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TUNNEL EFFECT IN A SHRINKING SHELL
ENLACING A MAGNETIC FIELD

AYMAN KACHMAR AND NICOLAS RAYMOND

Abstract. Let C be a smooth planar curve. We assume that C is simple, closed, smooth,
symmetric with respect to an axis and its curvature attains its minimum at exactly two points
away from the axis of symmetry. In a tubular neighborhood about C, we study the Laplace
operator with a magnetic flux and mixed boundary conditions. As the thickness of the domain
tends to 0, we establish an explicit asymptotic formula for the splitting of the first two eigenvalues
(tunneling effect).

1. Introduction

1.1. Motivation and context. This paper is devoted to investigate the effect of geometric
symmetries on the spectrum of the magnetic Schrödinger operator. This issue is actually quite
general: essentially, we want to describe the difference of the first two eigenvalues in some
asymptotic limits.

This problem is quite non trivial, especially in the large magnetic field limit. The existing
results suggest a tunnel effect when the domain has symmetries (see [1, 3, 7]). However, the
formulas for the splitting of the first eigenvalues are still missing, even for two dimensional
domains. For ellipses, only a conjecture has been provided in [2] and numerically checked. This
conjecture was suggested by a formal dimensional reduction and the analysis in [4, 14].

Some authors have noticed analogies between the magnetic Laplacian and the Robin Laplacian
(see for example [8] and [15]). These operators share common features, and, in the Robin case,
it has been possible to describe rigorously tunneling effects induced by the geometry, see [9, 10].
The present paper is devoted to the analysis of a hybrid of these two operators. We tackle an
elementary geometric situation which can be analyzed via a reduction to dimension one (in the
shrinking limit ε → 0, which turns out to be of semiclassical nature), in the case when the
magnetic field is a pure flux. The behavior of the spectral gap λ2(ε)− λ1(ε) in the limit ε → 0
can be established via the methods developed in recent papers (see [4, 9]). Our aim is mainly to
explain how these previous contributions can be used to establish a tunneling result involving a
pure magnetic field in a limit of semiclassical nature: such results are indeed rather rare in the
literature. Since the ingredients have been introduced in our previous works, we will only give
the path to the result and highlight the main differences.

1.2. Framework.

1.2.1. Geometry. Let C be a simple, smooth and closed curve in R2. The curve C splits R2 into
three connected parts

R2 = Ω
⋃
C
⋃(

R2 \ Ω
)

(1.1)

where the set Ω is an interior domain, i.e. open and bounded.
For ε > 0, we define the tubular domain

Ωε = {x ∈ Ω : 0 < dist(x,C) < ε} (1.2)

with “thickness” ε (see Figure 1).
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Figure 1. The red region is Ωε. The dashed red curve carries the Dirichlet
condition and the black one the Neumann condition.

1.2.2. Definition of the operator. Let A : R2 → R2 be a vector field satisfying

curlA = 0 in R2 \K , (1.3)

where K ⊂ Ω is a compact set. For ε > 0, consider the Laplace operator with magnetic field A

Lε = −(∇− iA)2 in L2(Ωε) , (1.4)

with Dirichlet boundary condition on C and Neumann boundary condition on {dist(x,C) = ε}.
The analysis of this operator (without a magnetic field) is the subject of the paper [12] in a

non-periodic framework. The operator with Dirichlet boundary condition has been studied in
numerous papers (see [5, 13] and the references therein). In this setting, the effective operator is
independent of ε and thus does not lead to an asymptotic spectral confinement, unlike the case
of mixed Dirichlet-Neumann conditions that we treat here.

Note that when ε is sufficiently small, curlA = 0 in Ωε. Consequently, the spectrum of the
operator Lε depends on A through the magnetic flux

f0 =
1

|∂Ω|

∫
Ω

curlA dx . (1.5)

We denote by
(
λn(ε) = λn(ε, f0)

)
n≥1

the non-decreasing sequence of eigenvalues of Lε.

1.3. The effective operator. Let [−L,L) 3 s 7→M(s) ∈ C be the arc-length parameterization
of the curve C (see Figure 1). Here the arc-length measure of C is 2L. For all s ∈ [−L,L[, let
κ(s) denote the curvature of C at the point M(s). We define the operator

Leff
ε = −

(
d

ds
− if0

)2

+
κ(s)

ε
in L2([−L,L)) , (1.6)
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with periodic conditions at ±L. Here f0 is the magnetic flux introduced in (1.5). We will refer
to the operator Leff

ε as the “effective” operator. As consequence of the analysis in [12], if f0 = 0
then, for all n ∈ N∗,

λn(ε)−
( π

2ε

)2
= µeff

n (ε) +O(1) (1.7)

as ε → 0+. This result continues to hold when f0 6= 0 by a slight adjustement of the argument
given in [12]. If, moreover, the curvature function κ has a unique non-degenerate minimum at
s0, then the harmonic approximation yields

µeff
n (ε)− κ(s0)

ε
∼ (2n− 1)

√
κ′′(s0)

2

1√
ε

as ε→ 0+ .

Remark 1.1. If we exchange the Dirichlet and Neumann conditions, then κ has to be changed
into −κ and thus we have to consider a point of maximal curvature.

On the contrary, if the function κ is even and has two non-degenerate minima, then tunneling
occurs and the spectral gap µeff

2 (ε) − µeff
1 (ε) is exponentially small as ε → 0+ (see Eq. (1.9)

below). We introduce the electric potential v = κ− κmin and the following quantities

S = min (Su, Sd) , Su =

∫
[sr,s`]

√
v(s) ds , Sd =

∫
[s`,sr]

√
v(s) ds , (1.8)

where [p, q] denotes the arc joining p and q in C counter-clockwise. The indices u and d refer to
the up and down parts of C. Using a rescaling and [4, Theorem 1.4] (see also [14]), we have

µeff
2 (ε)− µeff

1 (ε) = 2|w(ε)|+O(ε−
1
4 e−S/ε

1/2
) , (1.9)

where
w(ε) = 2ε−

3
4π−

1
2γ

1
2

(
Au

√
v(0)e−Su/ε

1/2
e−iLf0 + Ad

√
v(L)e−Sd/ε

1/2
eiLf0

)
,

with

Au = exp

(
−
∫

[sr,0]

(v
1
2 )′(s) + γ√

v(s)
ds

)
,

Ad = exp

(
−
∫

[s`,L]

(v
1
2 )′(s)− γ√

v(s)
ds

)
,

γ =
(
v′′(sr)/2

) 1
2 =

(
v′′(s`)/2

) 1
2 .

and f0 is the flux introduced in (1.5).

1.4. Main result. In the symmetric case of Assumption 1.2 below, the formula in (1.7) for the
two dimensional setting is not enough to describe exponentially small effects. We will improve
it in this special case.

In the rest of this paper, we will assume that the curve C is symmetric about the y-axis
and the curvature has two non-degenerate minima. In terms of the arc-length parametrization
[−L,L) 3 s 7→ M(s) =

(
x(s), y(s)

)
of C, we reformulate our assumption as follows (see also

Figure 1).

Assumption 1.2.
i. For all s ∈ (−L,L), M(s) =

(
x(s), y(s)

)
=
(
x(−s),−y(s)

)
,

ii. The function s 7→ κ(s) is even and admits two non-degenerate minima at sl ∈ (0, L) and
sr ∈ (−L, 0), such that

κ′′(s`) = κ′′(sr) = k2 > 0 . (1.10)

Figure 1 illustrates Assumption 1.2. Our result is the following theorem.
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Theorem 1.3. Under Assumption 1.2, the spectral gap satisfies

λ2(ε)− λ1(ε) ∼ µeff
2 (ε)− µeff

1 (ε) as ε→ 0+ .

Moreover, the asymptotic behavior of µeff
2 (ε)− µeff

1 (ε) is described in (1.9).

Remark 1.4. As noticed in Remark 1.1, if we exchange the Dirichlet and Neumann conditions,
the points of maximal curvature play a crucial role. In this case, if there are two symmetric
points of (non-degenerate) maximal curvature, the same kind of tunneling formula is true.

1.5. Organization of the paper. The paper is organized as follows. In Section 2, we describe
the operators involved in the proof of the main theorem. In Section 3, we explain why (and in
which sense) the first two eigenfunctions of Lε are localized near the points of minimal curvature.
Section 4 is devoted to the WKB approximation of the ground states for the one well problems.
In Section 5, we describe the interaction between the wells.

2. Operators

2.1. The transversal operators. In this section, we discuss the spectral properties of one
dimensional operators which are involved in the proof of the main result (Theorem 1.3).

2.1.1. The free operator. Consider the operator L1D
0 = − d2

dτ2
in L2(0, 1) with Dirichlet condition

at τ = 0 and Neumann condition at τ = 1. The spectrum of this operator consists of the simple
eigenvalues

λ1D
n =

(π
2

+ (n− 1)π
)2

(n = 1, 2, · · · ) .

The L2-normalized ground state of this operator is

u0(τ) =
√

2 sin
(πτ

2

)
. (2.1)

2.1.2. The weighted operator. Let β ∈ (0, 1). Consider the operator

L1D
β = −(1− βτ)−1 d

dτ

(
(1− βτ)

d

dτ

)
acting on the weighted space L2

(
(0, 1); (1− βτ)dτ

)
with Dirichlet condition at τ = 0 and Neu-

mann condition at τ = 1.
Let (λ1D

n (β))n≥1 be the sequence of eigenvalues of the operator L1D
β . Arguing as in [8,

Lem. 4.4&Prop 4.5] (see also [12]), there exist C > 0 and β0 ∈ (0, 1) such that, for all β ∈ (0, β0),
we have ∣∣∣∣λ1D

1 (β)−
(π

2

)2
+ β

∣∣∣∣ ≤ Cβ2 , λ1D
2 (β) ≥

(
3π

2

)2

− Cβ . (2.2)

2.2. The tubular operator.

2.2.1. The tubular coordinates. We will use the canonical tubular coordinates (s, t) where s is
the arc-length and t is the distance to the boundary (see Figure 1). We will describe these
coordinates here. Recall that

[−L,L) 3 s 7→M(s) ∈ Γ (2.3)
is the arc-length parametrization of the curve C. The unit tangent vector of C at the pointM(s)
of the boundary is given by

T (s) = M ′(s).

We define the curvature κ(s) by the following identity

T ′(s) = κ(s) ν(s),
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where ν(s) is the unit vector, normal to the curve C, pointing outward at the point M(s).
We choose the orientation of the parametrization M to be counter-clockwise, so that, for all
s ∈ [−L,L),

det(T (s), ν(s)) = 1 .

We introduce the change of coordinates

Φ : (−L,L]× (0, ε) 3 (s, t) 7→ x = M(s)− t ν(s) ∈ Ωε . (2.4)

The determinant of the Jacobian of Φ is given by

a(s, t) = 1− tκ(s) . (2.5)

In light of Assumption 1.2, the choice of the origin of the parametrization is the pointM(0) such
that [M(−L),M(0)] defines the axis of symmetry. This is illustrated in Figure 1.

2.2.2. The operator in the new coordinates. We will express the operator Lε in the (s, t) coordi-
nates. For all u ∈ L2(Ωε), we define the pull-back function

ũ(s, t) = u(Φ(s, t)) . (2.6)

The magnetic potential A induces a new magnetic potential Ã in the (s, t) coordinates. The
components of Ã are obtained by projecting the vector field A on the normal and tangential
vectors. Applying a gauge transformation (in the (s, t) coordinates), we may assume that Ã
satisfies (see [6, Proof of Lem. F.1.1])

Ã(s, t) = (f0, 0) , (2.7)

where f0 is the magnetic flux introduced in (1.5).
In this way, we see that the operator Lε is unitary equivalent to the operator (see [6, Eq. (F.4)-

(F.5)])

L̃ε = −a−1(∂s − if0)
(
a−1(∂s − if0)

)
− a−1∂t(a∂t) in L2

(
[−L,L)× (0, ε); adsdt

)
, (2.8)

where a is introduced in (2.5). The boundary conditions for L̃ε are as follows: periodic boundary
conditions at s = ±L, Dirichlet condition at t = 0 and Neumann condition at t = ε.

Performing the rescaling t = ετ and multiplying by ε2 (to have a “semiclassical normalization”),
we obtain the new operator

Pε = −ε2a−1
ε (∂s − if0)

(
a−1
ε (∂s − if0)

)
− a−1

ε ∂τ (aε∂τ ) in L2
(
[−L,L)× (0, 1); aεdsdt

)
, (2.9)

where

aε(s, τ) = 1− εκ(s)τ . (2.10)

The quadratic form of the operator Pε is

qε(v) =

∫ L

−L

∫ 1

0

(
ε2a−2

ε |(∂s − if0)v|2 + |∂τv|2
)
aε(s, τ) dτds , (2.11)

defined on the form domain

Dom(qε) = {v ∈ H1
(
(−L,L)× (0, 1)

)
: v(0) = 0 , v(L) = v(−L)} .

Note that the n-th eigenvalue, λn(ε), of Lε is given now as

λn(ε) = ε−2λn(Pε) . (2.12)
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3. Agmon estimates in the double well case

3.1. Lower bound of the quadratic form and consequences. Using (2.11), (2.2) with
β = εκ(s), and the min-max principle, we obtain the following inequality

qε(v) ≥
∫ L

−L

∫ 1

0

(
ε2a−2

ε |(∂s − if0)v|2 +
(π

2

)2
+
(
εκ(s)−O(ε2)

)
|v|2
)
aε(s, t)dsdτ , (3.1)

where aε is introduced in (2.10). Thus, we recognize the quadratic of the effective operator (see
(1.6)) in this lower bound.

Using (3.1) and classical estimates for one dimensional electric Schrödinger operators, we can
derive the localization of the first eigenfunctions of Pε near the points of minimal curvature s`
and sr. The proof of the following proposition is a straightforward adaptation of the one of [9,
Prop. 4.7].

Proposition 3.1. Let α ∈ (0, 1). There exist constants C, ε0 > 0 such that, for all ε ∈ (0, ε0)

and all uε ∈
⊕2

i=1 Ker(Pε − λi(Pε)),∫ 1

0

∫ L

−L
e2Φα/

√
ε
(
|(∂s − if0)uε|2 + |uε|2

)
aε(s, τ) dsdτ ≤ Cε1/2‖uε‖2 ,

where
Φα =

√
1− αΦ , Φ = min (Φr,Φl) ,

with
∀σ ∈ [−L,L) , Φr(s) =

∫
[sr,s]

√
κ(σ)− κmin dσ ,

and
∀σ ∈ [−L,L) , Φ`(s) =

∫
[s`,s]

√
κ(σ)− κmin dσ .

Notation 3.2. For j ∈ {r, `}, the integral
∫

[sj ,s]
f(σ) dσ in Proposition 3.1 is understood as the

(connected) line integral on the curve C \ {sj} between the points sj and s in the counter
clock-wise direction.

Proposition 3.1 can be generalized as follows (cf. [9, Prop 6.1]).

Proposition 3.3. For all α ∈ (0, 1) and C0 > 0, there exist positive constants ε0, A, c, C such
that, for all ε ∈ (0, ε0), z ∈ [

(
π
2

)2
+κminε,

(
π
2

)2
+κminε+C0ε

3/2] and u ∈ Dom(Pε), the following
inequalities hold,

cε3/2‖eΦα/
√
εu‖L2 ≤ ‖eΦα/

√
ε (Pε − z)u‖L2 + Cε3/2‖u‖

L2(B̂(Aε
1
4 ))

,

and
ε2‖∂σ(e−if0seΦα/

√
εu)‖2L2 ≤ Cε−3/2‖eΦα/

√
ε (Pε − z)u‖2L2 + Cε3/2‖u‖2

L2(B̂(Aε
1
4 ))

,

where B̂(%) = {s ∈ [−L,L) : |s− s`| ≥ ρ and |s− sr| ≥ ρ}.

3.2. Rough localization of the spectrum. We recall that Pε is the operator introduced in
(2.9). Thanks to Proposition 3.1, we deduce that, in order to estimate the first eigenvalues, the
two wells can be decoupled modulo an exponentially small remainder. Then, using (1.7) and the
known results about the effective operator in (1.6), we get the following proposition.

Proposition 3.4. There exist ε0, c0 > 0 such that, for all ε ∈ (0, ε0),

Spec(Pε) ∩

[(π
2

)2
+ εκmin + ε3/2

√
k2

2
− c0ε

2,
(π

2

)2
+ εκmin + ε3/2

√
k2

2
+ c0ε

2

]
= {λ1(Pε), λ2(Pε)} (3.2)
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and

λ3(Pε) ≥
(π

2

)2
+ εκmin + 3ε3/2

√
k2

2
− c0ε

2 , (3.3)

where k2 is the constant introduced in Assumption 1.2 and κmin = mins∈[−L,L) κ(s).

The next sections are devoted to estimate the (exponentially small) difference λ2(Pε)−λ1(Pε).

4. The one well operators

4.1. Definition of the operators. We introduce the geometric constant (see Assumption 1.2)

η∗ = min

(
L

2
, |sr + L|, |sr|

)
. (4.1)

Let η ∈ (0, η∗) be a given constant. Define the “right” well operator

P̃ε,r = −ε2a−1
ε (∂s − if0)

(
a−1
ε (∂s − if0)

)
− a−1

ε ∂τ (aε∂τ ) in L2
(
Uη,r; aεdsdt

)
, (4.2)

where
Uη,r = Iη,r × (0, 1) , Iη,r = (s` + η − 2L, s` − η) . (4.3)

We assume that the functions in the domain of P̃ε,r satisfy the Neumann boundary condition at
t = 1 and the Dirichlet condition elsewhere. When f0 = 0, we will write P̃ε,r = Pε,r. Due to the
periodicity, the operator P̃ε,r is unitarily equivalent to the operator Pε,r acting as

− ε2a−1
ε (∂s − if0)

(
a−1
ε (∂s − if0)

)
− a−1

ε ∂τ (aε∂τ ) , (4.4)

on L2
(
(−L, s`−η)∪(s`+η, L); aεdsdt

)
and subject to the periodic condition at ±L, the Neumann

boundary condition at τ = 1 and the Dirichlet condition elsewhere.
Similarly, we define the “left” well operator

P̃ε,l = −ε2a−1
ε (∂s − if0)

(
a−1
ε (∂s − if0)

)
− a−1

ε ∂τ (aε∂τ ) in L2
(
Uη,l; aεdsdt

)
, (4.5)

where
Uη,l = Iη,` × (0, 1) , Iη,` = (sr + η, sr − η + 2L) . (4.6)

We assume that the functions in the domain of P̃ε,` satisfy the Neumann boundary condition
at t = 1 and the Dirichlet condition elsewhere. We also consider the flux free version Pε,`, and
Pε,` the realization of the operator on (sr + η, L)∪ (−L, sr − η+ 2L) with periodic condition on
s = ±L.

With Assumption 1.2, we are led to introduce the unitary transform

Uf(s, t) = f(−s, t) ,
and we notice that [Pε, U ] = 0. Moreover, we have U−1Pε,rU = Pε,l. Thus, the operators Pε,r
and Pε,l are unitary equivalent. Consequently, we denote by µsw

1 (ε) the first eigenvalue of the
operators Pε,r and Pε,l. We suppressed η from the notation of µsw

1 (ε) for the sake of simplicity,
and because the dependence on η is unimportant in our analysis.

We define the function φε,r by

φε,r(s, t) =

{
e−if0suε,r(s, t) if − L ≤ s ≤ sl − η
e−if0(s−2L)uε,r(s− 2L, t) if sl + η ≤ s < L

. (4.7)

Here uε,r is the positive L2-normalized ground state of Pε,r, the operator without magnetic flux.
The function φε,r is a ground state of Pε,r. We let φε,l = Uφε,r. It is a ground state of Pε,l.

Recalling that sl = −sr, we have explicitly

φε,l(s, t) =

{
e−if0(s+2L)uε,l(s+ 2L, t) if − L ≤ s ≤ sr − η
e−if0suε,l(s, t) if sr + η ≤ s < L

,

where uε,l is the positive L2-normalized ground state of the Laplace operator Pε,` in Uη,l. Note
that uε,l = Uuε,r.
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Remark 4.1. In (4.7), we have to change the gauge factor in order to satisfy the periodic boundary
condition on s = ±L.

In the sequel, we will analyze the ground state φε,r, or equivalently uε,r. The properties of
φε,r will be mapped to φε,l via the symmetry relation.

As for the second eigenvalue of the operators Pε,r and Pε,`, it satisfies (see [12]):

µsw
2 (ε) =

(π
2

)2
+ εκmin + 3

√
k2

2
ε3/2 +O(ε2) as ε→ 0+ . (4.8)

4.2. Agmon estimates. Similarly as Proposition 3.1, the concentration of the ground state φε,r
near the point sr can be quantified by an Agmon type estimate (see [9, Prop. 4.7] for the proof).

Proposition 4.2. Let α ∈ (0, 1). There exist constants C, ε0 > 0 such that, for all ε ∈ (0, ε0),∫
(−L,s`−η)∪(s`+η,L)

e2Φα,r/
√
ε
(
|(∂s − if0)φε,r|2 + |φε,r|2

)
aε(s, τ) dsdτ ≤ Cε1/2‖φε,r‖2 ,

where
Φα,r(s) =

√
1− α

∫
[sr,s]

√
κ(σ)− κmin dσ .

4.3. TheWKB construction. Let us now describe the WKB approximation of uε,r, the ground
state of the Laplace operator Pε,r in Uη,r (see (4.3)).

Proposition 4.3. There exist a sequence of smooth functions (aj)j≥0 and a sequence of real
numbers (µj)j≥3 such that the following holds. The function defined via the formal series

Ψε,r(s, τ) ∼ ε−
1
4 e−Φr(s)/

√
ε
∑
j≥0

ε
j
2aj(s, τ) , (4.9)

satisfies
eΦr/

√
ε (Pε,r − µ) Ψε,r = O(ε∞) ,

where µ is an asymptotic series in the form

µ ∼
(π

2

)2
+ εκmin + ε3/2

√
k2

2
+
∑
j≥3

µjε
j/2 , (4.10)

and
Φr(s) =

∫
[sr,s]

√
κ(σ)− κmin dσ . (4.11)

Furthermore
i) a0 is in the form a0(s, τ) = ξ0,r(σ)u0(τ) where

u0(τ) =
√

2 sin
(πτ

2

)
,

and

ξ0,r(s) = ξ0(s) =
(γ
π

) 1
4

exp

(
−
∫ s

sr

Φ′′r − γ
2Φ′r

dσ

)
is the solution of the transport equation of the effective Hamiltonian

Φ′r∂sξ0 + ∂s(Φ
′
rξ0) =

√
k2

2
ξ0 with γ =

√
k2

2
and k2 given in (1.10) .

ii) For j ≥ 1, aj(σ, τ) is a linear combination of smooth functions

fj,k(σ)gj,k(τ) ,

and satisfy the Dirichlet condition at τ = 0, and Neumann condition at τ = 1.
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Proof. We expand the operator Pε,r formally as follows

Pε,r ∼ −∂2
τ − ε2∂2

s + 2ε3τκ(σ)∂2
s + εκ(σ)∂τ + ε3τκ′(s)∂s

−
∞∑
j=1

cjε
j+2τ j(κ(s))j∂2

s +
∞∑
j=1

εj+1τ j(κ(s))j+1∂τ − κ′(s)
∞∑
j=1

εj+3djτ
j(κ(s))j∂s .

We introduce the (formal) conjugate operator

Pϑ
ε,r = exp

(
ϑ(s)√
ε

)
Pε,r exp

(
−ϑ(s)√

ε

)
,

and expand it formally as follows
Pϑ
ε,r ∼

∑
`≥0

Qϑ` ε
`/2 , (4.12)

with

Qϑ0 = −∂2
τ ,

Qϑ1 = 0 ,

Qϑ2 = κ(s)∂τ − ϑ′(s)2 ,

Qϑ3 = 2ϑ′(s)∂s + ϑ′′(s) ,

Qϑ4 = −∂2
s + c3τ

3κ(s)3 + τ3(κ(s))4∂τ , etc .

To finish the proof of Proposition 4.3, we solve the equation(
Pϑ
ε,r − µ

)∑
`≥0

a`(s, τ)ε`/2

 ∼ 0 (4.13)

by rearranging all the terms in (4.13) in the form of a power series in εj/2 and select ϑ, a`(s, τ)
and µ` by expressing the cancellation of each term of the formal series. We omit the details and
refer to [4, 9]. �

Remark 4.4. The series for µ in Proposition 4.3 is the Taylor series of the first eigenvalue µsw
1 (ε).

This follows from the spectral theorem.

4.4. Approximation of ground states. We recall the notation introduced in (4.3). In the
sequel, we denote by

• Br(a) = {s ∈ R : |s− sr| ≤ a} ;
• v(s) = κ(s)− κmin.

Recall the geometric constant η∗ introduced in (4.1). The following proposition is a conse-
quence of (3.1) via the same arguments in [9, Prop. 4.7].

Proposition 4.5. (Tangential Agmon estimates) Given η ∈ (0, η∗) and 0 < C0 < M0/2.
There exist constants c, C,R0, ε0 > 0 such that, for all ε ∈ (0, ε0), the following is true. If Φ is
a Lipschitzian function satisfying

• ∀ s ∈ Iη,r, v(s)− |Φ′(s)|2 ≥ 0 ;

• ∀ s ∈ Iη,r \Br(R0ε
1/4), v(s)− |Φ′(s)|2 ≥M0ε

1/2 ;

• ∀ s ∈ Br(R0ε
1/4), |Φ(s)| ≤M0ε

1/2 ;
then, the following inequalities hold

cε3/2‖eΦ/
√
εu‖L2(Uη,r) ≤ C‖e

Φ/
√
ε (Pε,r − z)u‖L2(Uη,r) + Cε3/2‖u‖L2(Uη,r∩Br(R0ε1/4)) , (4.14)
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and

ε2‖∂s(eΦ/
√
εu)‖2L2(Uη,r)

≤ Cε−3/2‖eΦ/
√
ε (Pε,r − z)u‖L2(Uη,r) + Cε3/2‖u‖L2(Uη,r∩Br(R0ε1/4)) , (4.15)

for all u ∈ Pε,r and z ∈
[ (

π
2

)2
+ εκmin ,

(
π
2

)2
+ εκmin + C0ε

3/2
]
.

Now we will use Proposition 4.5 with the following choice of u and Φ. First we choose u as
follows

u = ψε,r −Πrψε,r , (4.16)
where

• ψε,r(s, τ) = χη,rΨε,τ (s, τ) ;
• χη,r is a cut-off function supported in Iη,r and such that χη = 1 on I2η,r ;
• Ψε,r is the WKB solution introduced in (4.9) ;
• Πr is the orthogonal projection on the first eigenspace of the operator Pε,r .

We choose Φ as follows

Φ̂r,η,N,ε(s) = min

{
Φ̃r,N,ε(s),

√
1− α inf

σ∈I2η,r\Iη,r

(
Φr(σ) +

∫
[s,σ]

√
v(σ̃) dσ̃

)}
, (4.17)

where
Φ̃r,N,ε(s) = Φr(s)−N

√
ε max

(
Φr√
ε
,N

)
. (4.18)

Here N ∈ N, 0 < α < 1 and Φr is the potential introduced in (4.11). In this way, Proposition 4.5
yields the following WKB approximation (see [9, Prop. 5.1] for details).

Proposition 4.6. Let K ⊂ I2η,r be a compat set. The following estimate

eΦr/
√
ε(Ψε,r −ΠrΨε,r) = O(ε∞) , (4.19)

holds in C1(K;L2(0, 1)).

5. The interaction matrix

5.1. Localization of the spectrum. We will use the following notation introduced by Helffer-
Sjöstrand in [11]. Given M > 0, by writing r(h, η) = Õ(e−M/h) we mean that

• r(h, η) is defined on a set of the form (0, h0)× (0, η0) ;
• There exists a function γ : (0,∞) → R such that limη→0 γ(η) = 0, and for all α > 0,
h ∈ (0, h0) and η ∈ (0, η0), r(h, η) = O(e(α+γ(η)−M)/h).

In the sequel, we choose an arbitrary η ∈ (0, η∗) where η∗ is the geometric constant introduced
in (4.1). Some computations produce many error terms dependent on η. η is chosen sufficiently
small so that these error terms are of lower order compared to the leading terms.

Recall that µsw
1 (ε) is the ground state energy of the operators Pε,r and Pε,` and it depends

on η (see (4.2)-(4.5)). It results from the Agmon estimates in Propositions 3.1 and 4.2, and the
min-max principle that

µsw
1 (ε)− Õ(e−S/

√
ε) ≤ λ1(ε) ≤ λ2(ε) ≤ µsw

1 (ε) + Õ(e−S/
√
ε). (5.1)

5.2. The quasimodes. In this section, we recall the main lines of the strategy to reduce the
asymptotic study of the spectral gap λ2(Pε)− λ1(Pε) to the study of the two by two interaction
matrix. To construct this matrix, we will use the groundstates of the one well problems and use
them to provide an approximate basis of the space

E =
2⊕
i=1

Ker(Pε − λi(Pε)) .

We will truncate them, project them on E and orthonormalize them.
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5.2.1. Truncation. Let χη,r (respectively χη,`) be a cut-off function satisfying χη,r = 1 in {|s −
s`| ≥ 2η} (respectively χη,` = 1 in {|s − sr| ≥ 2η}) and χη,r = 0 in {|s − s`| ≤ η} (respectively
χη,` = 0 in {|s− r| ≤ η}).

We define, for α ∈ {`, r},
fε,α = χη,αφε,α , (5.2)

where φε,α is the normalized ground state of the one well operator Pε,α, see (4.5) and (4.2).
Thanks to the Agmon estimates in Proposition 3.3, the set {fε,`, fε,r} is quasi-orthonormal in

the sense that

‖fε,α‖2 = 1 + Õ(e−2S/
√
ε) and 〈fε,α, fε,β〉 = Õ(e−S/

√
ε) for α 6= β .

Furthermore, the function rε,α = (Pε − µsw(ε))fε,α, α ∈ {`, r}, satisfies,

‖rε,α‖ = Õ(e−S/
√
ε) .

5.2.2. Projection. Now, we consider the new quasimodes, for α ∈ {`, r},

gε,α = Πfε,α , (5.3)

where Π is the orthogonal projection on E. Thanks to (3.3), the following estimate holds, for
α ∈ {`, r},

‖gε,α − fε,α‖+ ‖∂s (gε,α − fε,α)‖ = Õ(e−S/
√
ε) .

5.2.3. Orthonormalization. Starting from the basis {gε,`, gε,r}, we obtain by the Gram-Schmidt
algorithm the orthonormal basis {g̃ε,`, g̃ε,r}. It is such that, for α ∈ {`, r},

‖g̃ε,α − gε,α‖+ ‖∂s (g̃ε,α − gε,α)‖ = Õ(e−S/
√
ε) .

Define M as the matrix of Pε in the basis {g̃ε,`, g̃ε,r}. We have

Spec(M) = {λ1(Pε), λ2(Pε)}

and, by solving the equation det(M− λI) = 0, we deduce that

λ2(Pε)− λ1(Pε) = 2|w`,r|+ Õ(e−2S/
√
ε) , w`,r = 〈rε,`, fε,r〉 .

5.3. Computation of the interaction. We may estimate the interaction term as follows. We
have

w`,r = 〈(Pε − µsw
1 (ε))fε,`, fε,r〉 = 〈[Pε, χη,`]φε,`, χη,rφε,r〉 .

We recall (2.9) and that χη,r does not depend on τ . Thus,

w`,r =
〈[
− ε2a−1

ε (∂s − if0)
(
a−1
ε (∂s − if0)

)
, χη,`

]
φε,`, χη,rφε,r

〉
.

The explicit expression of the commutator and an integration by parts yield

w`,r = ε2

∫
(−L,L)×(0,1)

a−1
ε χ′η,`χη,r

(
(∂s − if0)φε,r φε,` − (∂s − if0)φε,`φε,r

)
ds dt ,

so that, by support consideration (χη,r = 1 on suppχη,`),

w`,r = ε2

∫
(−L,L)×(0,1)

a−1
ε χ′η,`

(
(∂s − if0)φε,r φε,` − (∂s − if0)φε,`φε,r

)
ds dt .

Note that χ′η,` is supported in (−L, 0). After another integration by parts, we get

wr,` =w̃r,` + ε2

∫
(0,1)

a−1
ε

(
(∂s − if0)φε,r φε,` − (∂s − if0)φε,`φε,r

)
(0, t) dt

− ε2

∫
(0,1)

a−1
ε

(
(∂s − if0)φε,r φε,` − (∂s − if0)φε,`φε,r

)
(−L, t) dt ,
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where

w̃r,` =− ε2

∫
(−L,0)×(0,1)

χη,`∂s

(
a−1
ε (∂s − if0)φε,rφε,`

)
ds dt

+ ε2

∫
(−L,0)×(0,1)

χη,`∂s
(
a−1
ε (∂s − if0)φε,`φε,r

)
ds dt .

Let us explain why w̃r,` = 0. We have to deal with the flux in this last expression. Letting
φ̃ε,α = e−if0sφε,α, we have

w̃r,` = −ε2

∫
(−L,0)×(0,1)

χη,`∂s

(
a−1
ε ∂sφ̃ε,rφ̃ε,`

)
ds dt+ε2

∫
(−L,0)×(0,1)

χη,`∂s

(
a−1
ε ∂sφ̃ε,`φ̃ε,r

)
ds dt ,

and thus

w̃r,` = −ε2

∫
(−L,0)×(0,1)

χη,`∂s

(
a−1
ε ∂sφ̃ε,r

)
φ̃ε,` ds dt+ε

2

∫
(−L,0)×(0,1)

χη,`∂s

(
a−1
ε ∂sφ̃ε,`

)
φ̃ε,r ds dt ,

so that

w̃r,` =− ε2

∫
(−L,0)×(0,1)

χη,`(∂s − if0)
(
a−1
ε (∂s − if0)φε,r

)
φε,` ds dt

+ ε2

∫
(−L,0)×(0,1)

χη,`(∂s − if0)
(
a−1
ε (∂s − if0)φε,`

)
φε,r ds dt .

Then, it remains to notice that φε,α satisfies the eigenvalue equation and we get that w̃r,` = 0.
Thus,

wr,` =ε2

∫
(0,1)

a−1
ε

(
(∂s − if0)φε,rφε,` − (∂s − if0)φε,`φε,r

)
(0, t) dt

− ε2

∫
(0,1)

a−1
ε

(
(∂s − if0)φε,rφε,` − (∂s − if0)φε,`φε,r

)
(−L, t) dt .

We can now use the WKB approximation of Proposition 4.6 and the symmetry relation between
φε,` and φε,r. We also notice that aε = 1 + O(ε). Then, by separation of variables, we are
reduced to the interaction term of the effective model ε2Leff

ε (with respect to s, the WKB Ansatz
is exactly the one of the effective operator). We refer to [4, Section 4] where this (one dimensional)
interaction is explicitly computed. The phase factor of the last two integrals can be computed
with (4.7): the first integral (up contribution) is real and the phase factor of the second one
(down contribution) is e−2iLf0 . To get the tunneling estimate for the initial operator Lε (or L̃ε,
see (2.8)), it remains to divide by ε2.
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