

for k = l, v.

Using these notations, we will assume that closure laws for φl, ψl, Dl comply with the conditions:
0 ≤ ψl(Tv − Tl) ;

0 ≤ φl(Pl − Pv) ;

0 ≤ Dl(Uv − Ul) .
(7)

We keep closure laws for ψl and Dl that are in agreement with those given in the standard literature,20

setting: {
ψl = mlmv(Cv)v(Cv)l

ml(Cv)l+mv(Cv)v
(Tv − Tl)/τT ;

Dl = mlmv

ml+mv
(Uv − Ul)/τU .

(8)
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where τU , τT respectively denote velocity and temperature relaxation time scales. The closure law for φl is
assumed to be non zero when Pv 6= Pl. A possible choice is:

φl = αlαv(Pl − Pv)/Π0/τP ,

where τP represents the pressure relaxation time scale (see4,12 for instance), and Π0 is a pressure reference.

Turning then to the interfacial pressure Pi(W,β), we introduce:

Pi(W,β) = ((1− µ(W,β))Pl/Tl + µ(W,β)Pv/Tv)/((1− µ(W,β))/Tl + µ(W,β)/Tv) (9)

Actually, this closure law is mandatory in order to obtain a physically relevant entropy inequality. Hence
the interface pressure is totally determined as soon as the interface velocity is prescribed. We recall that the
same procedure applies when modelling three-phase flows (see17). Obviously, the local balance Pv = Pl = P
will imply Pi = P .

B. Closure laws for Vi and W

We define : W(W,β) =W0 or alternatively , W(W,β) =W1 where:

W0 = 0 and: W1 = (mlUl +mvUv)/(ml +mv), (10)

and we introduce the interfacial velocity Vi such that µ in (4) reads:

µ(β,W ) =
mlβ

mlβ +mv(1− β)
. (11)

We note that the specific value β = 0 (respectively β = 1) corresponds to the BN model, since the associated
values of the interface pressure and interface velocity become Pi = Pl and Vi = Uv (respectively Pi = Pv and
Vi = Ul), owing to (9). The BN model is appealing for many scientists, since it guarantees that the interface
velocity corresponds to the velocity of the vanishing phase, and meanwhile it complies with the expected
idea that the interface presssure should be driven by the most present phase. Moreover, the value β = 1/2
was already pointed out in;11 in that very special case Vi and W1 identify. Obviously, when considering an
initial condition such that β(x, t = 0) = 0 (respectively β(x, t = 0) = 1), an obvious solution of the first
equation in (2) is simply : β(x, t) = 0 (respectively β(x, t) = 1). A similar remark holds for β = 1/2. Within
our nuclear framework, a typical situation where the initial condition may involve two seperate regions ΩA
and ΩB with distinct values of β, typically β(x ∈ ΩA, 0) = 0 on the one side and β(x ∈ ΩB , 0) = 1 on the
other side, is the LOCA situation (Loss Of Coolant Accident). The governing set of equations is closed now,
assuming that relaxation time scales τU , τP , τT and Tβ(W,β) are given.

III. Main properties of the two-fluid model

We provide now the main properties of the two-fluid model:

Proposition 1:

Smooth solutions of (2) comply with the following entropy inequality:

∂t (S) + ∂x (fS) = Σk(ψk + (V I − Uk)Dk − φk(Pi − Pk))/Tk ≥ 0 . (12)

The proof is straightforward (see18). This entropy inequality enables to select physically relevant shocks in
the non-viscous case. We may now give the following main result:

Proposition 2:

• System (2) is hyperbolic since it admits real eigenvalues:

λ1 = Vi, λ2 =W, λ3 = Ul, λ4 = Ul − cl, λ5 = Ul + cl, λ6 = Uv, λ7 = Uv − cv, λ8 = Uv + cv.
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and associated right eigenvectors span the whole space R8 if and only if:

|Vi − Uk| 6= ck and: |W − Uk| 6= ck

for k = l, v. Otherwise, the resonance phenomenon occurs in the solution.

• Waves associated with λ1, λ2, λ3, λ6 are linearly degenerate and those corresponding to λ4, λ5, λ7, λ8
are genuinely nonlinear.

The most difficult part in the proof corresponds to the first claim in the second item (see18).

Proposition 3:

Field by field jump conditions are uniquely defined in system (2), unless resonance occurs (if a GNL field
overlaps with a LD field).

We note that for nuclear applications in pressurised water reactors, the resonance phenomenon is very
unlikely to appear. However, even in that framework, we emphasize that shock waves may occur, due
for instance to sudden high heating fluxes through wall boundaries, or due to modifications of inlet/outlet
boundary conditions. Thus the third requirement is again relevant for these applications. Jump conditions
actually coincide with single-phase jump conditions within each phase, on each side of the void fraction
coupling wave associated with λ = Vi.

When focusing on solutions of the one-dimensional Riemann problem associated with the homoge-
neous part of (2), it appears that the contact discontinuity associated with Vi separates both regions
ΩL = {(x, t)/x/t < Vi} where αl(x, t) = (αl)L, and ΩR = {(x, t)/x/t > Vi} where αl(x, t) = (αl)R. In
each subdomain ΩL,R, the jump relations are:

−σ[ρk]ba + [ρkUk]ba = 0

−σ[ρkUk]ba + [ρkU
2
k + Pk]ba = 0

−σ[Ek]ba + [Uk(Ek + Pk)]ba = 0

(13)

if σ denotes the speed of the travelling shock wave separating states a and b, for k = l, v. Note also that the
solution β(x, t) in the Riemann problem is given by β(x, t) = (β)L in the subdomain ωL = {(x, t)/x/t <W},
and : β(x, t) = (β)R in the subdomain ωR = {(x, t)/x/t > W}. Eventually, noting D the whole physical
domain, we get the next expected result:

Proposition 4:

Assuming positive inlet boundary conditions and initial conditions for αl,v and ml,v, then smooth solutions
of system (2) are such that void fractions αl,v and partial masses ml,v remain positive over D × [0, T ].

IV. Numerical experiments

We provide here a numerical experiment that illustrates the behaviour of the two-fluid model. Numer-
ical schemes are those that are used in.19 We focus here on the particular choice W(W,β) = W0, and
Tβ(W,β) = −β(β2 − 3β/2 + 1/2)/τβ(W ) and we consider a very difficult test case, that is very unlikely to
happen in our framework, since it includes the resonance phenomenon.

We consider a 1D computational domain D = [0, 1], and set the initial discontinuity at the interface
x0 = 0.5. The initial values of the function β are: β(x < x0, t = 0) = 0, and β(x > x0, t = 0) = 1.
Thus it means that we assume that the flow on the left side (or left code) x < 0.5 is modeled with the BN
model corresponding to (Pi, Ui) = (Pl, Uv), and that we have retained the couple (Pi, Ui) = (Pv, Ul) on its
right-hand side. The initial conditions are the following:
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Initial left state L Initial right state R

β 0 1

αl 0.98 0.02

αv 0.02 0.98

ρl 1 0.125

ρv 4 0.5

Ul 0.

Uv 0.

Pl 105 104

Pv 4× 105 4× 104

Initial condition in test case.

Perfect gas EOS have been considered within each phase: Pl,v = (γl,v−1)ρl,vel,v, with γv = 1.2 and γl = 1.2.
The flow is at rest at the beginning of the computation and time scales τU , τP , τT have been set to 1, thus
the solution is very close to the solution of a Riemann problem corresponding to : τU = τP = τT = +∞,
since the final time of the computation is T = 10−3. We use two regular meshes with 104 and 4 × 104

cells respectively. Two shock waves (one within each phase) are created and move to the right side of the
interface. The liquid (resp. vapour) rarefaction wave is subsonic (resp. supersonic, see figure 1).

0 0,2 0,4 0,6 0,8 1
0

50

100

150

200

0 0,2 0,4 0,6 0,8 1
0

20000

40000
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80000

1e+05

0 0,2 0,4 0,6 0,8 1
0

200

400
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800

0 0,2 0,4 0,6 0,8 1
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4e+05

Figure 1. Velocity (left) and pressure (right) profiles for the vapour phase (down) and liquid phase (top)
respectively. The two regular meshes contain 10000 (dashed line) and 40000 (plain line) cells.

Conclusion

The general class of two-fluid models that has been introduced herein may in fact be viewed as a
symetrized dynamical version of the BN model. It contains a scalar function β which specifies the flow
regime. The main properties of the two-fluid model have been given, and more details can be found in the
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Figure 2. Void fraction profiles.

reference;18 some first numerical experiments have been achieved, but there is now of course a need for an
extensive investigation and validation that requires a great amount of work. Among others, the fractional
step method introduced in7 may be used for computational purposes, and we refer to this reference which
gives numerical rates of convergence obtained while focusing on some particular Riemann problems. This
method takes advantage of the LD structure of the 1 and 2-waves, and it enables to retrieve expected rates
of convergence.

We expect the model to be able to handle such flows as those encountered in the boiling crisis and in
some other specific situations occuring in the framework of nuclear safety analysis. We also refer to the
paper19 , that presents some preliminary results of the flow along a heated wall, which have been obtained
in a 2D framework with the BN model.
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