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Abstract. The dynamics of defects in a pattern of traveling inclined rolls has been investigated. Two
regimes were identified in the neighborhood of defects: a diffusive regime, with a negative phase diffusion
coefficient, and a coalescence regime in which the phase gradient diverges in time following a power law
behavior. The observed periodic nucleation of defects is related to the frequency inhomogeneity induced by
the disymmetry of the wave amplitude. Amplitude holes have been observed in the secondary modulated
pattern.

PACS. 47.20.-k Hydrodynamic stability – 47.20.Lz Secondary instability – 47.54.+r Pattern selection;
pattern formation

1 Introduction

The study of spatially organized patterns in nonlinear dis-
sipative extended systems has drawn much attention in
recent years and has led to a better understanding of the
transition to weak chaos in these systems. When a control
parameter, which is a measure of an external constraint
imposed on the system, is varied, the system is driven
away far from equilibrium and a pattern emerges from the
homogeneous state. The resulting spatially organized pat-
tern may be either stationary or periodic in time. Spatially
organized patterns have been observed in many systems
ranging from hydrodynamic flows [1], nonlinear optics [2],
liquid crystals, materials [3] to chemical reactions [4].

Some of the striking features of spatio-temporal pat-
terns in extended systems are the emergence of defects
due to long wavelength modulations and the occurrence
of spatio-temporal chaos near the onset of the first tran-
sition. It is now commonly admitted that the dynamics
of traveling waves patterns observed via a supercritical
bifurcation in extended systems can be well described by
the complex Ginzburg-Landau equation [1,5,6] commonly
referred to as CGLE. A thourough phase diagram of dif-
ferent states from CGLE has been identified in numerical
simulations [7–9]: stable waves, phase turbulence, defect
turbulence, bichaotic regime and intermittent regime. The
defect turbulence is characterized by the occurrence of de-
fects (points of the pattern where the amplitude vanishes
and phase is undefined). In the phase turbulence, the am-
plitude does not vanish but the integral mean wavenumber
(also called winding number) is constant. The bichaotic
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regime is characterized by a mixed state of phase and
defect turbulence. In the intermittent regime, defect
turbulence and stable waves or phase turbulence appear
alternatively at irregular time intervals and at different
pattern positions. Away from the Benjamin-Feir line in
the unstable regime, the complex Ginzburg-Landau equa-
tion admits amplitude hole solutions identified first by
Nozaki-Bekki [7,10–12] and recently by van Hecke [13].

The topological or point defects have been reported in
many experiments for example in binary mixture convec-
tion [14,15] and in the Taylor-Dean system [16]. Ampli-
tude holes have been observed in recent experiments in
convection in annulus [7,17–19].

The present paper is concerned with experimental re-
sults in which both defects and amplitude holes have been
observed in patterns arizing in the Taylor-Dean system.
The latter consists of the flow partially filling the gap be-
tween two horizontal coaxial cylinders with differential ro-
tation. The bifurcations from the base flow state give rise
to either traveling rolls or stationnary rolls depending on
the rotation ratio between the cylinders [20]. When the
outer cylinder is fixed, the primary state of the pattern
arises from the base flow via a supercritical bifurcation
and consists of traveling inclined rolls characterized by a
well-defined wavenumber q = 4.8 and a drifting velocity
that increases with the control parameter [16,20]. This
transition is related to the broken reflection symmetry of
the base state flow. The pattern pertains longwavelength
modulations that induce a Benjamin-Feir instability in
form of roll collisions. We have attempted a thourough
characterization of these defects in the primary pattern.
The secondary pattern is a spatio-temporally modulated
pattern which consists of traveling triplets (group of 3
rolls) that can collide each other giving rise to defects and
amplitude holes.
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Fig. 1. Cross section of the experimental Taylor-Dean system.

The paper is organized as follows: in the second
section we describe the experimental setup, in Section 3
we present results that will be discussed in Section 4 while
Section 5 contains concluding remarks.

2 Description of the experiment

2.1 Experimental system

The Taylor-Dean configuration used in our experiments
consists of two coaxial horizontal cylinders with a gap
partially filled with water [21,22]. The inner cylinder is
made of black anodized aluminium (for a better visual-
ization contrast) with a radius a = 4.46 cm. The outer
cylinder is made of glass with a radius b = 5.08 cm. The
gap between the cylinders is d = b − a = 0.62 cm over a
length L = 55 cm. Hence, the system has a radius ratio
η = a

b = 0.878, and an aspect ratio Γ = L
d = 90. The

filling level angle θf is chosen as θf/2π = 0.7 (Fig. 1).
The inner cylinder is rotated by a DC servomotor

which is driven by a PC, while the outer cylinder remains
fixed in the laboratory frame. Thus, the only control pa-
rameter is the Reynolds number relative to the inner ro-
tating cylinder defined as Re = Ωad/ν, where Ω is the
cylinder angular frequency and ν the kinematic viscos-
ity of the fluid. The precision on the geometric dimen-
sions and on the rotation frequency is 0.5%. Therefore,
the main error on the control parameter Re comes from
the viscosity fluctuations with temperature. During exper-
iments, the temperature has been measured and we esti-
mated the relative uncertainty on the control parameter
to be ∆Re/Re ∼ 1%.

Teflon rings are attached at the end of the inner sur-
face of the fixed outer cylinder in order to reduce the ef-
fects of Ekman recirculation. The aspect ratio Γ = 90 is
large enough to consider the experimental system as an
extended system [5], actually more than 70 rolls are ob-
served in the system.

We have used distilled water with 2% Kalliroscope
AQ1000 for the visualization. With a light from a fluo-
rescent tube, the flow was visualized on the front side. To
obtain spatial information about the roll dynamics, a lin-
ear 1024-pixel charge coupled device (CCD) array records
the reflected light intensity distribution I(x) from a line
parallel to the axis of the cylinders, 1 cm below the free
surface. The recorded length is from 30 to 40 cm in the
central part of the system, corresponding to a spatial res-
olution of 25 to 34 pixels /cm. The intensity is sampled

in 256 values, displayed in grey levels at regular time in-
tervals along time axis to produce space-time diagrams
I(x, t) of the pattern. For a good resolution of frequency
spectra, acquisitions of 8192 time steps of 0.2 s were used.
Wavenumber spectra have been averaged in time in order
to improve their resolution. The data are processed on a
UNIX workstation.

Times, lengths and velocities are scaled respectively by
the radial diffusion time d2/ν ∼ 40 s, the gap size d and
the radial diffusion velocity ν/d ∼ 0.016 cm/s. All quan-
tities used in this paper are dimensionless, unless stated
differently. In experiments, in order to avoid spurious tran-
sient states, we waited 15 minutes between each variation
of the control parameter, from 260 up to 340 by a step
∆Re = 2, while 30 minutes were required before each data
acquisition.

2.2 Demodulation of the spatio-temporal signals

In order to quantify spatial and temporal variations of
wavenumbers and frequencies, we have performed the de-
modulation technique by Hilbert Transform [7,18] of the
signal with respect to time. The real signal I(x, t) is trans-
formed in its complex equivalent expression as follows:

I(x, t) = <{|A(x, t)| eiΦ(x,t)} (1)

where < stands for the real part. In practice, the origi-
nal signal I(x, t) is first band-pass filtered in space with
relatively large band (elimination of large-scale lighting
inhomogeneities and small-scale noise). Then, a temporal
Fast Fourier Transform is computed, and components of
negative frequencies are set to zero with a smooth filter.
The latter consists in a band-pass filter with a band care-
fully adapted to each pattern, centered on the rolls fre-
quency. Afterwards, the inverse Fourier Transform of the
truncated signal in the spectral space gives the amplitude
|A(x, t)| and the total phase Φ(x, t). The wavenumbers and
frequencies are determined as the spatial and temporal
phase gradients: q(x, t) = ∂Φ/∂x, ω(x, t) = 2πf = ∂Φ/∂t.

3 Results

3.1 Sources and defects in the primary pattern

The first instability of the base flow is supercritical and
occurs at the critical value of the control parameter
Rec = 260 ± 2 giving rise to a pattern of traveling in-
clined rolls: no hysteresis has been observed when ramp-
ing up and down. The rolls intensity vanishes slightly be-
fore the ends, suggesting that the roll pattern has soft
boundaries, there is no reflection from the boundaries.
This pattern has a wavenumber qc = 4.8± 0.1 and a fre-
quency fc = 18.90± 0.05 corresponding to a drift velocity
vd = 24.7 [21,22]. This space and time periodic pattern
exhibits two kinds of defects: sources separating rolls trav-
eling in opposite directions and instantaneous defects due
to collisions between rolls (Fig. 2).
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Fig. 2. a) Space-time diagram of the primary pattern at Re = 273 with a source at xs = 24.9 and b) time-averaged amplitude
profile of right (solid line) and left (dashed line) traveling waves.

3.1.1 Sources

When rolls appear, the rising pattern spontaneously
breaks the reflection symmetry of the base state, and in-
clined rolls travel either to the right or to the left. Hence,
there may exist sub-patterns traveling in opposite direc-
tions separated by sources or sinks. The number of these
defects is very sensitive to the ramping rate: for a slow
ramping rate (dRe/dt < 0.1), the pattern has always a sin-
gle propagation direction at threshold, but a fast change of
Re induces many sources and sinks. Moreover, even for a
slow ramping rate, a source appears in the pattern (Figs. 2
and 3) for higher values of the control parameter i.e. for
ε = (Re−Rec)/Rec ≥ 0.05. The source appears randomly
in the pattern at any position which may change when the
control parameter is varied abruptly. In a given run, with
a slow ramping rate, the source fluctuates around a stable
position.

The spatial profiles of the amplitude, wavenumber and
frequency are stationary: in fact, their variations are less
than 1% on the time scale of one hour (∼ 100d2/ν). We
have determined the time averaged profiles of the ampli-
tude, wavenumber and frequency of right and left traveling

rolls (Fig. 3). The intersection of amplitude profiles allows
us to define the position of the source core. The fluctua-
tions observed on the amplitude profiles are due to inho-
mogeneous distribution of Kalliroscope flakes, and they
are not relevant of the pattern amplitude. There is no sig-
nificant difference between wavenumber of left and right
traveling pattern, but the fluctuations of the wavenum-
ber are within δq = 0.25. The frequency profile on each
side of the source is flat but there is a frequency shift
δf = fr−fl between left and right traveling rolls. Rolls in
the pattern with shorter axial extension drift faster than
those within larger extension. The frequency shift depends
on the source position in the pattern and vanishes when
the source is in the center of the system, it might be due to
a mean flow in the system. The source core consists of two
counter-propagating waves with comparable amplitudes.

3.1.2 Defects

The defects spontaneously nucleate in the pattern in the
range Re ∈ [261; 288] and consist of roll collisions leading
to annihilation of one roll. Creation of roll is a rare event,
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Fig. 3. a) Space-time diagram of the primary pattern at Re = 289 with a source at xs = 9.7 (the pattern is shown over a time
extension of 2.3) and time-averaged profile of the amplitude (b), the wavenumber (c) and the frequency (d) for right (solid line)
and left (dashed line) traveling waves.
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mostly observed after a sharp ramping in the control pa-
rameter, they are not studied here.

We have characterized the neighborhood of a defect
(Figs. 4 and 5). Compression of the rolls accumulates, re-
sulting in a slowly growing bump in the phase gradient
profile and a slow decrease of the amplitude. This mech-
anism is amplified, and leads to a dramatic increase of a
phase gradient peak and a sharp drop of the amplitude.
The pattern cannot sustain such constraints and loses a
roll (defect). In the defect core, the amplitude vanishes
and the phase of the pattern jumps by 2π resulting in the
discontinuity of spatial and temporal phase gradients. Af-
ter the loss of the roll, the remaining rolls are expanded
and there is a sharp dip of the phase gradient, which re-
laxes rapidly, while the amplitude increases. The source
or edges feed the pattern with new rolls and the previous
mechanism can be repeated.

We have observed that, the defects occur periodically
in time at the same distance from the source within 2%
(Figs. 6 and 7) for a given run. The distance at which the
defects occur depends on the separation length betwen the
source and the edge. The time between two consecutive
defects at the same location is constant within 5% for a
given pattern. The time averaged roll frequency exhibits
a discontinuity at the defect location, the difference ∆f
depends on the control parameter Re (Figs. 6b, c or 7b,
c), this is different from δf , observed between right and
left traveling rolls. No similar discontinuous behavior was
observed for the average wavenumber.

For each defect location, the frequency discontinuity
∆f gives the number of defects per time unity. We have
verified experimentally that ∆f is the inverse of defects
period. In the range Re ∈ [265; 285], two distinct defects
locations can be observed in the system, each one associ-
ated with a frequency discontinuity (Fig. 7). In this case,
we consider ∆f of the whole pattern as the sum of the
discontinuities around each defect location.

The presence of defects destroys the correlation of the
pattern: in fact, the correlation length fluctuates in time
while the correlation time varies from a point to the other
and is minimum at defect locations (Fig. 8).

3.2 Amplitude holes in the secondary modulated
pattern

For Re > Rem = 292 ± 2, a secondary instability of the
traveling roll pattern occurs, yielding a spatio-temporal
modulation of the pattern with a wavelength of approxi-
mately three rolls. This supercritical transition and the
resulting triplet pattern have been extensively studied
in [22]. In particular, it has been mentioned that, for
Re > Re? ≈ 308, the triplets exhibit defects (collisions
of triplets with loss of one triplet). The triplet collisions
are very similar to the primary roll collisions, and some-
times coexist with the latter. Figure 9 shows a collision
of triplets, followed by a strong distorsion of the pattern.
The demodulation of the reflected light intensity signal,
with filters centered around the roll mode (q1, ω1) gives
access to the local wavenumber of the rolls, which is the

traveling wave of the triplet pattern, resulting from the
roll wavenumber oscillation [22]. Demodulation of this roll
wavenumber signal, with filters centered around the triplet
mode (q2, ω2) yields the local properties of the triplets, i.e.
amplitude, spatial and temporal phase gradients (Figs. 10
and 11). The amplitude |A2(x, t)| of roll wavenumber sig-
nal represents the triplets amplitude. It shows a strong dip
propagating in the pattern associated with a phase jump;
this localized object is called an amplitude hole. The am-
plitude holes appear spontaneously in the triplet pattern
and relax with life-time varying from 0.5 to 2.5. The holes
propagate with velocity vh ≈ 10, in a direction opposite to
that of triplets [21]. We have observed that the number of
defects and holes increases with the control parameter al-
though no quantitative data are available. The appearance
of defects and holes in the triplet pattern is responsible for
a sharp increase of the phase noise in the system [22].

4 Discussion

4.1 Pattern envelope

The traveling roll pattern observed in the Taylor-Dean
system occurs via a supercritical Hopf bifurcation and can
be represented by the following signal:

u(t, x) = A(t, x)ei(ωrt−qx) +B(t, x)ei(ωlt+qx) + c.c. (2)

where c.c. stands for complex conjugate. The amplitudes
A(t, x) and B(t, x) of the right and left traveling waves
are described by two coupled complex Ginzburg-Landau
equations [1,5]:

τ0

[
∂A

∂t
+ v

∂A

∂x

]
= ε(1 + ic0)A+ ξ2

0(1 + ic1)
∂2A

∂x2

−g(1 + ic2)|A|2A− δ(1 + ic3)|B|2A (3)

τ0

[
∂B

∂t
− v∂B

∂x

]
= ε(1 + ic0)B + ξ2

0(1 + ic1)
∂2B

∂x2

−g(1 + ic2)|B|2B − δ(1 + ic3)|A|2B (4)

where τ0 is the characteristic time of the roll pattern, ε is
the reduced control parameter of the bifurcation defined
previously, v is the group velocity of traveling rolls, and
ξ0 is the coherence length of the pattern. The coefficients
ci (i = 0, 1, 2, 3) are related to the linear (i = 0, 1) and non-
linear (i = 2, 3) dispersion of waves. Since the bifurcation
is supercritical, the saturation constant g > 0. The con-
stant δ describes the competition between left and right
traveling waves: if 0 < δ << g, the two waves can exist on
the pattern and there is a tendency to generate a stand-
ing wave, while for δ >> g, a local development of a wave
cancels the other at the same location and one obtains a
propagating wave in one direction. In our case, we have
observed rolls traveling to the left and to the right sep-
arated by a source, we therefore have the situation with
δ >> g.

The amplitude vanishes at the edges of the pattern
and no reflection has been observed, so the boundary con-
ditions for the equation are [A(x = 0) = A(x = L) = 0,
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Fig. 4. Space-time diagram of the primary pattern (a), the wave amplitude (b in arbitrary units), wavenumber (c) and frequency
(d) around a point defect at Re = 283. The pattern is shown over a time extension of 1.9 and a spatial extension of 13.

B(x = 0) = B(x = L) = 0]. Therefore, we will consider
each edge as a sink1. In the source, the amplitude of each
wave decreases down to zero. From the amplitude profiles,
we have determined a coherence length for each amplitude
drop or growth near the edges and the source. For this pur-
pose, we have represented the amplitude of traveling roll
pattern without point defects as a combination of hyper-
bolic tangent functions (which are particular solutions of
the stationary Ginzburg-Landau equation) [23,24]:

A(x) =
1
4
A0

(
1− tanh

x− xer√
2ξer

)(
1 + tanh

x− xsr√
2ξsr

)
(5)

1 A more precise definition of source and sink is re-
lated to the sign of the nonlinear group velocity of
perturbations [28,29].

B(x) =
1
4
B0

(
1 + tanh

x− xel√
2ξel

)(
1− tanh

x− xsl√
2ξsl

)
(6)

where subscripts l and r refer to left and right respectively,
e and s refer to edge and source. The values of the coher-
ence length ξ and positions x given in Table 1 for few
values of the control parameter Re have been obtained by
fitting the amplitude profiles to the functions (5) and (6).
From this table, we have found that the values of coher-
ence length for both edges are approximately the same
and so are those for the two waves in the source, more-
over, they decrease with the control parameter Re. The
coherence length ξs defines the size of the source and in-
dicates the range of the interaction between the right and
left traveling waves. The measured values of ξ indicate a
disymmetry between the source and the sink (edge).
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Fig. 5. Spatial profile of the amplitude (a and c) and the wavenumber (b and d) at Re = 283 before a defect (t− tc = 0.4) and
at the instant of a defect (t− tc → 0−), where tc is the date of the defect.

Table 1. Coherence length near source and sinks (edges).

Re left right
edge source source edge

xle ξle xls ξls xrs ξrs xre ξre
270 14.4 1.41 25.9 2.40 31.2 2.62 71.7 1.41
273 8.0 1.48 23.5 1.70 26.1 1.84 70.0 1.63
279 6.6 1.13 26.7 1.56 25.5 1.48 75.0 1.06

From the evolution of the coherence lengths, we can
determine the associated characteristic length ξ0, defined
by ξ = ξ0ε

− 1
2 : near the edges (sinks), ξ0e = 0.28 ± 0.04

and near the source ξ0s = 0.39 ± 0.05. The effect of the
pattern edges (sinks) is strong for small values and de-
creases for higher values of the control parameter ε, lead-
ing to a stable pattern with respect to longwavelength
modulations. Hence no defect is observed for ε ' 0.1. The

coherence length of the source is larger than that of
the edge (“sink”). Similar results have been reported in
experimental study of traveling waves induced by a hot
wire below a free surface of a liquid [25] although with
a different scaling (ξ ∼ ε−1). Our results and those of
Vince-Dubois are in a qualitatively good agreement with
theoretical studies of traveling waves in one-dimensional
system. In fact, these studies have indicated that sources
are wider than sinks and that the presence of sources and
sinks induces a wavenumber selection in the bulk of the
pattern [26,27,29].

4.2 Defects

In the experimental run described in this paper, the
source was stabilized near the left edge, and defects
occur in the right traveling roll wave (with larger
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Fig. 6. Space-time diagram of the wavenumber (a) and frequency (b) for the right traveling wave at Re = 283. The pattern
is shown over a time extension of 18.1 and a spatial extension of 46.3.; c) Time-averaged frequency profile for right (solid line)
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Fig. 7. Space-time diagram of the wavenumber (a) and frequency (b) for the right traveling wave at Re = 276. The pattern is
shown over a time extension of 18.1 and a spatial extension of 46.3. c) time-averaged frequency profile for right (solid line) and
left (dashed line) traveling waves. A source is present at x = 24.1 and point defects at x = 47.8 and x = 63.9.
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Fig. 9. Space-time diagram of the pattern at Re = 312.

extension). Therefore, far from the source, the descrip-
tion of the defects dynamics can be done in the frame-
work of one Ginzburg-Landau equation for the amplitude
A, setting B = 0 in (3). For pattern in extended system,
the complex Ginzburg-Landau equation possesses linearly
stable states (plane waves) and “turbulence ” states sepa-
rated by the Benjamin-Feir line 1 + c1c2 = 0 in the plane
(c1, c2). Dynamical states found in the region 1 + c1c2 < 0
are classified into defect turbulence, phase turbulence,
bichaotic and intermittent states [9]. We may comment

our results in the light of recent numerical solutions of
this equation [8,9].

A defect occurs as a collision of two rolls and is due to
an accumulation of phase gradient due to longwavelength
modulations in the pattern. The vanishing amplitude and
the phase jump of 2π around the defect are the charac-
teristics of topological defects observed in most of spatio-
temporal patterns in extended systems. They are singular
solutions of the complex Ginzburg-Landau equation [7].
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Fig. 10. a) Space-time diagram of the roll wavenumber at Re = 312. Space-time diagrams of the triplet amplitude (b),
wavenumber (c) and frequency (d) at Re = 312.

4.2.1 Defects periodicity

The regularity observed in defects nucleation is related
to the pattern frequency inhomogeneity. In fact, we have
seen that the amplitude profiles are not symmetric for each
wave and that the coherence lengths in the source and sink
are different. This disymmetry imposes a frequency differ-
ence near the source and that near a sink according to the
relation [12] ω = 1

τ0
[ε(c0− c2)− ξ2

0Q
2(c1− c2)] where Q is

the wavenumber of longwavelength modulations. Hence,
the frequency difference acts as a forcing of defects nucle-
ation, and fixes the time between two consecutive defects.

This time has a lower bound imposed by the propagation
time of roll in the pattern Tmin = L/v = 2, where L is the
sub-pattern length (spatial range of the frequency gradi-
ent) and v is the roll drift velocity. If ∆f is higher than
1/Tmin, then the pattern produces two positions of defects
in order to adapt to this constraint. The frequency profile
has then two steps corresponding to each defect position
(Fig. 7). If L is short, the frequency remains homogeneous
in space and no collision can occur, this is the case in the
left subpattern (Figs. 2 and 3).

The measure of the phase instability of the whole pat-
tern∆f is a function of the control parameter Re (Fig. 12):



152 The European Physical Journal B

a)

|A2|

0

0.2

0.4

40 50 60

 

x

b)

q̃2

-4

-2

0

40 50 60

 

x

c)

f̃2

0

2

4

40 50 60

 

x

Fig. 11. Spatial profile of the triplet amplitude (a), wavenumber (b) and frequency (c) around an amplitude hole at Re = 312.

it is minimum at the boundaries of the phase instability
domain, and maximum for Re ∼ 270, with approximately
1 defect per time unity.

4.2.2 Diffusive regime and defect core

We are interested in the neighborhood of defect locations
before and after roll collision. We may distinguish two
regimes in the nucleation of a defect: a diffusive regime,
for 2T/3 < tc − t < 0.3, where the phase gradient
remains smooth and the amplitude varies weakly; and a
core regime, for |t − tc| < 0.3, where the phase gradient

and the amplitude vary drastically. Here tc corresponds to
the date of the collision (Fig. 4).

We call diffusive the regime in which the pattern is
subject to long-wavelength phase modulations that may
be described, by a truncated phase diffusion equation of
the form [6,17,30]:

∂q̃

∂t
= D

∂2q̃

∂x2
(7)

where q̃ = ∂Φ/∂x − q̄ is the perturbation from the aver-
age wavenumber q̄ and D is the phase diffusion coefficient
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Fig. 12. Frequency difference between the source and the right
edge of the pattern as a function of the control parameter.

which, for traveling roll pattern, is given by

D =
ξ2
0

τ0
(1 + c1c2).

The occurrence of defects in our system for 260 < Re <
288 is a signature of a phase unstable pattern, in agree-
ment with the Eckhaus-Benjamin-Feir condition 1+c1c2 <
0. Each profile q̃(x) of the phase gradient has been fitted
by a Gaussian solution of diffusion equation (7) for differ-
ent values of t (Fig. 13):

q̃ ∼ e−
x2

4Dt . (8)

From the width of the Gaussian profile σ =
√

4Dt, we have
estimated the phase diffusion coefficient D in the neigh-
borhood of each defect. The obtained data are gathered in
Figure 14 for different values of the control parameter: all
values of D are negative, there is an accumulation of phase
gradient in the point where the defect will nucleate. The
existence of two different values of D in the same pattern
with two defects locations, suggests that this coefficient
is a local characteristic of the pattern. The diffusion co-
efficient can be related to the frequency inhomogeneity.
In fact, the diffusion coefficient D varies linearly with the
frequency difference ∆f , as is shown in Figure 15. The
slope of the curve D(∆f) is homogeneous to the square
of a length, which is characteristic of the phase perturba-
tions and is found to be equal to 3 approximately. This
length is close to the size of the triplets: the secondary
structures of the pattern resulting from a phase modula-
tion of the rolls [22]. A diffusive relaxation regime (D > 0)
is not observed after the collision. This suggests that the
pattern remains always Eckhaus-Benjamin-Feir unstable,
even after the roll annihilation, since the frequency in-
homogeneity forces a new defect nucleation. The point
defects are generated by pattern dissymmetry between
source and sink (edge), they induce phase perturbations

q̃1

0

0.5

1

45 50 55 60

 

x

Fig. 13. Spatial profile of the wavenumber in the diffusive
regime at t − tc = −0.56, at Re = 282: experimental data
(solid line), Gaussian fit (dashed line).
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Fig. 14. Phase diffusion coefficient as a function of the control
parameter. One value is obtained per defect location.

that allow us to measure the diffusion coefficient D with-
out any need of external excitation. If the pattern does
not contain defects, the method cannot be used and an
external forcing of the pattern might be necessary [31,32].

In the core of the defect, the behavior of the phase is
no more diffusive: the phase gradient increases drastically
and its peak becomes very narrow like a Dirac function
δ(x) (Fig. 5d). It can be described not by the truncated
phase equation but by the complete Kuramoto-Sivashinski
phase equation, which is known to exhibit shock-like solu-
tions [4]. After the nucleation of defect, the phase gradient
becomes a deep well that relaxes rapidly. We have mea-
sured the maximum of the phase gradient for |t−tc| < 0.3,
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Fig. 16. Power-law increase of the wavenumber approaching
a defect at Re = 287 (�: before the defect, +: after the defect).

it follows a power law behavior (Fig. 16) of the form:

q̃(xc) ∼ (tc − t)−a for t < tc

q̃(xc) ∼ (t− tc)−b for t > tc. (9)

We have determined the exponents a and b around
22 point defects in the range where they exist: Re ∈
[261; 288]. The mean and rms values measured are a =
0.87± 0.07 , and b = 1.15 ± 0.07. There is no significant
variation neither with the control parameter nor with the
time between consecutive defects. The fact that b > a in-
dicates that the perturbation after collision relaxes faster
than it has grown before, as can be seen in Figure 4.

4.3 Amplitude holes

In our experiment, the amplitude holes appear in a
strongly modulated pattern which is a secondary insta-

bility mode. They are a result of roll collision or triplet
collision. Such collisions that occur at large scale in com-
parison with those between rolls, induce a strong pertur-
bation that propagates in the modulated pattern of triplet
and strongly deforms it. A collision of triplets is a phase
instability of the triplet pattern. In the difference with roll
collisions in the primary pattern, the triplet collisions are
not periodic in time and occur in erratic locations and
so they cannot be related to frequency inhomogeneity of
the pattern. The amplitude holes differ from the actual
topological defect in the sense that the amplitude does
not vanish in the core, and the phase jump does not reach
2π. The holes that we observe propagate in the opposite
direction to that of the triplets, and are associated to a
negative phase gradient (expansion of the pattern). The
triplet collisions and amplitude holes induce a large back-
ground noise in the pattern and are the signature of the
occurrence of the chaotic or intermittent regime of pattern
in our system [22].

Amplitude holes have also been observed in a sec-
ondary oscillatory pattern in an annular convection
cell [7,18] and in hydrothermal waves [33]. In these exper-
iments, holes travel in the same direction as the wave and
are associated to a positive phase gradient(compression of
the pattern).

The amplitude holes have been found in theoretical
and numerical studies of the complex Ginzburg-Landau
equation in the Benjamin-Feir unstable and in the inter-
mittency regimes [7–11,13]. A significant difference in the
wavenumber between both sides of the hole is not detected
in our experiment. This suggests that these holes are closer
to the homoclinic solutions found by van Hecke [13], than
the heteroclinic holes of the Nozaki-Bekki type [10,11].

5 Conclusion

We have studied the dynamics of defects in the roll pat-
tern observed in the Taylor-Dean system, when only the
inner cylinder is rotating. Using complex demodulation
technique, we have measured the amplitude profiles of the
traveling waves and determined, for each line defect, co-
herence lengths that show a disymmetry between source
and sinks. This disymmetry, in a traveling pattern, induces
a frequency inhomogeneity that leads to the periodic gen-
eration of roll collisions (defects). The periodic nucleation
of defects could be described by including a periodic forc-
ing in the Kuramoto-Sivashinski equation (this is left for a
further detailed study). Two different dynamic behaviors
have been identified in the neighborhood of each defect:
a diffusive and a core region. In the diffusive region, we
have measured a negative phase diffusion coefficient. In
the core of defect, we established a power law behavior
of the phase gradient in time with exponents independent
of the control parameter. We have observed traveling am-
plitude holes in the strongly modulated triplet pattern.
The observed states containing defects and holes belong
to the Benjamin-Feir unstable domains obtained in recent
numerical simulations of the complex Ginzburg-Landau
equation.
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