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Abstract: In this paper we propose a new methodology for solving an uncertain stochastic Marko-
vian control problem in discrete time. We call the proposed methodology the adaptive
robust control. We demonstrate that the uncertain control problem under consideration
can be solved in terms of associated adaptive robust Bellman equation. The success of
our approach is to the great extend owed to the recursive methodology for construction
of relevant confidence regions. We illustrate our methodology by considering an opti-
mal portfolio allocation problem, and we compare results obtained using the adaptive
robust control method with some other existing methods.
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1 Introduction

In this paper we propose a new methodology for solving an uncertain stochastic Markovian con-
trol problem in discrete time, which is then applied to an optimal portfolio selection problem.
Accordingly, we only consider terminal optimization criterion.

The uncertainty in the problem comes from the fact that the (true) law of the underlying
stochastic process is not known. What is known, we assume, is the family of potential probability
laws that the true law belongs to. Thus, we are dealing here with a stochastic control problem
subject to Knightian uncertainty.

Such problems have been extensively studied in the literature, using different approaches, some
of them are briefly described in Section 2.

The classical approach to the problem goes back to several authors. The multiple-priors, or
the maxmin approach, of [GS89] is probably one of the first ones and one of the best-known in the
economics literature. In the context of our terminal criterion, it essentially amounts to a robust
control problem (a game problem, in fact) of the form

sup
ϕ∈A

inf
Q∈M

EQ L(X,ϕ, T ),

where ϕ is the control process, A is the family of admissible controls, M is a family of possible
underlying probabilistic models (or priors), EQ denotes expectation under the prior Q, X is the
underlying process, T is the finite optimization horizon, and where L is an optimization criterion.
The family M represents the Knightian uncertainty.
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The above maxmin formulation has been further modified to the effect of

sup
ϕ∈A

inf
Q∈M

EQ (L(X,ϕ, T )− c(Q)) ,

where c is a penalty function. We refer to, e.g., [HSTW06], [Ski03], [MMR06] and [BMS07], and
references therein, for discussion and various studies of this problem.

In our approach we do not use the penalty term. Instead, we apply a learning algorithm that
is meant to reduce the uncertainty about the true probabilistic structure underlying the evolution
of the process X. This leads us to consider what we call adaptive robust control problem. We
stress that our problem and approach should not be confused with the problems and approaches
presented in [IS12] and [BWH12].

A very interesting study of an uncertain control problem in continuous time, that involves
learning, has been done in [KOZ14].

The paper is organized as follows. In Section 2 we briefly review some of the existing method-
ologies of solving stochastic control problems subject to model uncertainty, starting with robust
control method, and continuing with strong robust method, model free robust method, Bayesian
adaptive control method, and adaptive control method. Also here we introduce the underlying idea
of the proposed method, called the adaptive robust control, and its relationship with the existing
ones. Section 3 is dedicated to the adaptive robust control methodology. We begin with setting
up the model and in Section 3.1 we formulate in strict terms the stochastic control problem. The
solution of the adaptive robust problem is discussed in Section 3.2. Also in this section, we derive
the associated Bellman equation and prove the Bellman principle of optimality for the considered
adaptive robust problem. Finally, in Section 4 we consider an illustrative example, namely, the clas-
sical dynamic optimal allocation problem when the investor is deciding at each time on investing
in a risky asset and a risk-free banking account by maximizing the expected utility of the terminal
wealth. Also here, we give a comparative analysis between the proposed method and some of the
existing classical methods.

2 Stochastic Control Subject to Model Uncertainty

Let (Ω,F ) be a measurable space, and T ∈ N be a fixed time horizon. Let T = {0, 1, 2, . . . , T},
T ′ = {0, 1, 2, . . . , T − 1}, and Θ ⊂ Rd be a non-empty set, which will play the role of the known
parameter space throughout.1

On the space (Ω,F ) we consider a random process X = {Xt, t ∈ T } taking values in some
measurable space. We postulate that this process is observed, and we denote by F = (Ft, t ∈ T )
its natural filtration. The true law of X is unknown and assumed to be generated by a probability
measure belonging to a parameterized family of probability distributions on (Ω,F ), say P(Θ) =
{Pθ, θ ∈ Θ}. We will write EP to denote the expectation corresponding to a probability measure
P on (Ω,F ), and, for simplicity, we denote by Eθ the expectation operator corresponding to the
probability Pθ.

By Pθ∗ we denote the measure generating the true law of X, so that θ∗ ∈ Θ is the (unknown)
true parameter. Since Θ is assumed to be known, the model uncertainty discussed in this paper
occurs only if Θ 6= {θ∗}, which we assume to be the case.

1In general, the parameter space may be infinite dimensional, consisting for example of dynamic factors, such as
deterministic functions of time or hidden Markov chains. In this study, for simplicity, we chose the parameter space
to be a subset of Rd. In most applications, in order to avoid problems with constrained estimation, the parameter
space is taken to be equal to the maximal relevant subset of Rd.
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The methodology proposed in this paper is motivated by the following generic optimization
problem: we consider a family, say A, of F–adapted processes ϕ = {ϕt, t ∈ T } defined on (Ω,F ),
that take values in a measurable space. We refer to the elements of A as to admissible control
processes. Additionally, we consider a functional of X and ϕ, which we denote by L. The stochastic
control problem at hand is

inf
ϕ∈A

Eθ∗ (L(X,ϕ)) . (2.1)

However, stated as such, the problem can not be dealt with directly, since the value of θ∗ is
unknown. Because of this we refer to such problem as to an uncertain stochastic control problem.
The question is then how to handle the stochastic control problem (2.1) subject to this type of
model uncertainty.

The classical approaches to solving this uncertain stochastic control problem are:

• to solve the robust control problem

inf
ϕ∈A

sup
θ∈Θ

Eθ (L(X,ϕ)) . (2.2)

We refer to, e.g., [HSTW06], [HS08], [BB95], for more information regarding robust control
problems.

• to solve the strong robust control problem

inf
ϕ∈A

sup

Q∈Qϕ,Θ
K

ν

EQ (L(X,ϕ)) , (2.3)

where ΘK is the set of strategies chosen by a Knightian adversary (the nature) and Qϕ,Θ
K

ν a
set of probabilities, depending on the strategy ϕ and a given law ν on Θ. See Section 3 for a
formal description of this problem, and see, e.g., [Sir14] and [BCP16] for related work.

• to solve the model free robust control problem

inf
ϕ∈A

sup
P∈P

EP (L(X,ϕ)) , (2.4)

where P is given family of probability measures on (Ω,F ).

• to solve a Bayesian adaptive control problem, where it is assumed that the (unknown) pa-
rameter θ is random, modeled as a random variable Θ taking values in Θ and having a prior
distribution denoted by ν0. In this framework, the uncertain control problem is solved via
the following optimization problem

inf
ϕ∈A

∫
Θ
Eθ (L(X,ϕ)) ν0(dθ).

We refer to, e.g., [KV15].

• to solve an adaptive control problem, namely, first for each θ ∈ Θ solve

inf
ϕ∈A

Eθ (L(X,ϕ)) , (2.5)

and denote by ϕθ a corresponding optimal control (assumed to exist). Then, at each time
t ∈ T ′, compute a point estimate θ̂t of θ∗, using a chosen, Ft measurable estimator Θ̂t.

Finally, apply at time t the control value ϕθ̂tt . We refer to, e.g., [KV15], [CG91].



4 Bielecki, Cialenco, Chen, Cousin, Jeanblanc

Several comments are now in order:

1. Regarding the solution of the robust control problem, [LSS06] observe that

If the true modela is the worst one, then this solution will be nice and dandy. However,
if the true model is the best one or something close to it, this solution could be very
bad (that is, the solution need not be robust to model error at all!).

aTrue model in [LSS06] corresponds to θ∗ in our notation.

The message is that using the robust control framework may produce undesirable results.

2. It can be shown that

inf
ϕ∈A

sup
θ∈Θ

Eθ (L(S, ϕ))) = inf
ϕ∈A

sup
ν0∈P(Θ)

∫
Θ
Eθ (L(S, ϕ)) ν0(dθ). (2.6)

Thus, for any given prior distribution ν0

inf
ϕ∈A

sup
θ∈Θ

Eθ (L(S, ϕ)) ≥ inf
ϕ∈A

∫
Θ
Eθ (L(S, ϕ)) ν0(dθ).

The adaptive Bayesian problem appears to be less conservative. Thus, in principle, solving
the adaptive Bayesian control problem for a given prior distribution may lead to a better
solution of the uncertain stochastic control problem than solving the robust control problem.

3. It is sometimes suggested that the robust control problem does not involve learning about
the unknown parameter θ∗, which in fact is the case, but that the adaptive Bayesian control
problem involves “learning” about θ∗. The reason for this latter claim is that in the adaptive
Bayesian control approach, in accordance with the Bayesian statistics, the unknown parameter
is considered to be a random variable, say Θ with prior distribution ν0. This random variable
is then considered to be an unobserved state variable, and consequently the adaptive Bayesian
control problem is regarded as a control problem with partial (incomplete) observation of the
entire state vector. The typical way to solve a control problem with partial observation is
by means of transforming it to the corresponding separated control problem. The separated
problem is a problem with full observation, which is achieved by introducing additional state
variable, and what in the Bayesian statistics is known as the posterior distribution of Θ. The
“learning” is attributed to the use of the posterior distribution of Θ in the separated problem.
However, the information that is used in the separated problem is exactly the same that in the
original problem, no learning is really involved. This is further documented by the equality
(2.6).

4. We refer to Remark 3.2 for a discussion regarding distinction between the strong robust
control problem 2.3 and the adaptive robust control problem 2.7 that is stated below.

5. As said before, the model uncertainty discussed in this paper occurs if Θ 6= {θ∗}. The classical
robust control problem (2.2) does not involve any reduction of uncertainty about θ∗, as the
parameter space is not “updated” with incoming information about the signal process X.
Analogous remark applies to problems (2.3) and (2.4): there is no reduction of uncertainty
about the underlying stochastic dynamics involved there.

Clearly, incorporating “learning” into the robust control paradigm appears like a good idea.
In fact, in [AHS03] the authors state
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We see three important extensions to our current investigation. Like builders of ra-
tional expectations models, we have side-stepped the issue of how decision-makers
select an approximating model. Following the literature on robust control, we envi-
sion this approximating model to be analytically tractable, yet to be regarded by the
decision maker as not providing a correct model of the evolution of the state vector.
The misspecifications we have in mind are small in a statistical sense but can other-
wise be quite diverse. Just as we have not formally modelled how agents learned the
approximating model, neither have we formally justified why they do not bother to
learn about potentially complicated misspecifications of that model. Incorporating
forms of learning would be an important extension of our work.a

aThe boldface emphasis is ours.

In the present work we follow up on the suggestion of Anderson, Hansen and Sargent stated
above, and we propose a new methodology, which we call adaptive robust control methodology,
and which is meant to incorporate learning about θ∗ into the robust control paradigm.

This methodology amounts to solving the following problem

inf
ϕ∈A

sup
Q∈Qϕ,Ψν

EQ (L(S, ϕ) ) , (2.7)

where Qϕ,Ψν is a family of probability measures on some canonical space related to the process X,
chosen in a way that allows for appropriate dynamic reduction of uncertainty about θ∗. Specifically,
we chose the family Qϕ,Ψν in terms of confidence regions for the parameter θ∗ (see details in Section
3). Thus, the adaptive robust control methodology incorporates updating controller’s knowledge
about the parameter space – a form of learning, directed towards reducing uncertainty about θ∗

using incoming information about the signal process S. Problem (2.7) is derived from problem
(2.3); we refer to Section 3 for derivation of both problems.

In this paper we will compare the robust control methodology, the adaptive control methodology
and the adaptive robust control methodology in the context of a specific optimal portfolio selection
problem that is considered in finance. This will be done in Section 4.

3 Adaptive Robust Control Methodology

This section is the key section of the paper. We will first make precise the control problem that we
are studying and then we will proceed to the presentation of our adaptive robust control method-
ology.

Let {(Ω,F ,Pθ), θ ∈ Θ ⊂ Rd} be a family of probability spaces, and let T ∈ N be a fixed
maturity time. In addition, we let A ⊂ Rk be a finite2 set and

S : Rn ×A× Rm → Rn

be a measurable mapping. Finally, let

` : Rn → R

be a measurable function.

2A will represent the set of control values, and we assume it is finite for simplicity, in order to avoid technical
issues regarding existence of measurable selectors.
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We consider an underlying discrete time controlled dynamical system with state process X
taking values in Rn and control process ϕ taking values in A. Specifically, we let

Xt+1 = S(Xt, ϕt, Zt+1), t ∈ T ′, X0 = x0 ∈ Rn, (3.1)

where Z = {Zt, t ∈ T ′} is an Rm-valued random sequence, which is F-adapted and i.i.d. under
each measure Pθ.3 The true, but unknown law of Z corresponds to measure Pθ∗ . A control process
ϕ is admissible, if it is F-adapted. We denote by A the set of all admissible controls.

Using the notation of Section 2 we set L(X,ϕ) = `(XT ), so that the problem (2.1) becomes
now

inf
ϕ∈A

Eθ∗`(XT ). (3.2)

3.1 Formulation of the adaptive robust control problem

In what follows, we will be making use of a recursive construction of confidence regions for the
unknown parameter θ∗ in our model. We refer to [BCC16] for a general study of recursive con-
structions of confidence regions for time homogeneous Markov chains, and to Section 4 for details
of a specific recursive construction corresponding to the optimal portfolio selection problem. Here,
we just postulate that the recursive algorithm for building confidence regions uses an Rd-valued
and observed process, say (Ct, t ∈ T ′), satisfying the following abstract dynamics

Ct+1 = R(t, Ct, Zt+1), t ∈ T ′, C0 = c0, (3.3)

where R(t, c, z) is a deterministic measurable function. Note that, given our assumptions about
process Z, the process C is F-adapted. This is one of the key features of our model. Usually Ct is
taken to be a consistent estimator of θ∗.

Now, we fix a confidence level α ∈ (0, 1), and for each time t ∈ T ′, we assume that an (1-α)-
confidence region, say Θt, for θ∗, can be represented as

Θt = τ(t, Ct), (3.4)

where, for each t ∈ T ′,
τ(t, ·) : Rd → 2Θ

is a deterministic set valued function.4 Note that in view of (3.3) the construction of confidence
regions given in (3.4) is indeed recursive. In our construction of confidence regions, the mapping
τ(t, ·) will be a measurable set valued function, with compact values. The important property
of the recursive confidence regions constructed in Section 4 is that limt→∞Θt = {θ∗}, where the
convergence is understood Pθ∗ almost surely, and the limit is in the Hausdorff metric. This is not
always the case though in general. In [BCC16] is shown that the convergence holds in probability,
for the model set-up studied there. The sequence Θt, t ∈ T ′ represents learning about θ∗ based
on the observation of the history Ht, t ∈ T (cf. (3.6) below). We introduce the augmented state
process Yt = (Xt, Ct), t ∈ T , and the augmented state space

EY = Rn × Rd.

We denote by EY the collection of Borel measurable sets in EY . The process Y has the following
dynamics,

Yt+1 = G(t, Yt, ϕt, Zt+1), t ∈ T ′,
3The assumption that the sequence Z is i.i.d. under each measure Pθ is made in order to simplify our study.
4As usual, 2Θ denotes the set of all subsets of Θ.
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where G is the mapping
G : T ′ × EY ×A× Rm → EY

defined as
G(t, y, a, z) =

(
S(x, a, z), R(t, c, z)

)
, (3.5)

where y = (x, c) ∈ EY .
For future reference, we define the corresponding histories

Ht = ((X0, C0), (X1, C1), . . . , (Xt, Ct)), t ∈ T , (3.6)

so that
Ht ∈ Ht = EY × EY × . . .× EY︸ ︷︷ ︸

t+1 times

. (3.7)

Clearly, for any admissible control process ϕ, the random variable Ht is Ft-measurable. We denote
by

ht = (y0, y1, . . . , yt) = (x0, c0, x1, c1, . . . , xt, ct) (3.8)

a realization of Ht. Note that h0 = y0.

Remark 3.1. A control process ϕ = (ϕt, t ∈ T ′) is called history dependent control process if (with
a slight abuse of notation)

ϕt = ϕt(Ht),

where (on the right hand side) ϕt : Ht → A, is a measurable mapping. Note that any admissible
control process ϕ is such that ϕt is a function of X0, . . . , Xt. So, any admissible control process
is history dependent. On the other hand, given our above set up, any history dependent control
process is F–adapted, and thus, it is admissible. From now on, we identify the set A of admissible
strategies with the set of history dependent strategies.

For the future reference, for any admissible control process ϕ and for any t ∈ T ′, we denote by
ϕt = (ϕk, k = t, . . . , T − 1) the “t-tail” of ϕ; in particular, ϕ0 = ϕ. Accordingly, we denote by At
the collection of t-tails ϕt; in particular, A0 = A.

Let ψt : Ht → Θ be a Borel measurable mapping (Knightian selector), and let us denote by
ψ = (ψt, t ∈ T ′) the sequence of such mappings, and by ψt = (ψs, s = t, . . . , T − 1) the t-tail of
the sequence ψ. The set of all sequences ψ, and respectively ψt, will be denoted by ΨK and Ψt

K ,
respectively. Similarly, we consider the measurable selectors ψt(·) : Ht → Θt, and correspondingly
define the set of all sequences of such selectors by Ψ, and the set of t-tails by Ψt. Clearly, ψt ∈ Ψt

if and only if ψt ∈ Ψt
K and ψs(hs) ∈ τ(s, cs), s = t, . . . , T − 1.

Next, for each (t, y, a, θ) ∈ T ′ × EY ×A×Θ, we define a probability measure on EY :

Q(B | t, y, a, θ) = Pθ(Zt+1 ∈ {z : G(t, y, a, z) ∈ B}) = Pθ (G(t, y, a, Zt+1) ∈ B) , B ∈ EY . (3.9)

We assume that for each B the function Q(B | t, y, a, θ) of t, y, a, θ is measurable. This assumption
will be satisfied in the context of the optimal portfolio problem discussed in Section 4.

Finally, using Ionescu-Tulcea theorem, for every control process ϕ ∈ A and for every initial
probability distribution ν on EY , we define the family Qϕ,Ψν = {Qϕ,ψ

ν , ψ ∈ Ψ} of probability

measures on the canonical space ET+1
Y , with Qϕ,ψ

ν given as follows

Qϕ,ψ
ν (B0, B1, . . . , BT ) =

∫
B0

∫
B1

· · ·
∫
BT

T∏
t=1

Q(dyt|t− 1, yt−1, ϕt−1(ht−1), ψt−1(ht−1))ν(dy0) (3.10)
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Analogously we define the set Qϕ,ΨK
ν = {Qϕ,ψK

ν , ψK ∈ ΨK}.
The strong robust control problem is then given as:

inf
ϕ∈A

sup
Q∈Qϕ,ΨKν

EQ`(XT ). (3.11)

The corresponding adaptive robust control problem is:

inf
ϕ∈A

sup
Q∈Qϕ,Ψν

EQ`(XT ). (3.12)

Remark 3.2. The strong robust control problem is essentially a game problem between the hedger
and his/her Knightian adversary – the nature, who may keep changing the dynamics of the under-
lying stochastic system over time. In this game, the nature is not restricted in its choices of model
dynamics, except for the requirement that ψKt (Ht) ∈ Θ, and each choice is potentially based on the
entire history Ht up to time t. On the other hand, the adaptive robust control problem is a game
problem between the hedger and his/her Knightian adversary – the nature, who, as in the case
of strong robust control problem, may keep changing the dynamics of the underlying stochastic
system over time. However, in this game, the nature is restricted in its choices of model dynamics
to the effect that ψt(Ht) ∈ τ(t, Ct).

Note that if the parameter θ∗ is known, then, using the above notations and the canonical
construction5, the control problem reduces to

inf
ϕ∈A

EQ∗`(XT ), (3.13)

where, formally, the probability Q∗ is given as in (3.10) with τ(t, c) = {θ∗} for all t and c. It
certainly holds that

inf
ϕ∈A

EQ∗`(XT ) ≤ inf
ϕ∈A

sup
Q∈Qϕ,Ψν

EQ`(XT ) ≤ inf
ϕ∈A

sup
Q∈Qϕ,ΨKν

EQ`(XT ). (3.14)

It also holds that

inf
ϕ∈A

sup
θ∈Θ

Eθ`(XT ) ≤ inf
ϕ∈A

sup
Q∈Qϕ,ΨKν

EQ`(XT ). (3.15)

Remark 3.3. We conjecture that

inf
ϕ∈A

sup
Q∈Qϕ,Ψν

EQ`(XT ) ≤ inf
ϕ∈A

sup
θ∈Θ

Eθ`(XT ).

However, at this time, we do not know how to prove this conjecture, and whether it is true in
general.

3.2 Solution of the adaptive robust control problem

In accordance with our original set-up, in what follows we assume that ν(dx0) = δh0(dx0) (Dirac

measure), and we use the notation Qϕ,ψ
h0

and Qϕ,Ψh0 in place of Qϕ,ψ
ν and Qϕ,Ψν , so that the problem

(3.12) becomes

inf
ϕ∈A

sup
Q∈Qϕ,Ψh0

EQ`(XT ). (3.16)

5Which, clearly, is not needed in this case.
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For each t ∈ T ′, we then define a probability measure on the concatenated canonical space as
follows

Qϕt,ψt

ht
(Bt+1, . . . , BT ) =

∫
Bt+1

· · ·
∫
BT

T∏
u=t+1

Q(dyu | u− 1, yu−1, ϕu−1(hu−1), ψu−1(hu−1)).

Accordingly, we put Qϕ
t,Ψt

ht
= {Qϕt,ψt

ht
, ψt ∈ Ψt}. Finally, we define the functions Ut and U∗t as

follows: for ϕt ∈ At and ht ∈ Ht

Ut(ϕ
t, ht) = sup

Q∈Qϕ
t,Ψt

ht

EQ`(XT ), t ∈ T ′, (3.17)

U∗t (ht) = inf
ϕt∈At

Ut(ϕ
t, ht), t ∈ T ′, (3.18)

U∗T (hT ) = `(xT ). (3.19)

Note in particular that
U∗0 (y0) = U∗0 (h0) = inf

ϕ∈A
sup

Q∈Qϕ,Ψh0

EQ`(XT ).

We call U∗t the adaptive robust Bellman functions.

3.2.1 Adaptive robust Bellman equation

Here we will show that a solution to the optimal problem (3.16) can be given in terms of the
adaptive robust Bellman equation associated to it.

Towards this end we will need to solve for functions Wt, t ∈ T , the following adaptive robust
Bellman equations (recall that y = (x, c))

WT (y) = `(x), y ∈ EY ,

Wt(y) = inf
a∈A

sup
θ∈τ(t,c)

∫
EY

Wt+1(y
′)Q(dy′ | t, y, a, θ), y ∈ EY , t = T − 1, . . . , 0, (3.20)

and to compute the related optimal selectors ϕ∗t , t ∈ T ′.
In Lemma 3.4 below, under some additional technical assumptions, we will show that the optimal

selectors in (3.20) exist; namely, for any t ∈ T ′, and any y = (x, c) ∈ EY , there exists a measurable
mapping ϕ∗t : EY → A, such that

Wt(y) = sup
θ∈τ(t,c)

∫
EY

Wt+1(y
′)Q(dy′ | t, y, ϕ∗t (y), θ).

In order to proceed, to simplify the argument, we will assume that under measure Pθ, for each t ∈ T ,
the random variable Zt has a density with respect to the Lebesgue measure, say fZ(z; θ), z ∈ Rm.
We will also assume that the set A of available actions is finite. In this case, the problem (3.20)
becomes

WT (y) = `(x), y ∈ EY ,

Wt(y) = min
a∈A

sup
θ∈τ(t,c)

∫
Rm

Wt+1(G(t, y, a, z))fZ(z; θ)dz, y ∈ EY , t = T − 1, . . . , 0. (3.21)

where T (t, y, a, z) is given in (3.5). Additionally, we take the standing assumptions that
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(i) for any a and z, the function S(·, a, z) is continuous.

(ii) For each z, the function fZ(z; ·) is continuous in θ.

(iii) ` is continuous and bounded.6

(iv) For each t ∈ T ′, the function R(t, ·, ·) is continuous.

Then, we have the following result.

Lemma 3.4. The functions Wt, t = T, T − 1, . . . , 0, are upper semi-continuous (u.s.c.), and the
optimal selectors ϕ∗t , t = T, T − 1, . . . , 0, in (3.20) exist.

Proof. The function WT is continuous. Since G(T−1, ·, ·, z) is continuous, then, WT (G(T−1, ·, ·, z))
is continuous. Consequently, the function

wT−1(y, a, θ) =

∫
R
WT (G(T − 1, y, a, z))fZ(z; θ)dz

is continuous, and thus u.s.c.

Next we will apply [BS78, Proposition 7.33] by taking (in the notations of [BS78])

X = EY ×A = Rn × Rd ×A, x = (y, a),

Y = Θ, y = θ,

D =
⋃

(y,a)∈EY ×A

{(y, a)} × τ(T − 1, c),

f(x, y) = −wT−1(y, a, θ).

Recall that in view of the prior assumptions, Y is compact. Clearly X is metrizable. From the
above, f is lower semi-continuous (l.s.c). Also note that the cross section Dx = D(y,a) = {θ ∈ Θ :
(y, a, θ) ∈ D} is given by D(y,a)(t) = τ(t, c). Hence, by [BS78, Proposition 7.33], the function

w̃T−1(y, a) = inf
θ∈τ(T−1,c)

(−wT−1(y, a, θ)), (y, a) ∈ EY ×A

is l.s.c.. Consequently, the function WT−1 = infa∈A(−w̃T−1(y, a)) is u.s.c., and there exists an
optimal selector ϕ∗T−1. The rest of the proof follows in the analogous way.

The following proposition is the key result in this section.

Proposition 3.5. For any ht ∈ Ht, and t ∈ T , we have

U∗t (ht) = Wt(yt). (3.22)

Moreover, the policy ϕ∗ constructed from the selectors in (3.20) is robust-optimal, that is

U∗t (ht) = Ut(ϕ
∗
t , ht), t ∈ T ′. (3.23)

6We assume that ` is bounded to guarantee the finiteness of the expectations in (3.16), as well as finiteness of
functions Wt. Clearly this assumption can be relaxed, as it will be seen in the examples from Section 4.
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Proof. We proceed similarly as in the proof of [Iye05, Theorem 2.1], and via backward induction
in t = T, T − 1, . . . , 1, 0.

Take t = T . Clearly, U∗T (hT ) = WT (yT ). For t = T − 1 we have

U∗T−1(hT−1) = inf
ϕT−1=ϕT−1∈AT−1

sup

Q∈Qϕ
T−1,ΨT−1

hT−1

EQ`(XT )

= inf
ϕT−1=ϕT−1∈AT−1

sup
θ∈τ(T−1,cT−1)

∫
EY

U∗T (hT−1, y)Q(dy | T − 1, yT−1, ϕT−1(hT−1), θ)

= inf
ϕT−1=ϕT−1∈AT−1

sup
θ∈τ(T−1,cT−1)

∫
EY

WT (y)Q(dy | T − 1, yT−1, ϕT−1(hT−1), θ)

= inf
a∈A

sup
θ∈τ(T−1,cT−1)

∫
EY

WT (y)Q(dy | T − 1, yT−1, a, θ) = WT−1(yT−1).

For t = T − 1, . . . , 1, 0 we have by induction

U∗t (ht) = inf
ϕt∈At

sup
Q∈Qϕ

t,Ψt

ht

EQ`(XT )

= inf
ϕt=(ϕt,ϕt+1)∈At

sup
θ∈τ(t,ct)

∫
EY

sup
Q̂∈Qϕ

t+1,Ψt+1

ht,y

EQ̂`(XT )Q(dy | t, yt, ϕt(ht), θ)

≥ inf
ϕt=(ϕt,ϕt+1)∈At

sup
θ∈τ(ct,t)

∫
EY

U∗t+1(ht, y)Q(dy | t, yt, ϕt(ht), θ)

= inf
a∈A

sup
θ∈τ(t,ct)

∫
EY

U∗t+1(ht, y)Q(dy | t, yt, a, θ)

= inf
a∈A

sup
θ∈τ(t,ct)

∫
EY

Wt+1(y)Q(dy | t, yt, a, θ) = Wt(yt).

Now, fix ε > 0, and let ϕt+1,ε denote an ε-optimal control process starting at time t+ 1, so that

Ut+1(ϕ
t+1,ε, ht+1) ≤ U∗t+1(ht+1) + ε.

Then we have

U∗t (ht) = inf
ϕt∈At

sup
Q∈Qϕ

t,Ψt

ht

EQ`(XT )

= inf
ϕt=(ϕt,ϕt+1)∈At

sup
θ∈τ(t,ct)

∫
EY

sup
Q̂∈Qϕ

t+1,Ψt+1

ht,y

EQ̂`(XT )Q(dy | t, yt, ϕt(ht), θ)

≤ inf
ϕt=(ϕt,ϕt+1)∈At

sup
θ∈τ(t,ct)

∫
EY

sup
Q̂∈Qϕ

t+1,ε,Ψt+1

ht,y

EQ̂`(XT )Q(dy | t, yt, ϕt(ht), θ)

≤ inf
a∈A

sup
θ∈τ(t,ct)

∫
EY

U∗t+1(ht, y)Q(dy | t, yt, a; θ) + ε

= inf
a∈A

sup
θ∈τ(t,ct)

∫
EY

Wt+1(y)Q(dy | t, yt, a; θ) + ε = Wt(yt) + ε.

Since ε was arbitrary, the proof of (3.22) is done. Equality (3.23) now follows easily.
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4 Example: Dynamic Optimal Portfolio Selection

In this section we will present an example that illustrates the adaptive robust control methodology.

We follow here the set up of [BGSCS05] in the formulation of our dynamic optimal portfolio
selection. As such, we consider the classical dynamic optimal asset allocation problem, or dynamic
optimal portfolio selection, when an investor is deciding at time t on investing in a risky asset and
a risk-free banking account by maximizing the expected utility u(VT ) of the terminal wealth, with
u being a given utility function. The underlying market model is subject to the type of uncertainty
that has been introduced in Section 2.

Consider a risk-free asset B with a constant interest rate r = (Bt+1−Bt)/Bt, and a risky asset
with the corresponding return from time t to t + 1 denoted by rSt+1. We assume that the return
process rS , is observed. The dynamics of the wealth process produced by a self-financing trading
strategy is given by

Vt+1 = Vt(1 + r + ϕt(r
S
t+1 − r)), t ∈ T ′, (4.1)

with the initial wealth V0 = v0, and where ϕt denotes the proportion of the portfolio wealth invested
in the risky asset from time t to t + 1. We assume that the process ϕ takes finitely many values,
say ai, i = 1, . . . , N where ai ∈ [0, 1].

We further assume that rSt + 1, t = 1, . . . , T , is an i.i.d. sequence of log-normal distributed
random variables.7 Namely,

rSt = eZt − 1,

where Zt is an i.i.d. sequence of Gaussian random variables with mean µ and variance σ2. Equiva-
lently, we put Zt = µ+ σεt, where εt, t ∈ T ′ are i.i.d. standard Gaussian random variables. Note
that under the above model assumptions, the wealth process remains positive a.s..

Using the notations from Section 3, here we have that Xt = Vt, and setting x = v we get

S(v, a, z) = v(1 + r + a(ez − 1− r)), `(v) = −u(v), A = {ai, i = 1, . . . , N}.

The model uncertainty comes from the unknown parameters µ and/or σ. We will discuss two
cases: Case 1 - unknown mean µ and known standard deviation σ, and Case II - both µ and σ are
unknown.

Case I. Assume that σ is known, and the model uncertainty comes only from the unknown pa-
rameter µ∗. Thus, using the notations from Section 3, we have that θ∗ = µ∗, θ = µ, and we take
Ct = µ̂t, Θ = [µ, µ] ⊂ R, where µ̂ is an estimator of µ, given the observations Z, that takes values
in Θ. For the detailed discussion on the construction of such estimators we refer to [BCC16].
For this example, it is enough to take µ̂ the Maximum Likelihood Estimator (MLE), which is the
sample mean in this case, projected appropriately on Θ. Formally, the recursion construction of µ̂
is defined as follows:

µ̃t+1 =
t

t+ 1
µ̂t +

1

t+ 1
Zt+1,

µ̂t+1 = π(µ̃t+1), t ∈ T ′,
(4.2)

with µ̂0 = c0, and where π is the projection to the closest point in Θ, i.e. π(µ) = µ if µ ∈ [µ, µ],
π(µ) = µ if µ < µ, and π(µ) = µ if µ > µ. We take as the initial guess c0 any point in Θ. It is
immediate to verify that

R(t, c, z) = π

(
t

t+ 1
c+

1

t+ 1
z

)
7This is the same as to assume that the excess log-returns are normally distributed.
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is continuous in c and z. Putting the above together we get that the function G corresponding to
(3.5) is given by

G(t, v, c, a, z) =

(
v(1 + r + a(ez − 1− r)), t

t+ 1
c+

1

t+ 1
z

)
.

Now, we note that the (1− α)-confidence region for µ∗ at time t is given as8

Θt = τ(t, µ̂t),

where

τ(t, c) =

[
c− σ√

t
qα/2, c+

σ√
t
qα/2

]
,

and where qα denotes the α-quantile of a standard normal distribution. With these at hand we
define the kernel Q according to (3.9), and the set of probability measures Qϕ,Ψh0 on canonical space
by (3.10).

Formally, the investor’s problem9, in our notations and setup, is formulated as follows

inf
ϕ∈A

sup
Q∈Qϕ,Ψh0

EQ[−u(VT )] (4.3)

where A is the set of self-financing trading strategies.
The corresponding adaptive robust Bellman equation becomes{

WT (v, c) = −u(v),

Wt(v, c) = infa∈A supµ∈τα(t,c) E [Wt+1 (G(t, v, c, a, µ+ σεt+1))] ,
(4.4)

where the expectation E is with respect to a standard one dimensional Gaussian distribution. In
view of Proposition 3.5, the function Wt(v, c) satisfies

Wt(v, c) = inf
ϕt∈At

sup
Q∈Qϕ

t,Ψt

h′t

EQ[−u(VT )],

where h′t = (ht−1, v, c) for any ht−1 = (v0, c0, . . . , vt−1, ct−1) ∈ Ht−1. So, in particular,

W0(v0, c0) = inf
ϕ∈A

sup
Q∈Qϕ,Ψh0

EQ[−u(VT )],

and the optimal selector ϕ∗t , t ∈ T , from (4.4) solves the original investor’s allocation problem.
To further reduce the computational complexity, we consider a CRRA utility of the form u(x) =

x1−γ

1−γ , for x > 0, and some γ 6= 1. Note that the function ` = −u is not bounded and thus it does not
satisfy condition (iii). However, as already mentioned, condition (iii) is just a sufficient conditions,
and one can check directly that in this particular example of CRRA utility, and under above
assumptions on the dynamics of X, all results from Section 3.2.1 hold true.

In this case we have

u(VT ) = u(Vt)

[
T−1∏
s=t

(1 + r + ϕs(e
Zs+1 − 1− r))

]1−γ
, t ∈ T ′.

8We take this interval to be closed, as we want it to be compact.
9The original investor’s problem is supϕ∈A infQ∈Qϕ,Ψ

h0

EQ[u(VT )], where A is the set of self-financing trading strate-

gies
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Note that

Wt(v, c) = −u(v) ·


supϕt∈At inf

Q∈Qϕ
t,Ψt

h′t

EQ

[(∏T−1
s=t (1 + r + ϕs(e

Zs+1 − 1− r))
)1−γ]

, γ < 1,

infϕt∈At sup
Q∈Qϕ

t,Ψt

h′t

EQ

[(∏T−1
s=t (1 + r + ϕs(e

Zs+1 − 1− r))
)1−γ]

, γ > 1.

Next, following the ideas presented in [BGSCS05], we will prove that for t ∈ T and any c ∈ [a, b]

the ratio Wt(v, c)/v
1−γ does not depend on v, and that the functions W̃t defined as W̃t(c) =

Wt(v, c)/v
1−γ satisfy the following backward recursion

W̃T (c) = 1
1−γ ,

W̃t(c) = infa∈A supµ∈τα(t,c) E
[
(1 + r + a(eµ+σεt+1 − 1− r))1−γ

W̃t+1(
t
t+1c+ 1

t+1(µ+ σεt+1))
]
, t ∈ T ′.

(4.5)

We will show this by backward induction in t. First, the equality W̃T (c) = 1
1−γ is obvious. Next,

we fix t ∈ T ′, and we assume that Wt+1(v, c)/v
1−γ does not depend on v. Thus, using (4.4) we

obtain

Wt(v, c)

v1−γ
= inf

a∈A
sup

µ∈τα(t,c)
E
[
(1 + r + a(eµ+σεt+1 − 1− r))1−γW̃t+1 (π(t, v, c, a, µ+ σεt+1))

]
does not depend on v since W̃t+1 does not depend on its first argument.

We finish this example with several remarks regarding the numerical implementations aspects of
this problem. By considering CRRA utility functions, and with the help of the above substitution,
we reduced the original recursion problem (4.4) to (4.5) which has a lower dimension, and which
consequently significantly reduces the computational complexity of the problem.

In the next section we compare the strategies (and the corresponding wealth process) obtained
by the adaptive robust method, strong robust methods, adaptive control method, as well as by
considering the case of no model uncertainty when the true model is known.

Assuming that the true model is known, the trading strategies are computed by simply solving
the optimization problem (3.2), with its corresponding Bellman equation{

W̃T = 1
1−γ ,

W̃t = infa∈A E
[
(1 + r + a(eµ

∗+σεt+1 − 1− r))1−γW̃t+1)
]
, t ∈ T ′.

(4.6)

Similar to the derivation of (4.5), one can show that the Bellman equation for the robust control
problem takes the form{

W̃T = 1
1−γ ,

W̃t = infa∈A supµ∈Θ E
[
(1 + r + a(eµ+σεt+1 − 1− r))1−γW̃t+1

]
, t ∈ T ′.

(4.7)

Note that the Bellman equations (4.6) and (4.7) are recursive scalar sequences that can be computed
numerically efficiently with no state space discretization required. The adaptive control strategies
are obtained by solving, at each time iteration t, a Bellman equation similar to (4.6), but by
iterating backward up to time t and where µ∗ is replaced by its estimated value µ̂t.

To solve the corresponding adaptive control problem, we first perform the optimization phase.
Namely, we solve the Bellman equations (4.6) with µ∗ replaced by µ, and for all µ ∈ Θ. The
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optimal selector is denoted by ϕµt , t ∈ T ′. Next, we do the adaptation phase. For every t ∈
{0, 1, 2, . . . , T − 1}, we compute the pointwise estimate µ̂t of θ∗, and apply the certainty equivalent

control ϕt = ϕµ̂tt . For more details see, for instance, [KV15], [CG91].

Case II. Assume that both µ and σ are the unknown parameters, and thus in the notations of
Section 3, we have θ∗ = (µ∗, (σ∗)2), θ = (µ, σ2), Θ = [µ, µ] × [σ2, σ2] ⊂ R × R+, for some fixed
µ, µ ∈ R and σ2, σ2 ∈ R+. Similar to the Case I, we take the MLEs for µ∗ and (σ∗)2, namely the
sample mean and respectively the sample variance, projected appropriately to the rectangle Θ. It
is shown in [BCC16] that the following recursions hold true

µ̃t+1 =
t

t+ 1
µ̂t +

1

t+ 1
Zt+1,

σ̃2t+1 =
t

t+ 1
σ̂2t +

t

(t+ 1)2
(µ̂t − Zt+1)

2,

(µ̂t+1, σ̂
2
t+1) = π(µ̃t+1, σ̃

2
t+1), t = 1, . . . , T − 1,

with some initial guess µ̂0 = c′0, and σ̂20 = c′′0, and where π is the projection10 defined similarly as
in (4.2). Consequently, we put Ct = (C ′t, C

′′
t ) = (µ̂t, σ̂

2
t ), t ∈ T , and respectively we have

R(t, c, z) = π

(
t

t+ 1
c′ +

1

t+ 1
z,

t

t+ 1
c′′ +

t

(t+ 1)2
(c′ − z)2

)
,

with c = (c′, c′′). Thus, in this case, we take

G(t, v, c, a, z) =

(
v(1 + r + a(ez − 1− r)), t

t+ 1
c′ +

1

t+ 1
z,

t

t+ 1
c′′ +

t

(t+ 1)2
(c′ − z)2

)
.

It is also shown in [BCC16] that here the (1 − α)-confidence region for (µ∗, (σ∗)2) at time t is an
ellipsoid given by

Θt = τ(t, µ̂t, σ̂
2
t ), τ(t, c) =

{
c = (c′, c′′) ∈ R2 :

t

c′′
(c′ − µ)2 +

t

2(c′′)2
(c′′ − σ2)2 ≤ κ

}
,

where κ is the (1 − α) quantile of the χ2 distribution with two degrees of freedom. Given all
the above, the adaptive robust Bellman equations are derived by analogy to (4.4)-(4.5). Namely,

W̃T (c) = 1
1−γ and, for any t ∈ T ′,

W̃t(c) = sup
a∈A

inf
(µ,σ2)∈τ(t,c)

E
[
(1 + r + a(µ+ σεt+1))

1−γ (4.8)

× W̃t+1

(
t

t+ 1
c′ +

1

t+ 1
(eµ+σεt+1 − 1− r), t

t+ 1
c′′ +

t

(t+ 1)2
(c′ − (µ+ σεt+1))

2

)]
.

The Bellman equations for the true model, and strong robust method are computed similarly to
(4.6) and (4.7).

4.1 Numerical Studies

In this section, we compute the terminal wealth generated by the optimal adaptive robust controls
for both cases that are discussed in Section 4. In addition, for these two cases, we compute the

10We refer to [BCC16] for precise definition of the projection π, but essentially it is defined as the closest point in
the set Θ.
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terminal wealth by assuming that the true parameters µ∗ and (σ∗)2 are known, and then using
respective optimal controls; we call this the true model control specification. We also compute
the terminal wealth obtained from using the optimal adaptive controls. Finally, we compute the
terminal wealth using optimal robust controls, which, as it turns out, are the same in Case I as
the optimal strong robust controls. We perform an analysis of the results and we compare the four
methods that are considered.

In the process, we first numerically solve the respective Bellman equation for each of the four
considered methods. This is done by backward induction, as usual.

Note that expectation operator showing in the Bellman equation is just an expectation over
the standard normal distribution. For all considered control methods and for all simulation con-
ducted, we approximate the standard normal distribution by a 10-points optimal quantizer (see,
e.g., [PP03]).

The Bellman equations for the true model control specification and for the adaptive control
are essentially the same, that is (4.6), except that, as already said above, in the adaptive control
implementation, we use the certainty equivalent approach: at time t the Bellman equation is solved
for the time-t point estimate of the parameter µ∗ (in Case I), or for the time-t point estimates of
the parameters µ∗ and (σ∗)2 (in Case II).

In the classic robust control application the Bellman equation (4.7) is solved as is normally done
in the dynamic min-max game problem, in both Case I and Case II.

In the adaptive robust control application the Bellman equation (4.5) is a recursion on a real-

valued cost-to-go function W̃ . In Case I, this recursive equation is numerically solved by discretizing
the state space associated with state variable µ̂t. In our illustrative example, this discretization
of the state space has been done by simulating sample paths of the state process µ̂· up to horizon
time T . This simulation has been made under the true model11. At each time t, the state space
grid has been defined as the collection of sample values taken by this process at time t. Analogous
procedure has been applied in Case II with regard to state variables µ̂t and σ̂2t .
Case I. In order to implement adaptive robust control method for solving the optimal allocation
problem, we start by constructing a grid in both time and space. The grid consists of a number
of simulated paths of µ̂. Then, we solve equations (4.5) at all grid points for the optimal trading
strategies.

As stated above, the implementation of the adaptive control method includes two steps. First,
for each µ in the uncertain set Θ = [µ, µ], we solve the following Bellman equations:{

W̃T = − 1
1−γ ,

W̃t = infa∈A E
[
W̃t+1(1 + r + a(eµ+σεt+1 − 1− r))1−γ

]
, t ∈ T ′.

It is clear that at each time t, the optimal control is parameterized by µ. With this in mind, at
each time t ∈ T ′, we choose the control value with µ̂t replacing µ in the formula for the optimal
control.

Under classical robust control method, the investor’s problem becomes

inf
ϕ∈A

sup
θ∈Θ

Eθ[−u(VT )] = −v1−γ0 sup
ϕ∈A

inf
µ∈[µ,µ]

E

 1

1− γ

(
T−1∏
t=0

(
1 + r + ϕt(e

µ+σεt+1 − 1− r)
))1−γ .

(4.9)

11Of course, this cannot be done if the control method is applied on genuinely observed market data since the
market model is (by nature) not known. One possible solution would be first to estimate the model parameters based
on a past history of Z and second to generate sample paths of the state process µ̂· according to this estimated model.
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The inner infimum problem in (4.9) is attained at µ = µ. Accordingly, the robust control problem
becomes

inf
ϕ∈A

sup
θ∈Θ

Eθ[−u(VT )] =
v1−γ0

1− γ
inf
ϕ∈A

E

−(T−1∏
t=0

(
1 + r + ϕt(e

µ+σεt+1 − 1− r)
))1−γ .

The corresponding Bellman equation becomes{
W̃T = − 1

1−γ ,

W̃t = infa∈A E
[
W̃t+1(1 + r + a(eµ+σεt+1 − 1− r))1−γ

]
, t ∈ T ′.

(4.10)

We compute the robust optimal strategy by solving equation (4.10) backwards.
It can be shown that for this allocation problem, the strong robust control problem (3.11) is

also solved via the Bellman equation (4.10). Hence, in this case, strong robust control method and
robust control method provide the same result.

For numerical study we choose the parameter set as Θ = [−1, 1], and we consider a set of time
horizons T = 0.1, 0.2, . . . , 0.9, 1. The other parameters are chosen as follows

V0 = 100, r = 0.02, α = 0.05, γ = 1.5, σ = 0.3, µ∗ = 0.06, µ̂0 = 0.02.

For every T , we compute the terminal wealth VT generated by application of the optimal strategies
corresponding to four control methods mentioned above: adaptive robust, classical robust, adaptive
and the optimal control (assuming the true parameters are known in the latter case). In each method
we use 1000 simulated paths of the risky asset and 300T rebalancing time steps. Finally, we use
the acceptability index Gain-to-Loss Ratio (GLR)

GLR(V ) =

{
Eθ∗ [e−rTVT−V0]

Eθ∗ [(e−rTVT−V0)−]
, Eθ∗ [e−rTVT − V0] > 0,

0, otherwise,

and 95% Value-at-Risk, V@R(VT ) = inf{v ∈ R : Pθ∗(VT + v < 0) ≤ 95%}, to compare the
performance of every method.

Figure 1: Time-series of portfolio wealth means, and standard deviations. Unknown mean.
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Figure 2: Time-series of portfolio V@R and GLR. Unknown mean.

According to Figure 2, it is apparent that adaptive robust method has the best performance
among the considered methods. GLR in case of adaptive robust control is higher than in case of
classical robust control and than in case of adaptive control for all the terminal times except for
T = 0.1. Moreover, even though the adaptive control produces the highest mean terminal wealth
(cf. Figure 1), the adaptive control is nevertheless the most risky method in the sense that the
corresponding terminal wealth has the highest standard deviation and value at risk. The reason
behind such phenomenon is, arguably, that adaptive control method uses the point estimator while
solving the optimization problem, so it can be overly aggressive and offers no protection against
the estimation error which always exists.

Optimal portfolio wealth corresponding to classical robust method is the lowest among all the
four approaches analyzed. This is not surprising since classical robust control is designed to deal
with the worst case scenario. Therefore, as illustrated by Figure 3, optimal holdings in the risky
asset given by this method are always 0, which means that an investor following the classical robust
method puts all the money in the banking account and, thus, fails to benefit from the price rise of
the risky asset.

Figure 3: Time-series of optimal strategies means. Unknown mean.

Adaptive robust control method is meant to find the right balance between being aggressive
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and conservative. As shown in Figures 1 and 2, adaptive robust produces higher terminal wealth
than classical robust, and it bears lower risk than adaptive control. The robustness feature of
the adaptive robust control method succeeds in controlling the risk stemming from the model
uncertainty. Moreover, the learning feature of this method prevents it from being too conservative.
Case II. Here, the adaptive robust control method, the classical robust control method and the
adaptive control method need to account uncertainty regarding the true parameter θ∗ = (µ∗, (σ∗)2).

Figure 4: Times-series of the confidence regions τ(t, µ̂t, σ̂
2
t ) for one particular path of (µ̂t, σ̂

2
t ) at

confidence level α = 10%.

We choose the parameter set as Θ = [−1, 1] × [0, 0.5]. As in Case I we consider a set of time
horizons T = 0.1, 0.2, . . . , 0.9, 1, and 300T time iterations (or rebalancing dates) evenly distributed
over the time horizon T . Construction of the discretized state space (required in the adaptive
control method) and application of the computed optimal strategies are made over 500 sample
paths of the true model. The other parameters are chosen as follows

V0 = 100, r = 0.02, α = 0.05, γ = 20, µ∗ = 0.08, σ∗ = 0.30, µ̂0 = 0.1, σ̂0 = 0.40.

Figure 4 shows the evolution of uncertainty sets for a particular sample path of the true model.
We can show that the uncertainty on the true parameter (µ∗, σ∗) quickly reduces in size as realized
excess returns are observed through time. Moreover, we can notice that for α = 10%, the ellipsoid
regions contains the true parameter for nearly all time steps.

As in Case I we compared performance of adaptive robust control, adaptive control, robust
control and optimal control, by simulating paths generated by the true model. Figure 5 shows
how mean and standard deviation of optimal portfolio wealth values evolve through time. It also
displays time-evolution of unexpected loss 95%-VaR and Gain-to-Loss Ratio (GLR). In this 2-
dimensional case, the conclusion are in line with the previous case I where only µ were assumed
unknown. The adaptive robust strategy outperforms adaptive control and robust control strategies
in terms of GLR. Adaptive control strategy gives the highest portfolio wealth mean but at the cost
of relatively high standard deviation. The unexpected loss 95%-VaR series is also not in favor of
the adaptive control approach.

Finally, we want to mention that optimal holdings in the risky asset in this case exhibit similar
behaviour as in Case I.
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Figure 5: Time-series of portfolio wealth means, and standard deviations. Unknown mean and
variance.
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