
HAL Id: hal-01582593
https://hal.science/hal-01582593v1

Submitted on 6 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Monitoring as-a-service to drive more efficient future
system design

Frédéric Lemoine, Tatiana Aubonnet, Ludovic Henrio, Soumia Kessal, Eric
Madelaine, Noëmie Simoni

To cite this version:
Frédéric Lemoine, Tatiana Aubonnet, Ludovic Henrio, Soumia Kessal, Eric Madelaine, et al.. Moni-
toring as-a-service to drive more efficient future system design. EAI Endorsed Transactions on Cloud
Systems, 2017, 3 (9), pp.1 - 15. �10.4108/eai.28-6-2017.152754�. �hal-01582593�

https://hal.science/hal-01582593v1
https://hal.archives-ouvertes.fr

Monitoring as-a-service to drive more efficient future
system design
Frédéric Lemoine1,∗, Tatiana Aubonnet1,4, Ludovic Henrio2, Soumia Kessal4, Eric Madelaine3,
Noëmie Simoni4

1CEDRIC, Conservatoire National des Arts et Métiers, 292 rue Saint-Martin, 75003 Paris, France
2CNRS, University of Nice Sophia-Antipolis, Sophia-Antipolis, France
3INRIA, Sophia-Antipolis, France
4Télécom ParisTech, 46 rue Barrault, 75013 Paris, France

Abstract

In the services world, the expected benefits are the fastest time to market, lower costs, greater consistency in
the application, and increased agility. The reuse and sharing properties of software components are useful
to address these challenges. However, to achieve this, it is necessary to be able to observe each service and
to control the service composition. This article proposes to rethink the company’s organisational process
of application development and use the power of monitoring to help the application design. The proposed
Monitoring as-a-service (MaaS), whose properties are detailed, will be used for the computation of the offered
Quality of Service (QoS), for the services calibration during the service creation phase and to inform the QoS
Controller during the operational phase. For effective design, the architect will place MaaS at crucial points
of its architecture according to its decision-making process. Finally, we present experimental results and a
conclusion ends the paper.

Received on 13 June 2016; accepted on 17 November 2016; published on 28 June 2017
Keywords: Quality of service, Monitoring, As a Service, Service component, Self-control, Service composition

Copyright © 2017 Frédéric Lemoine et al., licensed to EAI. This is an open access article distributed under the terms of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited
use, distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/eai.28-6-2017.152754

1. Introduction
Cloud computing and Future Internet promise a new
ecosystem where everything is "as a service". Architects
mutate to the service-oriented architecture (SOA). The
reusability and loose coupling properties facilitate the
implementation of applications. Indeed, applications
are built through the composition of services that exist
today in the enterprise or can be provided by Cloud
providers.

No doubt, we are in the era of the services and the
service is at the heart of the architecture.

Monitoring is needed to perform business analytics
for improving the operation of systems and applications
[1] or for verifying compliance with an service level
agreement (SLA) contract. There are different types of
layers to be monitored: Application, middleware, OS,
networks, hardware [2][3][4]. These layers can be seen

∗Corresponding author. Email: frederic.lemoine@cnam.fr

as where to put the probes of the monitoring system. In
fact, the layer at which the probes are located has direct
consequences on the phenomena that can be monitored
and observed:

• Application, middleware, and OS: bugs, malfunc-
tions, vulnerabilities, etc.

• Network: bandwidth, throughput, etc.

• Hardware: CPU, memory, temperature, voltage,
etc.

The measured value in the upper layers (e.g. the
performance of the application) may or may not include
the values of the lower layers (e.g. the transfer rates on
the network). The processing time for a task (top layer)
depends on the hardware (lower layer) on which it runs
and the load of the virtualised environment.

Each component of service has to be defined,
controlled and managed. However, to manage, it is
necessary to know the values and metrics of the service:

1

EAI Endorsed Transactions
on Cloud Systems Research Article

EAI Endorsed Transactions on

Cloud Systems
 12 2016 - 06 2017 | Volume 3 | Issue 9 | e

http://creativecommons.org/licenses/by/3.0/
mailto:<frederic.lemoine@cnam.fr>

F. Lemoine, T. Aubonnet, L. Henrio, S. Kessal et al.

• Values allow checking service status, triggering
an alert and sending a notification related to an
abnormal behaviour (out contract), which implies
immediate action. This is the supervision and
control responsibility.

• Metrics allow logging and observing each mea-
surement point. This is the metrology responsibil-
ity.

It is essential that this monitoring, which regroup
these two concepts of supervision and metrology,
be placed at each service and composition level.
Software components provide means to structure
service composition and ensure better re-usability,
adaptability, and scaleability of services. In our
preceding works [5], we introduced this vision of
the monitor, by proposing a Self Controlled service
Component (SCC).

But, the problems of heterogeneous services, their
SLA compliance, and service composition automated
management are raised.

For improving the system design and make it more
efficient, we need to adapt existing composition models
in order to make this design and this automated
management converge. For this, we need to answer the
following questions:

• What are the properties needed for monitoring
services to adapt to heterogeneous environments?

• Where the measurement points have to be placed
to have the right information for fast reactions?

• How to know the values and metrics of service in
general and of "re-used" service in particular?

• Can we take these problems into account during
the design phase?

We show in this paper how the adoption of
a component oriented structure helps the service
composition to provide a guaranteed quality of service.

Our main contributions are the following:

• We design a generic monitoring component
template that can be placed in each hierarchical
level.

• We define a calibration technique to compute the
nominal/offered quality of service (QoS) and to
help their composition.

• We provide a method for the design architect to
structure his application (service composition) by
respecting SLA compliance.

This paper is organised as follows: The related works
of the properties of monitoring systems and their
analyses are described in Section 2. Section 3 presents

the SCC proposed in the OpenCloudware project [6],
but also extended SOA properties and autonomic
capabilities of these SCC components. Section 4 is
devoted to our propositions for efficient driving,
i.e. the advantages of Monitoring as-a-service (MaaS)
within SCC architecture, method for design architect,
monitoring as-a-service for calibration and design.
Section 5 proposes the beginnings of solution for
assuring autonomic management of the global service
(service composition). A prototype implementation of
a single SCC, of an SCC components composition, and
their calibrations are proposed in Section 6. Finally, in
Section 7, we highlight the advantages of our approach
to drive future system design.

2. Related Works
We present here our analysis of the properties related to
systems monitoring. These properties must be the same
as those of the monitored system (Scaleability, Elasticity,
Adaptability, and Autonomicity) or system component
(Availability and Resilience). Its integration must be
done at a lower cost (Intrusiveness, Comprehensiveness).
The Timeliness property is needed for agility and quick
decision-making at runtime. We analyse their issues
and discuss how they have been addressed in literature.
Timeliness. A monitoring system is timely if

detected events are available in time for their intended
use [7].
The difficulties are:

• The time between the occurrence of an event
and its treatment can vary depending on the
measurement, analysis, and the communication
delay.

• To obtain up-to-date information, a trade-off
between accuracy and sampling frequency is
necessary because the shorter the sampling
interval, the smaller the delay between the time
a monitored condition happens and is captured.

• Analysis is problematic because it can be complex
and require computing time to be relevant.

• Communication delay can be a problem if it is
necessary to aggregate multiple data sources in
order to process them.

Adaptability. Monitoring requires computing and
communication resources that can be costly. Adaptabil-
ity should be used to find the right compromise between
accuracy and invasiveness (environmental disruption).
Autonomicity. A monitoring system is autonomic

if it is able to self-manage its distributed resources
by automatically reacting to unpredictable changes,
i.e., if it is able to react to detected changes, failures,
performance degradation without manual intervention

2
EAI Endorsed Transactions on

Cloud Systems
 12 2016 - 06 2017 | Volume 3 | Issue 9 | e

Monitoring as-a-service to drive more efficient future system design

[8].
The difficulties are:

• The control loop receives data from a large
number of sensors and propagates the action
to a large number of actuators, which leads to
coordination and scaling difficulties.

• The analytical capacity must be adapted to the
complexity of the infrastructure (Layers)

• It is difficult to implement steering policies that
respond adequately to events detected by the
monitoring system.

Elasticity. Elasticity consists of coping with dynamic
changes of monitored entities (created or destroyed by
expansion and contraction) [9].
Types of changes are:

• New assignment of resources for the user.

• Change in the monitoring needs for the user.

• Change of the number of users.

Intrusiveness and Comprehensiveness. A monitor-
ing system is intrusive if its adoption requires signifi-
cant modifications of the monitored system [10].

A monitoring system is comprehensive if it supports
different types of resources (physical and virtualised)
and is multiple tenants [11]. The latter requires:

• To adopt a single monitoring API regardless of the
measure that is currently used.

• To deploy and maintain a single monitoring
infrastructure.

Having a low Intrusiveness minimises cost instrumen-
tation.
The difficulties are:

• Comprehensiveness requires supporting different
underlying architectures, technology, resources,
and multi-tenancy.

• The heterogeneity of resources and settings of the
different layers.

Resilience and Availability. A monitoring system
is resilient if it can support a number of faulty
components while continuing to operate normally.

It is available if it provides services according to the
system design whenever users request them [12].

A system must be resilient and available at least
for reasons of payment, SLA compliance, and resource
management.
The difficulties are:

• Services can be migrated from a physical
computer to another, striking down classical
monitoring logic and affecting the reliability of
the monitoring system.

Table 1. Platforms comparative

Platform Properties Multi-
Layers

AzureWatch [13] Scaleability, Adaptability, Autonomicity Yes
Boundary [14] Timeliness, Resilience, Availability Yes
CloudClimate [15] Timeliness, Resilience, Availability No
CloudCruiser [16] Timeliness, Resilience, Availability No
Cloudfloor [17] Timeliness, Resilience, Availability No
CloudHarmony [18] Timeliness, Comprehensiveness No
CloudSleutch [19] Timeliness No
CloudStack
ZenPack [20]

Timeliness No

CloudWatch [21] Elasticity, Timeliness Yes
Cloudyn [22] Timeliness, Resilience, Availability No
Consul [23] Availability, Scaleability No
Dargos [24] Adaptability, Intrusiveness No
New Relic [25] Timeliness, Resilience, Availability No
Sensu [26] Availability, Scaleability, Comprehen-

siveness
No

Up.time [27] Timeliness, Resilience, Availability Yes
VR. Hyperic [28] Timeliness No

• Because of the complexity of tracking and man-
aging heterogeneous monitored and monitoring
resources, we should take into account possible
faults of the monitoring system itself.

Scaleability. The aim of a scalable monitoring
system is to manage a large number of probes [9].
A system is scalable if it is able to efficiently collect,
transfer, and analyse large amounts of data without
affecting the functional part.
The difficulties are the large number of parameters
to be monitored and the large amount of data from
multiple distributed locations to aggregate and filter.

The table 1 show a comparative of different platforms
according to their properties.

In the following, we present different works,
described in literature, aimed to satisfy or improve
preceding properties.

To improve Timeliness, [29] proposes a behavioural
model to predict the best measurement time interval.
[7] reduces the time of analysis and communication
by assembling and processing information of near
nodes and by adapting the analysis and communication
topology.

Concerning Adaptability, [7, 10, 30–32] propose
to fine-tune the amount of monitored resources and
the monitoring frequency. [30] proposes to predict
the resource consumption for adapting the time
interval to push monitoring information Monalytics
[32] configures its agents in real time depending on
the monitoring topology (collect, process, and transmit)

3
EAI Endorsed Transactions on

Cloud Systems
 12 2016 - 06 2017 | Volume 3 | Issue 9 | e

F. Lemoine, T. Aubonnet, L. Henrio, S. Kessal et al.

by providing new analysis and monitoring codes or by
changing the methods being used.

For Autonomicity, focusing on bottlenecks, [33]
proposes two methods to detect and resolve them as
well as the identification and reduction of resources
if too many have been provisioned. These methods
require a maximum response time and are useful for
the SLA compliance. [34] proposes a monitoring system
based on agents having the ability to continuously
check the status of virtual machines (VM) and to restore
them in case of malfunction. [35] allocates computing
resources to services and deploys them on virtualised
infrastructures. [35] detects violations of SLAs and
offers automatic dynamic reactions combining low-level
resource metrics with service level objectives (SLO)
and a knowledge base for the analysis of monitoring
information.

Concerning Elasticity, most of the tools were
designed for slow changes of the physical infrastructure
(Ganglia [36], Nagios [37]) and do not support rapid
and dynamic changes. They use a push strategy (the
physical host notifies the tool on the status and the
presence of the running VMs) [38] or publish-subscribe
to decouple communications ends and thus to support
dynamism. An hypervisor controller checks the list
of virtual execution environment (VEE) and add or
remove a monitor according to the detected number
[9]. An extension of Nagios [38] allows the use of active
verification method (pulling) by remote code execution.
An extension of Nagios [10] offers a push-pull model.
The monitoring information is sent by agents to a
Manager (push) and information consumers can obtain
data from it (pull). Monalytics [32] was designed for
scaleability and efficiency in highly dynamic scenarios:
discovery at runtime of resources to monitor and
configuration at runtime of monitoring agents. Brokers
at different hierarchical levels, collect process and
transmit the monitoring information.

To improve Intrusiveness and Comprehensiveness,
[11] proposes an architecture based on agents that
monitor directly the flow of information through
the same workflow system. They are connected with
adapters, which abstract from data of a specific
technology. [39] monitors events at the VM level. Sensu
[26] provides built-in metric translation that allows you
to collect metrics in various formats from disparate
data sources, and mutate them into a proprietary
intermediate format that has been optimized for
portability.

In the literature, several works search for the
reasons impacting Resilience: Resource Volatility
[30, 40], virtualisation technology [34]. To improve
the Availability, [41] provides a publish-subscribe
paradigm for communication and a set of redundant
brokers for events management while providing
tolerance to attacks and malfunctions. Consul [23] is

a distributed, highly available system. The agents talk
to one or more Consul servers. The Consul servers are
where data is stored and replicated to avoid failure
scenarios leading to data loss.

To ensure Scaleability, two methods are commonly
used to reduce the amount of data collected by the
controller:

• Data aggregation consists of combining multiple
metrics into a single one,

• Filtering avoid spreading unnecessary data to the
Controller.

Most of the proposed architectures use a subsystem
to propagate event announcements [7, 10, 11, 42] or
agents for collecting, filtering, and aggregate data [10,
11, 23, 26, 31]. Sensu [26]’s use of the publish/subscribe
pattern of communication allows for automated
registration and de-registration of ephemeral systems,
allowing you to dynamically scale the infrastructure
up and down. By capturing changes only, Consul
[23] reduces the amount of networking and compute
resources used by the health checks, allowing the
system to be much more scalable.

Although each property has been addressed in
various studies presented above, no platform includes
them all to the best of our knowledge. We think that
a monitoring and an analysis placed close to each
functional component would have many advantages:

• The volume of data exchanged and thus the
communication resources would be extremely low
since the analysis would be done on site. Only its
result would be sent.

• The code would be simplified and hence require
less computing resources (Adaptability).

• The analysis would be faster, more relevant, and
reaction times would be minimised (Timeliness).

• At each addition / removal of a functional com-
ponent, a monitoring and controlling component
would be therefore added / removed (Scaleability,
Elasticity).

• Monitoring and controlling component would be
located at any hierarchical level: In the same place
as any functional component.

We would not be intrusive if monitoring and analysis
were external to the functional component. (Intrusive-
ness). A generic monitoring and analysis independent
of the functional component would be comprehensive
(Comprehensiveness) and might be present at all levels
of architecture.

We will show how such a system would also be a
valuable aid to the application design for the architect.
This one could experience during the design and before

4
EAI Endorsed Transactions on

Cloud Systems
 12 2016 - 06 2017 | Volume 3 | Issue 9 | e

Monitoring as-a-service to drive more efficient future system design

being put into production if its composition is properly
sized i.e. whether resources will be sufficient to operate
and meet the requested QoS.

Our motivation is thus double:

• Show that our MaaS, by its design, responds to
most of the preceding properties.

• Show that it can also be used to help the architect
to choose the best component when designing his
application.

3. Background
In the service era, the service is the centre of
architecture, to enjoy all the benefits expected from this
concept, we have proposed in [43] a component called
SCC, which we recall the description (Section 3.1) with
SoA extended properties (Section 3.2) and autonomic
capabilities (Section 3.3).

3.1. Self-controlled service Component
To describe the behaviour of our components and
permit homogeneous QoS management, we define a
generic QoS model [44]. Four criteria are proposed
to describe the QoS: availability, integrity, time, and
capacity.

• Availability represents the accessibility rate of
the service component (for example : accessibility
rate).

• Integrity represents the capacity to run without
alteration of information (for example : error
rate).

• Time represents the time required for request
processing (for example : response time).

• Capacity represents the maximum load the
service component can handle (for example :
processing capacity).

This revealed to be useful and sufficient in all the
practical cases we studied.

To increase the structural decomposition and the
reuse of non-functional QoS components, we have
separated its internal functions and proposed an
architecture that separates the monitoring and QoS
functions of the remaining functions called "control".
We have specified this model in the OpenCloudware
project [6] to address the behavioural aspects through
QoS.

The membrane of our SCC includes (Figure 1):

• Input monitoring (InMonitor) and output mon-
itoring (OutMonitor) components. They play
an interceptor role. Incoming service requests
are intercepted and transmitted (unchanged) to

the functional component via the corresponding
internal interfaces. The OutMonitor intercepts
outgoing service requests. They provide measure-
ment information on the flow they intercept.

• A QoS component (QoSControl), associated with
the business component.

• A non-functional interface (client) for QoS
control (IQoSStatus), by which it will send the
information of violation of QoS contracts, i.e.
"InContract" notifications when the behaviour is
compliant with the contract or "OutContract"
otherwise.

• A non-functional interface (server) of configura-
tion (IConfigQoS, IConfigMonitor), whose role is
to receive component configuration commands.

The QoSControl component checks the current
behaviour of the resource and its conformity with the
contract. For this, it triggers a timer and regularly
requests to the monitors (InMonitor and OutMonitor)
the parameter values (getValues method) of the
IControlMonitor interface (Figure 2). It compares each
current value to the corresponding threshold value
not to exceed. It sends an OutContract notification
if the current value is less (or more) than the
threshold value; in this case the dynamic management
consists of replacing on the fly the failing component
by a ubiquitous service fulfilling the requirements.
Otherwise, it sends an InContract notification. We
define two types of QoS:

1. The requested QoS: client side, SLO.

2. The offered QoS also called nominal QoS is
computed under resource conditions of the
underlying level: provider side, SCC components
based.

The QoS requested by the customer is provided
by catalogue components with an offered QoS and/or
components with adaptation mechanisms (SCC+).
SCC+ component is indeed necessarily a composition.
The provider responds to the client’s request (requested
QoS) by establishing a user session based entirely on
SCC and SCC+ components.

We obtain a SCC component, self-monitoring and
self-controlling Component. The sub-components of
the membrane (monitors and QoS) are activated in
order to perform monitoring of the quality of service
and to notify its degradation.

3.2. Extended SOA properties
We based on the recommended service SOA with
the properties of description, invocation, autonomy,
reuse, and loose coupling. In [5], we have added the

5 EAI Endorsed Transactions on

Cloud Systems
 12 2016 - 06 2017 | Volume 3 | Issue 9 | e

F. Lemoine, T. Aubonnet, L. Henrio, S. Kessal et al.

Figure 1. Self-Controlled service Component (SCC)

following properties: stateless, mutualisation, ubiquity,
and exposability. These properties, named SOA+, allow
exposing components in a library (catalogue), sharing
components for use in different applications, and
assembling them in a personalised session.

In this article we focus on the properties that
the architect/developer must particularly take into
account:

• Autonomy, which will be presented in Section 3.3.

• Reusability: A service has an agnostic logic and
thanks to this can be positioned as a reusable
resource.

• Composability: A service has to be designed so
that they can be used in a service composition.
This property is used via system information
blocks (SIB) in Intelligent Network of Telecommu-
nication services ([45]).

3.3. Autonomic capabilities

GCM/ProActive [46] is the component platform we
used for out experimentation. What motivates this
choice is the design of the component model impos-
ing a strong encapsulation between components.
In GCM/ProActive each component is seen as an
autonomous entity in a much service-oriented man-
ner. GCM/proactive enforces a strong separation of
concerns, well separating the component management
from the functional behaviour of the components [46].
It also revealed efficient for implementing autonomic
services.

In the Grid Component Model (GCM) [47], a struc-
ture is defined for the membrane elements: the non-
functional part of the component can thus be defined
as an assembly of components. These components can
then be connected with other components within the
same membrane or with non-functional interfaces of
other components. This structure has been precisely
and formally specified [48, 49].

4. Towards an efficient driving
In cloud computing, services platforms, and the
Internet of Things (IoT), the component is the
cornerstone. Each component is responsible for its
action. It can belong to several providers. It’s chosen
according to his contract. Each application (service
composition) responds to a client request based on
the resources and possibilities of its environment. So,
the questions are: How to help the service provider
to calibrate their service? How to help the application
architect designer?

In the next sections, we will present the advantages
of our monitoring service and our SCC architecture
(Section 4.1) and we will show how a calibration
technique based on the SCC (Section 4.3) can help the
service provider to create his catalogue (Section 4.4) and
the design architect to compose his application (Section
4.2 and 4.5).

4.1. The advantages of MaaS within the SCC
architecture
As presented on the section 3.1, an SCC component
includes a monitoring and an analysis for each
functional component. Furthermore, the monitors and

6
EAI Endorsed Transactions on

Cloud Systems
 12 2016 - 06 2017 | Volume 3 | Issue 9 | e

Monitoring as-a-service to drive more efficient future system design

the QoScontrol surround it and are close to it. The SCC
architecture covers most of the properties related to
monitoring systems defined in section 2. Indeed it has
many advantages:

1. Our SCC component allows self control inside
by signalling malfunction (out contract) and
automatic reacting outside (Autonomicity).

2. The code is simplified and hence requires less
computing resources (Adaptability).

3. The analysis is faster, more relevant, and reaction
times are minimised (Timeliness) because we are as
closely as possible to the functional component.

4. Monitoring and controlling components are:

• Generic so they are independent of the func-
tional component (Comprehensiveness) and
may be present at all levels of architecture.

• Not intrusive because they are external to
the functional component because they are
inside the service component membrane
and operate in parallel with the functional
component. They have no effects on the
second (Intrusiveness).

5. At each addition/removal of a functional compo-
nent, a monitoring and controlling component is
therefore added/removed (Scaleability, Elasticity).

6. The volume of data exchanged and thus the
communication resources are extremely low since
the analysis would be done on site. Only its result
would be sent.

7. We measure a QoS (Section 3.1) of each
component (hardware of software) allowing
better diagnostic of various malfunctions whereas
most existing tools monitor network traffic or
CPU usage when they should monitor the
functional component performance.

In the following section we propose a method
compatible with the objectives of self-control, i.e.,
dynamic reaction as well as the management of service
composition.

4.2. System design: Method for design architect
By principle, component oriented programming
requires the programmer to think about re-use and
sharing properties of software components at the time
of their creation. Here, we push this methodology
further and require the application provider to also
consider QoS and monitoring purposes at design
time, which modifies the company’s organisational
process. So, we propose a new method based on SCC

components to help the design architect when choosing
the best component and designing his application.

This method has four steps:

1. We begin with the calibration of SCC compo-
nents. The technique, using self-tests, described
in Section 4.3, consists, for a SCC component, to
evaluate his nominal/offered QoS and threshold
value under resources conditions of the underly-
ing level.

2. Secondly, the service provider creates his cata-
logue by putting into the preceding calibrated
SCC components (Section 4.4).

3. Thirdly, to design an application or service, the
architect chooses multi-tenant SCC components
in provider’s catalogue, based on the specified
nominal/offered QoS and thresholds value. He
calibrates the composition (SCC+) with the same
technique described in Section 4.3 to also obtain
the nominal QoS and threshold value of the full
composition. If the composition is entirely SCC
composed then it can be put in a catalogue too.

4. Finally, in Section 4.5, we propose SLA manage-
ment actions to ensure the adequacy of his nomi-
nal QoS to the requested QoS (SLO).

4.3. Monitoring as-a-service for calibration
As mentioned in Section 4.2, the calibration concerns
a single SCC that is intended to be placed in
the catalogue’s provider or a composition of SCC
components. The calibration consists to compute their
offered/nominal QoS and their associated threshold
value.

First, we focus on the calibration of a single SCC. Our
SCC component includes 4 membrane localised non-
functional subcomponents: InMonitor, OutMonitor,
QoSControl, and Self-test (Figure 2). The two monitors
surround the business.

The offered/nominal QoS is obtained by a self-test
procedure triggered by the QoSControl. The self-test
procedure is performed in a closed loop (in-situ). The
InMonitor no longer receive requests from outside
during the self-test phase but N intelligently chosen
queries (for example for their complexity, computing
time or resource consumption) are generated to
compute the values of QoS. We are no longer
dependent on the outside for obtaining the QoS and the
measurements obtained are more reliable.

In a normal utilisation, each external request is
intercepted by the inMonitor, which records it whereas
in self-test situation, each request is generated by
the Self-test component, which is recorded too by
the InMonitor. The request is then processed by the

7
EAI Endorsed Transactions on

Cloud Systems
 12 2016 - 06 2017 | Volume 3 | Issue 9 | e

F. Lemoine, T. Aubonnet, L. Henrio, S. Kessal et al.

Figure 2. Self-test SCC component.

business code and the result is intercepted by the
OutMonitor, which records it.

We measure a QoS (Section 3.1) from raw data. The
number of incoming or outgoing requests (queries,
packets, primitive) and their timestamp are recorded
by the two monitors. The QoSControl periodically ask
the monitor for their records. It can detect if a request
has been processed by the business component or not
and can compute the number of processed/unprocessed
requests and the processing time by subtracting the
out and in time stamps. The QoSControl can compute
other metrics like for example, the availability of
the component or the number of processed request
by minutes and consider richer model like moving
averages. In a normal situation, it checks compliance
with the SLA by comparing the result with a reference

threshold and send an in or out contract. In the self-test
procedure, it’s used to compute the offered/nominal
QoS and the threshold values from which the business
component stops responding by gradually increasing
the numbers of requests. The obtained QoS are given
on resources conditions because they depend on their
environment. Reference tests can also be processed by
modifying the resources to highlight the effect of the
environment on the measures.

Second, we focus on the calibration of a composition
(SCC+). The same procedure can be used for a
composition of SCC components. A composition
includes two surroundings monitors and QoSControl,
the self-test procedure computes the nominal QoS
and the threshold value of the composition with the
same method as for a single SCC. We determine the

8
EAI Endorsed Transactions on

Cloud Systems
 12 2016 - 06 2017 | Volume 3 | Issue 9 | e

Monitoring as-a-service to drive more efficient future system design

threshold value from which the business component
stops responding by also gradually increasing the
numbers of requests.

4.4. Catalogue
The catalogue is a showcase for reusable components.
The architect chooses them according to their QoS.
But as we mentioned, for reusing, it is better to know
the offered QoS and the needed resources to provide
this QoS. Indeed, for the same functionality, different
algorithms and treatments may be used and therefore
different QoS are provided. The consumed resources are
not the same.

That is why, the provider’s catalogue is filled with
SCC calibrated components. If a composition is entirely
SCC composed then it can be put in a catalogue too.
Each component is given with his offered/nominal
QoS and the associated resources conditions. Each
component, located at the layer N, depends on the QoS
of the layer N-1. A component located at the lower layer
depends on hardware resources (CPU, RAM).

4.5. Monitoring as-a-service for design
Based on SLA, with SCC reusable components selected
from the catalogue, the architect and/or developer
build the desired application by composing services. In
a normal utilisation, each external request (user trans-
action) is intercepted by the inMonitor/outMonitor of
highest level, which records it. The QoSControl checks
compliance with the SLA by comparing the result with
a reference threshold and send an in or out contract.
But between the behaviour of the composition from end
to end (application) and that of each SCC component,
there are several subsets, which are the responsibility
of the architect.

The recommended method, as the decision process
progresses, is to progressively build SCC composites
with a new membrane containing the InMonitor,
OutMonitor, and QoSControl (Figure 5). So the MaS
will be the cornerstone of the design of the application
structure. Thanks to our MaaS and the architecture
chosen by the architect, self-control helps to locate the
root cause of malfunction but how to ensure that the
reactions remain QoS compliant? How to guarantee
service continuity and have an efficient driving? We
now have to look to self-adaptation.

5. Autonomic management for QoS compliance
Autonomic adaptation after the detection of an
OutContract event is out of scope of this paper but we
wish to expose some directions to explore. In the next
sections, we will present some reference works (Section
5.1) and the advantages offered by our solution for a
self-adaptation as-a-service (Section 5.2).

5.1. Autonomic adaptation
Generally, the adaptation procedure and management
decisions can be structured as a Monitor-Analyse-
Planning-Execute-Knowledge (MAPE-K) loop for auto-
nomic computing [50–52].

In the literature several solutions have been proposed
to perform autonomic adaptation and make suitable
adaptation decisions. In [53, 54], Garlan et al proposed
the Rainbow framework which provides general,
supporting mechanisms for self-adaptation which can
be customised for different systems. Rainbow is based
on one large control loop that is in charge of all activities
related to the self-adaptability issue for the whole
system. [55] propose a framework for Self-Adaptation
of distributed services, enables the dynamic evolution
of service-based architectures by providing all the
functionalities of the MAPE model.

5.2. Self-adaptation as-a-service
Having an efficient driving is not easy because
efficiency is architect and user dependent. It has to be
personalised. Management has to be considered as-a-
service. We want to highlight that with our architecture
and according to the choices of the architect, a QoS
based MAPE loop can be put in the membrane of each
component or similarly, at the top of any composition.
We have the capability to monitor a composition from
end to end and thus the usability perceived by the
user. The architect puts a QoS based MAPE loop at
any location it considers appropriate and he wants to
manage. They are locations where he wants and can
make decisions. Root cause analysis is then simplified
because we can be as close as possible to a business
component if we wish to.

As Services can be geographically distributed, the
cause of a faulty composition may be their internal
nodes or links. In case of a composition, QoSControl
and Monitors may be also geographically distributed.
Note that communications between Monitors and
QoSControl use another route than the business
services. This way a network communication problem
in the first has no incidence on the second. Similarly,
note that history of the metrics being collected can
be retained, but in that case, because of the stateless
property of the SCC component, it will be stored by
an external dedicated service. OutContract event gives
us the faulty component so constitution and record of
a history is optional because it has no influence on the
decision-making.

Concerning autonomic adaptation, the analysis of
the composite is complex and is still an open issue,
however, some cases are simplified. Namely, if the
OutContract come from a primitive component, it can
be replaced automatically [44, 56–58]. If we have only

9
EAI Endorsed Transactions on

Cloud Systems
 12 2016 - 06 2017 | Volume 3 | Issue 9 | e

F. Lemoine, T. Aubonnet, L. Henrio, S. Kessal et al.

InContracts from primitive components and one Out-
Contract from the final composition, then the com-
position is faulty (links). The location of the faulty
component is simplified. When some corrective action
is required within a self-controlled application, the
Analysis component of its MAPE loop receives the
notification (OutContract) from some QoSControl com-
ponents, and sends the diagnostic to the Planning com-
ponent. This one will request either a replacement SCC
component [58], or some additional service instances,
to the external management environment. According
to the number of requests, the system is elastic and
can add or remove service instances (Consequently,
communication, network, CPU, memory resources).
When receiving back the requested resources, it will
build a reconfiguration script, and pass it to Execute.
GCM/ProActive [46] provides a framework for struc-
turing the elements of the MAPE loop (Monitoring,
Analysis, Planning, Execution) as components embed-
ded in the component membrane and easing the pro-
gramming of autonomic adaptation procedures. These
MAPE loops can act at the any level of the composition,
but also interact through the hierarchical nature of
GCM applications.

In conclusion of this section, we show that we know
to locate the problem accurately and timely (Timeliness
properties) and to send the notification, generating
decision-making, to the right place.

6. Implementation
In this section, we bring our SCC component on
the Proactive Platform. GCM/ProActive is a Java
library that includes a component model and has a
strong support for large-scale distributed execution
of programs. It relies on an active-object pattern
for the interaction between the different entities (i.e.
components). According to what has been described in
the method (Section 2), we present the experimentation
of two calibrations: Firstly for a single SCC (Section 6.1)
and secondly for SCC composition (Section 6.2).

6.1. From design to configuration (experiments for
calibration)
As a reminder, the offered/nominal QoS is obtained by a
self-test procedure triggered by the QoSControl (Figure
2). The self-test procedure is performed in a closed loop
(in-situ). The InMonitor no longer receive requests from
outside during the self-test phase but N intelligently
chosen queries are generated to compute the values of
QoS.

For the specification, verification and validation
of the architecture of applications built from SCC
components, we use the VerCors platform from
INRIA [59]. Components can be connected with other

components within the same membrane or with non-
functional interfaces of other components. Having a
tool-supported methodology is important for the design
phase, when the designer builds his application, using
functional components as basic bricks, and assembling
them into compositions. The VerCors Component
Editor (VCE) (Figure 3) helps the user to specify
the architecture of an application, the interfaces, and
the behaviour of assembled components. Furthermore,
the tool can generate executable code containing the
whole architecture description and the skeleton of the
final application. Several validations are performed
like structural coherency aspects of the application
model for ensuring that the code generation will
terminate correctly, and that the code will not fail
during deployment of the application components. A
library of components integrating the non-functional
aspects (Monitors and QoS-Control) is provided.
These components are instantiated by the application
developer. A set of files is generated allowing
the deployment of the application like Architecture
Description Language (ADL) for the Architecture
Description. These files are then used to build an
executable application that can be executed within the
GCM/ProActive [46] execution environment.

Each implementation includes five steps:

• Diagram design on VCE with classes and
interfaces

• Checking of the validity of the diagram

• Generation of the ADL file and code template of
classes and interfaces.

• Creation of a proactive project with enriched code

• Execution of the application

We are going to create a composition based on
two SCC. The first service component performs
authentication of users based on Digest Access
Authentication (challenge-response codes) [60]. The
second is responsible for checking the right a user
has of doing some actions. The user should provide
the good "response" code in his request to prove it
is authenticated otherwise the first SCC sends 401
Unauthorized asking him to authenticate first.

First, we focus on the calibration of only one
SCC (Figure 2). As mentioned earlier, for this
implementation, the business role consists here to
perform a Digest Access Authentication. Note that
service tasks could be of any nature and can cover
a lot of domains as computer vision systems and
image processing, signal processing, web services,
internet of things services, etc. Furthermore, VCE has
already been used to build a real application called
Springoo. It’s a web application that conforms to

10
EAI Endorsed Transactions on

Cloud Systems
 12 2016 - 06 2017 | Volume 3 | Issue 9 | e

Monitoring as-a-service to drive more efficient future system design

Figure 3. VerCors Component Editor.

the three-tier Java Enterprise Edition (JEE) platform
architecture, providing typical commercial web services
through an Apache/Jonas/MySQL architecture. This
application is one of the end-to-end case-studies of the
OpenCloudware project[5].

In self-test situation, each request is generated by
the Self-test component, which is recorded by the
InMonitor. The record consists of the request number
and a time stamp. Note that several different metrics
could be taken into account by the same monitor
for a more complex QoS processing. The request is
then processed by the business code and the result is
intercepted by the OutMonitor, which records it. The
request is based on a generic Interface: IRequest, which
includes his number (requestId) and a list of functional
parameters for the business code. The InMonitor,
OutMonitor, and QoSControl can be (un)activated via
the IActivate interface (activate(b: boolType) method).
Their records can be erased via the reset() method.
The self-test procedure is triggered/stopped by the
call of the startSelfProcedure()/stopSelfProcedure()
method of the ISelf-test interface. Each non-functional
subcomponent receives the number of his community
(setSCC_ID() method) via their IConfigQoS interface.

The QoSControl is a thread, which periodically ask
the monitor for their records. It can detect if a request
has been processed by the business component and
can compute the processing time by subtracting the
out and in time stamps. In the self-test procedure,
QoSControl computes the offered/nominal QoS and the
threshold values from which the business component
stops responding.

Then, we explain the logs of the self-test experiment.
As already mentioned, we consider firstly a single SCC
component. The business role consists to process a
mathematical task. The logs highlight the following
events in order:

• The thread of the QoSControl starts.

• The Self-test component sends five requests to the
business component via the InMonitor.

• The business receives five requests having the
identifier 0,1,2,3, and 4 to process.

• The OutMonitor see five results coming from the
business component.

• The QoSControl ask the two monitors their tables
of recordings.

• It hears that five requests have been recorded.
They have successfully been processed by the
business.

• The QoSControl get the records from the
InMonitor and OutMonitor (time stamp and
requestId).

• The QoSControl compute the processing time.

Note that ProActive supports multi-active objects
that allow a single active object to execute several
requests in parallel if they do not conflict. This is
particularly useful here to ensure that the main flow
of requests is handled efficiently while not conflicting
with the rest of the behaviour of the monitor.

11
EAI Endorsed Transactions on

Cloud Systems
 12 2016 - 06 2017 | Volume 3 | Issue 9 | e

F. Lemoine, T. Aubonnet, L. Henrio, S. Kessal et al.

By repeating the operation and by increasing at each
time the number of requests, we can compute the
average processing time for a given physical resources
level (Figure 4, see curve Single SCC).

Sample:

• Number of requests: 220

• Total processing time: 26814 ms

• Average processing time per request: 121.8 ms

Given physical resources:

• Memory: 681616 bytes

• CPU: Intel Core i5 3.6 GHz

By still increasing the number of requests we
determine the threshold value from which the business
component stops responding. Here for 250 requests.
The service provider choose a nominal value, which
may be defined, for example, at 70 % of the threshold
value: 71.2 ms for 175 requests. This experiment show
how to use the self-test procedure to compute the
offered QoS and the threshold value from which the
business component stops responding. This ends the
first step of the method for design architect described
in Section 4.2. After the calibration of the component
is complete, it could be put in the service providers’
catalogues (second step).

6.2. Towards the desired architecture (experiments
for control)
Second, we focus on the calibration of a composition
(SCC+) including an authentication and authorisation
SCC. As mentioned in the third step of the method
(Section 4.2), to design an application or service, the
architect chooses multi-tenant SCC components in
providers’ catalogues, based on the specified nomi-
nal/offered QoS and thresholds value. He calibrates the
composition (SCC+) with the same technique described
in Section 4.3 to also obtain the nominal QoS and
threshold value of the full composition.

The composition is given at the figure 5. Two
chained SCC components are included in an SCC
component called "Composition". This composition
includes 6 monitors and 3 QoSControl. Thanks to the
two surroundings monitors and QoSControl, the self-
test procedure computes the nominal QoS and the
threshold value of the composition (Figure 4, see curve
Composition).

We determine the threshold value from which the
business component stops responding. Here for 250
requests. The service provider choose a nominal value,
which may be defined, for example, at 70 % of
the threshold value: 146.6 ms for 175 requests. This
experiment shows that the self-test procedure is useful

too to compute the nominal QoS and the threshold
value for a SCC component composition. As mentioned
above, if the composition is entirely SCC composed (as
is the case here) then it can be put in a catalogue too.

7. Conclusion
In this article, we stood from the point of view of an
architect or developer in the new ecosystems that refer
to paradigms of Cloud, SOA or IoT and are based on the
properties of the "service". We started from the reuse
property by advocating the SCC component. Thus,
during the design of an application or a composite
service, the architect and/or the developer will be able
to select from a catalogue, for example that of the
cloud supplier, the desired(s) service(s) according to
the exposed features and associated QoS. The SCC
component integrates, during the operation, the control
of the contract compliance. Furthermore, the most
significant proposed help is the use of MaaS to drive
more efficiently the design process. Our MaaS as
specified allows designers to: (i) assess the offered QoS
during the service creation, (ii) test the offered QoS
through the catalogue in its deployment environment,
(iii) structure, in terms of decisional process, the
composite services by placing MaaS at the crucial
points of the architecture of the application and allow
the control of the SLA contract. All these elements
are integrated within a new method for the design
architect.

8. List of abbreviations
• ADL: Architecture description language (Section

6.1)

• GCM: Grid component model (Section 3.3)

• IoT: Internet of Things (Section 4)

• MaaS: Monitoring as-a-service (Section 1)

• MAPE: Monitor-analyse-planning-execute (Sec-
tion 5.1)

• QoS: Quality of service (Section 1)

• SCC: Self Controlled service Component (Section
1)

• SIB: System information blocks (Section 3.2)

• SLA: Service level agreement (Section 1)

• SLO: Service level objectives (Section 2)

• SOA: Service oriented architecture (Section 1)

• VCE: VerCors Component Editor (Section 6.1)

• VM: Virtual machine (Section 2)

12
EAI Endorsed Transactions on

Cloud Systems
 12 2016 - 06 2017 | Volume 3 | Issue 9 | e

Monitoring as-a-service to drive more efficient future system design

Figure 4. Number of requests and processing time for the composition.

Figure 5. Example of composition (SCC+).

Acknowledgement. The authors would like to thank for their
help and contribution:

• Oleksandra Kulankhina: INRIA, Sophia-Antipolis,
France

• Cristian Ruz: Pontificia Universidad Católica de Chile,
Santiago de Chili, Chile

This work is supported by the OpenCloudware project
[6]. OpenCloudware is funded by the French FSN (Fond
national pour la Société Numérique) and is supported by Pôles
Minalogic, Systematic, and SCS.

References
[1] Kumar, V., Cai, Z., Cooper, B.F., Eisenhauer, G.,

Schwan, K., Mansour, M., Seshasayee, B. et al.
(2006) Implementing diverse messaging models with

self-managing properties using iflow. In Autonomic
Computing, 2006. ICAC’06. IEEE International Conference
on (IEEE): 243–252.

[2] Brunette, G. and Mogull, R. (2009) Security Guidance
for critical areas of focus in Cloud Computing
V2.1. CSA (Cloud Security Alliance), USA. Online:
http://www.cloudsecurityalliance.org/guidance/csaguide.v2
1.

[3] Spring, J. (2011) Monitoring cloud computing by
layer, part 1. Security Privacy, IEEE 9(2): 66–68.
doi:10.1109/MSP.2011.33.

[4] Spring, J. (2011) Monitoring cloud computing by
layer, part 2. Security Privacy, IEEE 9(3): 52–55.
doi:10.1109/MSP.2011.57.

[5] Aubonnet, T., Henrio, L., Kessal, S., Kulankhina,

O., Lemoine, F., Madelaine, E., Ruz, C. et al. (2015)

13
EAI Endorsed Transactions on

Cloud Systems
 12 2016 - 06 2017 | Volume 3 | Issue 9 | e

http://dx.doi.org/10.1109/MSP.2011.33
http://dx.doi.org/10.1109/MSP.2011.57

F. Lemoine, T. Aubonnet, L. Henrio, S. Kessal et al.

Management of service composition based on self-
controlled components. Journal of Internet Services and
Applications 6(15): 17. doi:10.1186/s13174-015-0031-7,
URL https://hal.inria.fr/hal-01180627.

[6] The opencloudware project. URL http://www.

opencloudware.org/.
[7] Wang, C., Schwan, K., Talwar, V., Eisenhauer, G.,

Hu, L. and Wolf, M. (2011) A flexible architecture
integrating monitoring and analytics for managing
large-scale data centers. In Proceedings of the 8th
ACM International Conference on Autonomic Computing,
ICAC ’11 (New York, NY, USA: ACM): 141–150.
doi:10.1145/1998582.1998605, URL http://doi.acm.

org/10.1145/1998582.1998605.
[8] Mian, R., Martin, P. and Vazquez-Poletti, J.L.

(2013) Provisioning data analytic workloads in a
cloud. Future Gener. Comput. Syst. 29(6): 1452–
1458. doi:10.1016/j.future.2012.01.008, URL
http://dx.doi.org/10.1016/j.future.2012.01.008.

[9] Clayman, S., Galis, A. and Mamatas, L. (2010)
Monitoring virtual networks with lattice. In
Network Operations and Management Symposium
Workshops (NOMS Wksps), 2010 IEEE/IFIP: 239–246.
doi:10.1109/NOMSW.2010.5486569.

[10] Katsaros, G., Kübert, R. and Gallizo, G. (2011)
Building a service-oriented monitoring framework with
REST and nagios. In IEEE International Conference on
Services Computing, SCC 2011, Washington, DC, USA, 4-
9 July, 2011: 426–431. doi:10.1109/SCC.2011.53, URL
http://dx.doi.org/10.1109/SCC.2011.53.

[11] Hasselmeyer, P. and d’Heureuse, N. (2010) Towards
holistic multi-tenant monitoring for virtual data centers.
In Network Operations and Management Symposium
Workshops (NOMS Wksps), 2010 IEEE/IFIP: 350–356.
doi:10.1109/NOMSW.2010.5486528.

[12] Shirey, R. (2007), Internet Security Glossary, Version 2,
RFC 4949 (Informational). URL http://www.ietf.org/

rfc/rfc4949.txt.
[13] Azurewatch. URL http://www.paraleap.com/

azurewatch.
[14] Boundary. URL http://www.bmc.com/

truesightpulse/.
[15] Cloudclimate. URL http://www.cloudclimate.com.
[16] Cloudfloor. URL http://cloudfloor.com/.
[17] Cloudcruiser. URL http://cloudcruiser.com/.
[18] Cloudharmony. URL http://cloudharmony.com/.
[19] Cloudsleuth. URL http://www.dynatrace.com.
[20] Cloudstack. URL https://cloudstack.apache.org/.
[21] Cloudwatch. URL https://aws.amazon.com.
[22] Cloudyn. URL http://www.cloudyn.com/.
[23] Consul. URL https://www.consul.io/.
[24] Corradi, A., Foschini, L., Povedano-Molina, J. and

López-Soler, J.M. (2012) Dds-enabled cloud man-
agement support for fast task offloading. In 2012
IEEE Symposium on Computers and Communications,
ISCC 2012, Cappadocia, Turkey, July 1-4, 2012: 67–74.
doi:10.1109/ISCC.2012.6249270, URL http://dx.doi.

org/10.1109/ISCC.2012.6249270.
[25] Newrelic. URL http://newrelic.com.
[26] Sensu. URL https://sensuapp.org/.

[27] Uptimesoftware. URL http://www.uptimesoftware.

com.
[28] Vrealize hyperic. URL http://www.vmware.com.
[29] Zissis, D. and Lekkas, D. (2012) Addressing cloud

computing security issues. Future Gener. Comput. Syst.
28(3): 583–592. doi:10.1016/j.future.2010.12.006, URL
http://dx.doi.org/10.1016/j.future.2010.12.006.

[30] Park, J., Yu, H., Chung, K. and Lee, E. (2011)
Markov chain based monitoring service for fault
tolerance in mobile cloud computing. In Advanced
Information Networking and Applications (WAINA), 2011
IEEE Workshops of International Conference on: 520–525.
doi:10.1109/WAINA.2011.10.

[31] Clayman, S., Clegg, R., Mamatas, L., Pavlou, G.

and Galis, A. (2011) Monitoring, aggregation and
filtering for efficient management of virtual networks.
In Proceedings of the 7th International Conference
on Network and Services Management, CNSM ’11
(Laxenburg, Austria, Austria: International Federation
for Information Processing): 234–240. URL http://dl.

acm.org/citation.cfm?id=2147671.2147708.
[32] Kutare, M., Eisenhauer, G., Wang, C., Schwan, K.,

Talwar, V. and Wolf, M. (2010) Monalytics: Online
monitoring and analytics for managing large scale data
centers. In Proceedings of the 7th International Conference
on Autonomic Computing, ICAC ’10 (New York, NY,
USA: ACM): 141–150. doi:10.1145/1809049.1809073,
URL http://doi.acm.org/10.1145/1809049.1809073.

[33] Iqbal, W., Dailey, M.N., Carrera, D. and Janecek,

P. (2011) Adaptive resource provisioning for
read intensive multi-tier applications in the
cloud. Future Gener. Comput. Syst. 27(6): 871–
879. doi:10.1016/j.future.2010.10.016, URL
http://dx.doi.org/10.1016/j.future.2010.10.016.

[34] Ayad, A. and Dippel, U. (2010) Agent-based moni-
toring of virtual machines. In Information Technology
(ITSim), 2010 International Symposium in, 1: 1–6.
doi:10.1109/ITSIM.2010.5561375.

[35] Emeakaroha, V.C., Netto, M.A.S., Calheiros, R.N.,
Brandic, I., Buyya, R. and De Rose, C.A.F. (2012)
Towards autonomic detection of sla violations in cloud
infrastructures. Future Gener. Comput. Syst. 28(7): 1017–
1029. doi:10.1016/j.future.2011.08.018, URL http://

dx.doi.org/10.1016/j.future.2011.08.018.
[36] Massie, M.L., Chun, B.N. and Culler, D.E.

(2004) The ganglia distributed monitoring
system: design, implementation, and expe-
rience. Parallel Computing 30(7): 817 – 840.
doi:http://dx.doi.org/10.1016/j.parco.2004.04.001,
URL http://www.sciencedirect.com/science/

article/pii/S0167819104000535.
[37] Nagios. URL http://WWW.nagios.org.
[38] de Carvalho, M. and Granville, L. (2011) Incor-

porating virtualization awareness in service monitor-
ing systems. In Integrated Network Management (IM),
2011 IFIP/IEEE International Symposium on: 297–304.
doi:10.1109/INM.2011.5990704.

[39] Xiang, G., Jin, H., Zou, D., Zhang, X., Wen, S.

and Zhao, F. (2010) Vmdriver: A driver-based mon-
itoring mechanism for virtualization. In Reliable Dis-
tributed Systems, 2010 29th IEEE Symposium on: 72–81.

14
EAI Endorsed Transactions on

Cloud Systems
 12 2016 - 06 2017 | Volume 3 | Issue 9 | e

http://dx.doi.org/10.1186/s13174-015-0031-7
https://hal.inria.fr/hal-01180627
http://www.opencloudware.org/
http://www.opencloudware.org/
http://dx.doi.org/10.1145/1998582.1998605
http://doi.acm.org/10.1145/1998582.1998605
http://doi.acm.org/10.1145/1998582.1998605
http://dx.doi.org/10.1016/j.future.2012.01.008
http://dx.doi.org/10.1016/j.future.2012.01.008
http://dx.doi.org/10.1109/NOMSW.2010.5486569
http://dx.doi.org/10.1109/SCC.2011.53
http://dx.doi.org/10.1109/SCC.2011.53
http://dx.doi.org/10.1109/NOMSW.2010.5486528
http://www.ietf.org/rfc/rfc4949.txt
http://www.ietf.org/rfc/rfc4949.txt
http://www.paraleap.com/azurewatch
http://www.paraleap.com/azurewatch
http://www.bmc.com/truesightpulse/
http://www.bmc.com/truesightpulse/
http://www.cloudclimate.com
http://cloudfloor.com/
http://cloudcruiser.com/
http://cloudharmony.com/
http://www.dynatrace.com
https://cloudstack.apache.org/
https://aws.amazon.com
http://www.cloudyn.com/
https://www.consul.io/
http://dx.doi.org/10.1109/ISCC.2012.6249270
http://dx.doi.org/10.1109/ISCC.2012.6249270
http://dx.doi.org/10.1109/ISCC.2012.6249270
http://newrelic.com
https://sensuapp.org/
http://www.uptimesoftware.com
http://www.uptimesoftware.com
http://www.vmware.com
http://dx.doi.org/10.1016/j.future.2010.12.006
http://dx.doi.org/10.1016/j.future.2010.12.006
http://dx.doi.org/10.1109/WAINA.2011.10
http://dl.acm.org/citation.cfm?id=2147671.2147708
http://dl.acm.org/citation.cfm?id=2147671.2147708
http://dx.doi.org/10.1145/1809049.1809073
http://doi.acm.org/10.1145/1809049.1809073
http://dx.doi.org/10.1016/j.future.2010.10.016
http://dx.doi.org/10.1016/j.future.2010.10.016
http://dx.doi.org/10.1109/ITSIM.2010.5561375
http://dx.doi.org/10.1016/j.future.2011.08.018
http://dx.doi.org/10.1016/j.future.2011.08.018
http://dx.doi.org/10.1016/j.future.2011.08.018
http://dx.doi.org/http://dx.doi.org/10.1016/j.parco.2004.04.001
http://www.sciencedirect.com/science/article/pii/S0167819104000535
http://www.sciencedirect.com/science/article/pii/S0167819104000535
http://WWW.nagios.org
http://dx.doi.org/10.1109/INM.2011.5990704

Monitoring as-a-service to drive more efficient future system design

doi:10.1109/SRDS.2010.38.
[40] Hoang, D.T., Lee, C., Niyato, D. and Wang, P. (2013)

A survey of mobile cloud computing: architecture,
applications, and approaches. Wireless Communications
and Mobile Computing 13(18): 1587–1611. URL
http://dblp.uni-trier.de/db/journals/wicomm/

wicomm13.html.
[41] Padhy, S., Kreutz, D., Casimiro, A. and Pasin, M. (2011)

Trustworthy and resilient monitoring system for cloud
infrastructures. In Proceedings of the Workshop on Posters
and Demos Track, PDT ’11 (New York, NY, USA: ACM):
3:1–3:2. doi:10.1145/2088960.2088963, URL http://

doi.acm.org/10.1145/2088960.2088963.
[42] Azmandian, F., Moffie, M., Dy, J.G., Aslam, J.A. and

Kaeli, D.R. (2011) Workload characterization at the
virtualization layer. In MASCOTS (IEEE Computer
Society): 63–72. URL http://dblp.uni-trier.de/db/

conf/mascots/mascots2011.html.
[43] Aubonnet, T. and Simoni, N. (2014) Self-control cloud

services. In 2014 IEEE 13th International Symposium
on Network Computing and Applications, NCA 2014,
Cambridge, MA, USA, 21-23 August, 2014: 282–286.
doi:10.1109/NCA.2014.48.

[44] Tatiana Aubonnet and Noëmie Simoni (2013) Service
creation and self-management mechanisms for mobile
cloud computing. In Wired/Wireless Internet Communi-
cation - 11th International Conference, WWIC 2013, St.
Petersburg, Russia. Proceedings: 43–55. doi:10.1007/978-
3-642-38401-1_4.

[45] (1997) Service plane for Intelligent Network, Capability
Set2. Tech. rep., ITU-T Recommendation Q.1222. URL
https://www.itu.int/rec/T-REC-Q.1222.

[46] Baude, F., Henrio, L. and Ruz, C. (2014) Program-
ming distributed and adaptable autonomous compo-
nentsâĂŤthe gcm/proactive framework. Software: Prac-
tice and Experience : n/adoi:10.1002/spe.2270, URL
http://dx.doi.org/10.1002/spe.2270.

[47] Baude, F., Caromel, D., Dalmasso, C., Danelutto, M.,
Getov, V., Henrio, L. and PÃľrez, C. (2008) GCM: A
Grid Extension to Fractal for Autonomous Distributed
Components. annals of telecommunications - annales
des tÃľlÃľcommunications URL https://hal.inria.fr/

inria-00323919.
[48] Baude, F., Henrio, L. and Naoumenko, P. (2009)

Structural reconfiguration: An autonomic strategy for
gcm components. In Proceedings of the 2009 Fifth
International Conference on Autonomic and Autonomous
Systems (Washington, DC, USA: IEEE Computer Society):
123–128. doi:10.1109/ICAS.2009.28.

[49] Henrio, L., Kulankhina, O., Liu, D. and Made-

laine, E. (2014) Verifying the correct composition of
distributed components: Formalisation and Tool. In
FOCLASA (Rome, Italy). URL https://hal.inria.fr/

hal-01055370.
[50] Horn, P. (2001) Autonomic Computing: IBM’s Perspec-

tive on the State of Information Technology .
[51] Computing, A. and others (2006) An architectural

blueprint for autonomic computing. IBM White Paper .
[52] Kephart, J.O. and Chess, D.M. (2003) The vision

of autonomic computing. Computer 36(1): 41–50.
doi:10.1109/MC.2003.1160055.

[53] Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B.

and Steenkiste, P. (2004) Rainbow: architecture-based
self-adaptation with reusable infrastructure. Computer
37(10): 46–54. doi:10.1109/MC.2004.175.

[54] Garlan, D., Schmerl, B. and Cheng, S.W. (2009)
Software Architecture-Based Self-Adaptation (Boston,
MA: Springer US), 31–55. doi:10.1007/978-0-387-
89828-5_2, URL http://dx.doi.org/10.1007/

978-0-387-89828-5_2.
[55] Gauvrit, G., Daubert, E. and Andre, F. (2010)

SAFDIS: A Framework to Bring Self-Adaptability
to Service-Based Distributed Applications (IEEE):
211–218. doi:10.1109/SEAA.2010.25, URL http:

//ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=5598099.
[56] Noëmie Simoni and Xiaofei Xiong and Chunyang

Yin (2009) Virtual community for the dynamic
management of NGN mobility. In Fifth International
Conference on Autonomic and Autonomous Systems,
ICAS 2009, Valencia, Spain, 20-25 April 2009: 82–
87. doi:10.1109/ICAS.2009.33, URL http://doi.

ieeecomputersociety.org/10.1109/ICAS.2009.33.
[57] Houda Alaoui Soulimani and Philippe Coude and

Noëmie Simoni (2011) User-centric and qos-based service
session. In 2011 IEEE Asia-Pacific Services Computing
Conference, APSCC 2011, Jeju, Korea (South), December
12-15, 2011: 267–274. doi:10.1109/APSCC.2011.64,
URL http://dx.doi.org/10.1109/APSCC.2011.64.

[58] Nassar, R. and Simoni, N. (2013) Semantic
handover among distributed coverage zones for
an ambient continuous service session. IJHCR
4(1): 37–58. doi:10.4018/jhcr.2013010103, URL
http://dx.doi.org/10.4018/jhcr.2013010103.

[59] Cansado, A. and Madelaine, E. (2008) Specification and
Verification for Grid Component-Based Applications:
From Models to Tools. In Boer, F.S.d., Bonsangue,

M.M. and Madelaine, E. [eds.] Formal Methods for
Components and Objects, no. 5751 in Lecture Notes
in Computer Science (Springer Berlin Heidelberg),
180–203. URL http://link.springer.com/chapter/

10.1007/978-3-642-04167-9_10. DOI: 10.1007/978-3-
642-04167-9_10.

[60] Rfc 2617 basic and digest access authentication. URL
http://www.rfc-base.org/rfc-2617.html.

15
EAI Endorsed Transactions on

Cloud Systems
 12 2016 - 06 2017 | Volume 3 | Issue 9 | e

http://dx.doi.org/10.1109/SRDS.2010.38
http://dblp.uni-trier.de/db/journals/wicomm/wicomm13.html
http://dblp.uni-trier.de/db/journals/wicomm/wicomm13.html
http://dx.doi.org/10.1145/2088960.2088963
http://doi.acm.org/10.1145/2088960.2088963
http://doi.acm.org/10.1145/2088960.2088963
http://dblp.uni-trier.de/db/conf/mascots/mascots2011.html
http://dblp.uni-trier.de/db/conf/mascots/mascots2011.html
http://dx.doi.org/10.1109/NCA.2014.48
http://dx.doi.org/10.1007/978-3-642-38401-1_4
http://dx.doi.org/10.1007/978-3-642-38401-1_4
https://www.itu.int/rec/T-REC-Q.1222
http://dx.doi.org/10.1002/spe.2270
http://dx.doi.org/10.1002/spe.2270
https://hal.inria.fr/inria-00323919
https://hal.inria.fr/inria-00323919
http://dx.doi.org/10.1109/ICAS.2009.28
https://hal.inria.fr/hal-01055370
https://hal.inria.fr/hal-01055370
http://dx.doi.org/10.1109/MC.2003.1160055
http://dx.doi.org/10.1109/MC.2004.175
http://dx.doi.org/10.1007/978-0-387-89828-5_2
http://dx.doi.org/10.1007/978-0-387-89828-5_2
http://dx.doi.org/10.1007/978-0-387-89828-5_2
http://dx.doi.org/10.1007/978-0-387-89828-5_2
http://dx.doi.org/10.1109/SEAA.2010.25
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5598099
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5598099
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5598099
http://dx.doi.org/10.1109/ICAS.2009.33
http://doi.ieeecomputersociety.org/10.1109/ICAS.2009.33
http://doi.ieeecomputersociety.org/10.1109/ICAS.2009.33
http://dx.doi.org/10.1109/APSCC.2011.64
http://dx.doi.org/10.1109/APSCC.2011.64
http://dx.doi.org/10.4018/jhcr.2013010103
http://dx.doi.org/10.4018/jhcr.2013010103
http://link.springer.com/chapter/10.1007/978-3-642-04167-9_10
http://link.springer.com/chapter/10.1007/978-3-642-04167-9_10
http://www.rfc-base.org/rfc-2617.html

	1 Introduction
	2 Related Works
	3 Background
	3.1 Self-controlled service Component
	3.2 Extended SOA properties
	3.3 Autonomic capabilities

	4 Towards an efficient driving
	4.1 The advantages of MaaS within the SCC architecture
	4.2 System design: Method for design architect
	4.3 Monitoring as-a-service for calibration
	4.4 Catalogue
	4.5 Monitoring as-a-service for design

	5 Autonomic management for QoS compliance
	5.1 Autonomic adaptation
	5.2 Self-adaptation as-a-service

	6 Implementation
	6.1 From design to configuration (experiments for calibration)
	6.2 Towards the desired architecture (experiments for control)

	7 Conclusion
	8 List of abbreviations

