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ABSTRACT
Newtonian N-body simulations have been employed successfully over the past decades for
the simulation of the cosmological large-scale structure. Such simulations usually ignore
radiation perturbations (photons and massless neutrinos) and the impact of general relativity
(GR) beyond the background expansion. This approximation can be relaxed and we discuss
three different approaches that are accurate to leading order in GR. For simulations that start
at redshift less than about 100, we find that the presence of early radiation typically leads to
per cent-level effects on the numerical power spectra at large scales. Our numerical results
agree across the three methods, and we conclude that all of the three methods are suitable
for simulations in a standard cosmology. Two of the methods modify the N-body evolution
directly, while the third method can be applied as a post-processing prescription.

Key words: dark matter – large-scale structure of Universe – cosmology: theory.

1 IN T RO D U C T I O N

Radiation plays a major role in the dynamical evolution of the
early Universe. At that time, radiation and matter are tightly cou-
pled through electroweak interactions. As the Universe expands and
cools, electroweak interactions freeze out and the neutrino species
decouple. The baryons maintain their tight coupling to the photons
through Thomson scattering until the baryon drag epoch. From this
point on, gravity is the dominating force on a range of scales, leading
eventually to the gravitational collapse of matter that forms clusters
and filaments – the birth of the large-scale structure.

For the remaining cosmological evolution, matter behaves almost
as a self-gravitating system due to the difference in the dynamical
time-scale of matter perturbations compared to radiation pertur-
bations (Voruz, Lesgourgues & Tram 2014). This entails that the
non-linear clustering of matter can be simulated by simply ignor-
ing radiation perturbations, and this is what is done in Newtonian
cosmological N-body simulations (Teyssier 2002; Springel 2005;
Hahn & Angulo 2016). On the other hand, solving the coupled
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Einstein–Boltzmann equations in full non-linearity on cosmologi-
cally relevant time-scales is currently not feasible.

However, as will be discussed in greater detail below, several
recent developments make it possible to include radiation with very
little computational overhead. One example is the numerical code
COSIRA (Brandbyge et al. 2017), which is a hybrid N-body code
based on a modification of the Newtonian N-body code GADGET-2
and the linear Einstein–Boltzmann code CLASS (Blas, Lesgourgues
& Tram 2011). Here, the relativistic corrections effectively appear
as linear sources for the (otherwise fully non-linear) Newtonian
gravity solver.

Since the effects discussed here have nearly vanishing impact
on non-linear scales, instead of explicitly including these terms
in a simulation, it is also possible to account for them through
post-processing of the simulation output. Such a framework has
recently been developed by Fidler et al. (2016), introducing the
notion of Newtonian motion (Nm) gauges. In this framework, a
modified version of CLASS determines the evolving space–time on
which unmodified Newtonian simulations can be interpreted self-
consistently within linear general relativity (GR). We apply this
method here for the first time on actual N-body simulation data.

Other numerical techniques have been recently developed
to carry out cosmological simulations in the context of GR.
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Examples include the simulations of Bentivegna & Bruni (2016),
Giblin, Mertens & Starkman (2016) and Mertens, Giblin & Stark-
man (2016) that solve the full GR evolution in a fluid approxima-
tion and focus on aspects of cosmological backreaction (Buchert &
Räsänen 2012; Buchert, Nayet & Wiegand 2013), a topic we shall
not investigate here. To our knowledge, these codes also do not
incorporate radiation and are thus not suitable for the present study.

N-body methods have many advantages if one wants to model
the evolution of large-scale structure especially in the non-linear
regime, in particular since they can handle aspects such as mergers
and virialization to sufficient accuracy. Based on a weak-field ex-
pansion of GR, Adamek et al. (2016a,b) have developed the cosmo-
logical N-body code gevolution. Although effects of early radiation
have not been incorporated in the first release, we present here novel
results of the most recent version 1.1 that features a linear radiation
module based on the same general principle as the one employed in
COSIRA.

It goes without saying that all three approaches have their bene-
fits and drawbacks. We will discuss and compare in detail these
three approaches that go beyond the Newtonian approximation
commonly employed in a Universe that is nowadays dominated
by cold dark matter (CDM) and a cosmological constant �, i.e. the
�CDM Universe. The paper is organized as follows. In Section 2,
we will discuss the three different gauges that are at the basis of each
method. In Section 3, we describe the numerical implementation of
each method, and in Section 4 we give the results. We conclude in
Section 5.

2 A TA L E O F T H R E E G AU G E S

In the ADM formalism (after Arnowitt, Deser & Misner 2008, also
known as 3+1 decomposition) a general metric is written as

ds2 = −N2dτ̃ 2 + NiN
idτ̃ 2 − 2Nidx̃idτ̃ + γij dx̃idx̃j , (1)

where N is the lapse function, Ni the shift vector, γ ij the metric on
the three-dimensional space-like hypersurface and τ̃ , x̃i are some
arbitrary coordinates that label the foliation in the time-like direction
and the points on the hypersurfaces, respectively. We will work in
the weak-field regime of GR where coordinates can be chosen such
that the shift vector is perturbatively small, and we will therefore
drop the second term on the right-hand side of equation (1) from
now on.

We split the shift vector into a curl-free and a divergence-free
component,

Ni = a2 [∇iB + Bi] , ∇ iBi = 0, (2)

where we introduce the conformal factor a(τ̃ ), which, in a
Friedmann–Robertson–Walker cosmology, parametrizes the back-
ground expansion.

The three-metric γ ij can be decomposed in a similar fashion,

γij = a2
[
e2HLδij − 2DijHT + 2∇(iEj ) + hij

]
, (3)

where Dij = (∇ i∇ j − δij∇2/3), and

∇ iEi = 0, hi
i = 0, ∇ ihij = 0. (4)

The traceless part of γ ij is therefore split into a spin-0 perturbation
HT, a pure spin-1 perturbation Ei, and a pure spin-2 perturbation hij.

Since we are working in the weak-field regime, we linearize all
equations in the perturbation variables B, Bi, HT, Ei, hij. We write
exp (2HL) instead of its linearized version (1 + 2HL) only in order to

facilitate the discussion of next-to-leading order weak-field effects
later on. Similarly, we introduce a lapse perturbation A by writing

N = a eA. (5)

In GR, the freedom to choose a coordinate system implies that not
all the perturbation variables introduced so far are physical. We can
make a coordinate transformation τ = τ̃ + T , xi = x̃i + ∇ iL +
Li , where Li is the divergence-free part of the spatial coordinate
shift, i.e. ∇ iLi = 0. This freedom shows that two of the scalar and
one of the vector perturbations (with two polarizations) defined for
the metric are in fact redundant. One way to deal with this issue
is to construct a set of gauge-invariant perturbation variables, as
was pioneered by Bardeen (1980). Another option is to specifically
choose the coordinate system in such a way that the equations take
some desired form, making them easier to solve or to interpret.
Three such choices, all relevant for cosmology and each having
their own advantages and drawbacks, will be discussed in the next
subsections.

2.1 Poisson gauge

The Poisson gauge (which in the scalar sector reduces to the so-
called Newtonian or longitudinal gauge) is defined by the coordinate
system where T and L are chosen such that B = HT = 0, and Li

is chosen such that Ei = 0. In this case, the two remaining scalar
metric perturbations A and HL coincide with the two first-order
gauge-invariant potentials found by Bardeen (1980). We follow
the notation1 of Ma & Bertschinger (1995) and write A = ψ and
HL = −φ. The metric therefore takes the form

ds2 = a2
[−e2ψdτ 2 − 2Bidxidτ + (δij e−2φ + hij )dxidxj

]
. (6)

Adamek et al. (2016b) introduce a canonical momentum qi to
write a geodesic equation that is valid for any value of qi, including
the ultrarelativistic case q2 � m2a2. In the non-relativistic limit,
this becomes

∂τ v
P
i + HvP

i = −∇iψ = −∇iφ + ∇iχ, (7)

where vP
i = qi/(ma) is the peculiar velocity2 in the Poisson gauge,

and we have also introduced the conformal Hubble rateH = ∂τ ln a.
The lapse perturbation ψ is replaced by

ψ = φ − χ, (8)

and one can then proceed by solving the two constraints that deter-
mine φ and χ . The former is given by the Hamiltonian constraint
that is to leading order

∇2φ − 3H∂τ φ − 3H2 (φ − χ ) = 4πGa2
∑

α

ρ̄αδ
P
α. (9)

Here, δP
α ≡ (ρP

α − ρ̄α)/ρ̄α are the density perturbations in the
Poisson gauge superposed on the background density ρ̄α , where
α labels the various species, i.e. baryons, dark matter, neutrinos and

1 In previous work concerning the N-body gauge (e.g. Fidler et al. 2015,
2016; Brandbyge et al. 2017), the notation of Kodama & Sasaki (1984) was
used, in particular a variable � = −φ. The notation of Adamek et al. (2016b)
also features variables called � and  (stylized in capitals) but they choose
a parametrization of the metric that is due to Green & Wald (2012). As will
be explained later, that parametrization differs from the one employed in
this work by some coefficients of next-to-leading order terms.
2 Note that the coordinate three-velocity is in fact dxi/dτ = δij (vP

j + Bj )
at leading order.
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photons. As opposed to the N-body gauge, discussed below, one has
to keep in mind that the spatial volume is perturbed by the presence
of HL = −φ in this gauge, which has an effect on how the physical
density should be interpreted in numerical simulations. As a related
note, mass conservation for non-relativistic species reads

∂τ δ
P + ∇ ivP

i = 3∂τ φ (10)

at leading order, including a source term due to the local volume
deformation.

The second constraint is, to the leading order, given by

∇2∇2χ = 12πGa2Dij
∑

α

δjk

[
T k

i

]
α
, (11)

where the right-hand side is the longitudinal projection of the (trace-
less) stress-energy commonly known as the scalar anisotropic stress.
This quantity is gauge-invariant at first order. We use the notation[
T k

i

]
α

to denote the contribution of species α to a tensorial quantity.
In standard cosmology, the scalar anisotropic stress appears at

first order only for relativistic species (photons and neutrinos) and
decays rapidly inside the horizon. On small scales, and in particular
after the end of radiation domination, second-order effects from
non-relativistic species and geometry can become larger than this
first-order contribution. Adamek et al. (2016b) therefore compute
the right-hand side of equation (11) non-perturbatively from the N-
body ensemble, and they take into account second-order geometric
corrections as well, i.e. terms that arise from the Einstein tensor
beyond leading order.

The form of the second-order geometric terms depends on how
one parametrizes the metric at second order. While Adamek et al.
(2016b) follow the parametrization of Green & Wald (2012) in
writing, for instance, the lapse as N2 = a2(1 + 2) even at second
order, we choose to employ the more common parametrization
N2 = a2exp (2ψ) = a2(1 + 2ψ + 2ψ2 + ···). It should be clear
that the two parameters ψ and  can always be directly related in a
weakly perturbed geometry. Including the second-order geometric
corrections, equation (11) becomes

∇2∇2χ = 3Dij

(
∇iφ∇j φ + 4πGa2

∑
α

δjk

[
T k

i

]
α

)
, (12)

up to quadratic terms involving χ , Bi or hij. The reason why we
choose to neglect those terms is the fact that at leading order φ and
ψ are typically much larger than the other metric perturbations in
Poisson gauge, and χ is very small inside the horizon. We therefore
expect the first term on the right-hand side in equation (12) to give
the dominant geometric contribution. A perturbative calculation of
the second-order contributions to χ is presented in Appendix.

By augmenting also the other equations, we can establish ac-
curacy at next-to-leading weak-field order on small scales for the
entire scheme. The Hamiltonian constraint becomes

(1 + 2φ) ∇2φ − 3H∂τ φ − 3H2 (φ − χ ) − 1

2
∇iφ∇ iφ

= 4πGa2
∑

α

ρ̄αδP
α, (13)

and the geodesic equation acquires the frame-dragging term,

∂τ v
P
i + HvP

i = −∇iφ + ∇iχ − vP
j δjk∇iBk. (14)

The latter is still written in a low-velocity expansion in order to
highlight the terms relevant for non-relativistic particles.

The frame-dragging potential Bi can be obtained by extracting
the divergence-free part of the momentum constraint,

1

4
∇2∇2Bi = 4πGa2δij

(∇j∇k − δjk∇2
) ∑

α

[
T 0

k

]
α
. (15)

In linear perturbation theory, the right-hand side is decaying and
usually assumed to be negligible at the end of radiation domina-
tion. At second order, the formation of cosmic large-scale structure
induces a growing frame-dragging potential (e.g. Lu et al. 2009).
In an N-body scheme, the right-hand side of the momentum con-
straint can be computed non-perturbatively, a method employed for
the first time by Bruni, Thomas & Wands (2014). In the standard
model however, the effect of frame dragging on the trajectories of
non-relativistic particles remains minuscule: Adamek et al. (2016a)
found the change in velocity accumulated due to this effect over the
lifetime of the Universe to be typically around 10 m s−1 at mega-
parsec scales, five orders of magnitude3 smaller than the typical
velocities of 1000 km s−1.

The spin-2 perturbation hij obeys a damped wave equation with a
source that is given by the spin-2 part of the anisotropic stress (e.g.
Adamek et al. 2016b). However, the scattering of non-relativistic
particles with gravitational waves is so weak that we can certainly
neglect it in N-body simulations.

2.2 N-body gauge

Seeking a coordinate system where the equations of motion for
non-relativistic matter in linearized GR are closely related to their
Newtonian counterparts, Fidler et al. (2015) discovered the N-body
(Nb) gauge. So far, it has only been discussed in the scalar sec-
tor and to first order, with coordinates chosen such that HL = 0,
thereby eliminating the spatial volume perturbation. In order to
cast the equations into the desired form, one furthermore has to set
B = v, where v is the total velocity potential of the combined fluid
(vi = ∇ iv). In the scalar sector, the line element reads

ds2 = a2

[
− e2ξ dτ 2 − 2∇iB dxidτ

+ (
δij − 2DijH

Nb
T

)
dxidxj

]
. (16)

Here, A = ξ is a linear perturbation sourced by radiation pressure
and anisotropic stress; ξ thus grows in the radiation-dominated era,
whereas it decays in the matter and �-dominated eras. Furthermore,
ξ is in any comoving-orthogonal gauge given by

(ρ + p)ξ = − (
12πGa2

)−1 ∇2χ − δp, (17)

where ρ, p and δp are, respectively, the density, the pressure and the
pressure perturbations from all fluids.

We could naturally extend this gauge to the vector sector by
setting again Ei = 0. The remaining vector perturbation Bi is then
determined by the divergence-free part of the momentum constraint
just as in Poisson gauge, but it does not play any role in the dynamics
when one works in the Newtonian limit. Neither does the tensor
perturbation hij.

3 It is interesting to note that the frame-dragging potential Bi itself is only
about two orders of magnitude smaller than the gravitational potentials ψ

and φ. The additional three orders of magnitude suppression is due to the
velocity component that contracts one of the indices in the frame-dragging
term of equation (14). The suppression is therefore much less severe for
relativistic particles.

MNRAS 470, 303–313 (2017)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/470/1/303/3815549 by guest on 18 January 2022



306 J. Adamek et al.

At leading order in the Nb gauge, mass conservation of the non-
relativistic species is identical to the one in Newtonian gravity, i.e.

∂τ δ
Nb + ∇ ivNb

i = 0, (18)

and the geodesic equation reads

∂τ v
Nb
i + HvNb

i = −∇iφ + ∇iγ
Nb, (19)

where φ is the same gauge-invariant potential as introduced above.
It satisfies the Poisson equation

∇2φ = 4πGa2
∑

α

ρ̄αδ
Nb
α , (20)

where δNb
α are density perturbations in the Nb gauge. One important

aspect of this gauge is the fact that the volume perturbation HL is
absent, and therefore, the δNb for non-relativistic particles is sim-
ply the counting density, i.e. the density computed in a Newtonian
N-body simulation. Furthermore, instead of the somewhat cumber-
some equation (9), the potential φ is solved from the much simpler
equation (20) that directly resembles its Newtonian counterpart.

The relativistic correction γ Nb to the geodesic equation is given
by

γ Nb = ∂2
τH

Nb
T + H∂τH

Nb
T + χ, (21)

where χ is the first-order gauge-invariant quantity computed in
equation (11).

In the late Universe, radiation becomes less and less important.
The contribution of radiation to the Poisson equation (20) becomes
eventually negligible, and it can be shown that, to the leading weak-
field order, γ Nb tends to zero in that limit. Under these conditions
the dynamical equations take the Newtonian form, justifying the
definition and the naming of the Nb gauge. However, at early times
when simulations are usually initialized (z ≥ 50), radiation remnants
contaminate the evolution equations of non-relativistic particles,
through the γ Nb term in the geodesic equation (19) and the non-
matter source terms in the Poisson equation (20). By keeping track
of these terms, one can thus compute the relativistic correction to the
Newtonian trajectories in order to recover the relativistic evolution.

2.3 Nm gauges

While the Poisson and Nb gauges employ a simple gauge fixing –
by either directly relating the metric potentials or setting them to
zero – the Nm gauge employs a more complex gauge definition that
is equivalent to a differential equation for the metric potential HT.
However, this allows us to define a gauge in which the relativistic
trajectories of cold matter coincide directly with the Newtonian
trajectories. Using such a gauge makes it possible to incorporate
relativistic corrections without modifying the Newtonian simulation
(Fidler et al. 2016).

In fact, the Nm gauges describe an entire class of gauges, and in
this paper we choose the specific Nm gauge that employs the Nb
gauge time coordinate, i.e. it is comoving-orthogonal with B = v
and A = ξ . The resulting line element for scalar perturbations is

ds2 = a2

[
− e2ξ dτ 2 − 2∇iB dxidτ

+
(

e2HNm
L δij − 2DijH

Nm
T

)
dxidxj

]
. (22)

Mass conservation is given by

∂τ δ
Nm + ∇ ivNm

i = −3∂τH
Nm
L , (23)

whereas the force term in the geodesic equation is by definition
identical to the Newtonian one,

∂τ v
Nm
i + HvNm

i = −∇i�
N, (24)

where we have made use of the spatial gauge condition of the Nm
gauge

−�N = −φ + γ Nm, (25)

with γ Nm = ∂2
τH

Nm
T + H∂τH

Nm
T + χ and the Newtonian potential

based on the counting density δN

∇2�N = 4πGa2ρ̄δN. (26)

Explicitly, these equations are valid for a multifluid universe,
although the Newtonian potential is sourced only by the non-
relativistic species. Since the Nm gauge has a non-vanishing volume
deformation, the relativistic density is constructed from the counting
density and the volume deformation

δN = δNm + 3H Nm
L . (27)

Inserting this relation into equation (23), we find that the variables
�N, vNm and δN follow entirely Newtonian equations of motion
and can be identified with the perturbations evolved in a Newtonian
simulation. This implies that an unmodified Newtonian N-body
simulation is in fact computing the relativistic evolution of the
particles in the Nm gauge. We are thus able to obtain a relativistic
interpretation of such an unmodified simulation by embedding its
output in the non-trivial space–time of the Nm gauge. Note that the
relativistic density δNm is not evolved by Newtonian equations and is
affected by the non-trivial local volume deformation. After solving
for the metric perturbations, however, we recover the relativistic
solution for the density δNm from the simulation density δN by
employing equation (27).

The spatial gauge condition of the Nm gauge, equation (25), is
in fact a second-order time-differential equation, i.e.

∂2
τH

Nm
T + H∂τH

Nm
T = φ − χ − �N. (28)

To solve the differential equation, one requires boundary conditions.
In this work, we choose the method explained in Fidler et al. (2016)
for fixing these boundary conditions, corresponding to a metric
associated with a Newtonian simulation initialized in the Nb gauge.

The metric perturbations in the Nm gauge (cf. equation 22), can
be solved by modifying conventional Einstein–Boltzmann solvers
such as CLASS or CAMB (Lewis, Challinor & Lasenby 2000). Details
on the explicit numerical implementation are given in the following
section.

3 N U M E R I C A L I M P L E M E N TAT I O N

In the following, we discuss two numerical codes, COSIRA in Section
3.1 and gevolution in Section 3.2, that aim, amongst other things, to
incorporate the gravitational coupling of radiation perturbations to
non-relativistic matter. Then in Section 3.3, we summarize the steps
needed to apply the Nm gauge framework to a Newtonian N-body
simulation.

3.1 COSIRA (N-BODY GAUGE)

The code COSIRA (COsmological SImulations with RAdiation) has
been recently introduced as the first hybrid code incorporating rel-
ativistic corrections to matter trajectories in cosmological simu-
lations (Brandbyge et al. 2017). COSIRA is essentially a modified
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version of the Newtonian N-body code GADGET-2, a code that is
originally designed to only evolve matter particles. In COSIRA, the
N-body code is interfaced with a modified version of the Einstein–
Boltzmann solver CLASS. In this way, the gravitational effect of
evolving radiation perturbations on the matter N-body particles can
be taken into account.

Computations are performed in the Nb gauge, and in that gauge
the impact of GR can be combined into an effective GR density
perturbation δGR defined in the next paragraph. This GR density
is added to the CDM density and passed to the Poisson solver
of GADGET-2. This modifies the long-range particle-mesh part of the
force whereas the short-range tree part of the force is left unchanged.

In detail, we can write for the combined force potential in the
geodesic equation (19) that

−φ + γ = −φsim − φGR, (29a)

with

∇2φsim = 4πGa2ρ̄cdmδsim, (29b)

∇2φGR = 4πGa2ρ̄cdmδGR, (29c)

where ρ̄cdmδGR ≡ ∑
α �=cdm ρ̄αδα − (4πGa2)−1∇2γ , and δsim is the

non-linear CDM density contrast obtained from the N-body simula-
tion. We note that in this way COSIRA includes the linear effect from
GR and radiation that is passed from the Einstein–Boltzmann code
to the N-body code, but there is no feedback in the opposite direc-
tion. Such a feedback would occur as a non-linear correction that
goes beyond the linear scheme employed in the Einstein–Boltzmann
code.

Once δGR has been incorporated in GADGET-2, the code evolves
matter in full non-linearity while being in accordance with leading
order GR. This also implies that the N-body output of COSIRA should
be interpreted on the Nb gauge space–time.

As mentioned above, the Nb gauge is so far only defined to
the leading order in GR. As a consequence, COSIRA neglects some
second-order GR corrections that gevolution does take into account.
This applies, for instance, to the second-order anisotropic stress
that contributes to χ in the non-linear regime as we shall discuss in
Section 4.5.

3.2 Gevolution

Adamek et al. (2016a,b) introduced gevolution, the first cosmo-
logical N-body code that is based entirely on a weak-field expan-
sion of GR. The two main differences to the traditional Newtonian
method, which in some sense is also a weak-field limit of GR, are the
following.

(i) In Poisson gauge, the code explicitly computes all six met-
ric perturbations, i.e. the two potentials φ and ψ , the two spin-1
modes of Bi, and the two spin-2 modes of hij. No assumption about
the stress-energy is made except for the requirement that the grav-
itational fields have to remain small on the scales resolved by the
simulation. This provides great flexibility as one can consistently
include many types of relativistic sources for which a Newtonian
treatment would be inappropriate. The example relevant for this
work is, of course, radiation.

(ii) The geodesic equation is solved using a relativistic canonical
momentum such that arbitrary momenta are allowed (in particular
the ultrarelativistic limit q2 � m2a2).

One limitation of the code is the fact that it works at fixed spa-
tial resolution, mainly because the metric perturbations are solved
using spectral analysis. However, a fixed lattice has advantages
for parallelization, and gevolution is therefore typically an order
of magnitude faster than an adaptive code for the same problem
size. Furthermore, it is straightforward to add a linear source term
for which a transfer function can be computed using an Einstein–
Boltzmann solver.

The most recent version 1.1 of gevolution, presented here for the
first time, can be linked directly with the Einstein–Boltzmann code
CLASS such that the relevant transfer functions can be computed on
the fly. At each time step, a realization of the linear density field of
radiation (or any other linear source such as e.g. light neutrinos) is
prepared and added to the N-body (matter) source to obtain the right-
hand side of equation (13). The same is done for the anisotropic
stress that sources equation (12). Linear vector modes are not gen-
erated in standard cosmology and therefore frame dragging is only
caused by non-linear matter according to equation (15).

It is also possible to run a Newtonian simulation with gevolution.
In this mode, the evolution is performed in Nb gauge. Similar to
how it is done in the Poisson-gauge case, but in contrast to COSIRA,
the plain linear radiation source (in Nb gauge) is used in the Pois-
son equation (20) such that the potential φ is computed explicitly. A
realization of γ is then prepared separately for solving the geodesic
equation (19). We remind the reader that COSIRA instead solves di-
rectly for the combination γ − φ using a modified Poisson equation.

3.3 Nm gauge and Newtonian simulations

Instead of employing a relativistic N-body simulation, the idea of
the Nm gauge framework is to make use of a relativistic coordi-
nate system that is compatible with ordinary Newtonian N-body
simulations. In this picture, a Newtonian code is in fact computing
the relativistic evolution of the particles in the corresponding Nm
gauge, and we are able to obtain a relativistic interpretation of this
simulation by embedding its output in the non-trivial space–time of
the Nm gauge.

The method is compatible with any Newtonian simulation and
does not require modifications of the corresponding code. In order
to obtain results that can be compared with the direct implementa-
tion in the Nb gauge (or Poisson gauge) presented in the previous
sections, however, we need to perform a gauge transformation to
the respective reference gauge. This means, at the level of the final
N-body output, that we displace the positions of the simulated par-
ticles to obtain the relativistic output in the Nb gauge (or Poisson
gauge).

Since the Nm and Nb gauge employ the same time foliation, the
required gauge transformation is purely spatial,

τNb = τNm, (30a)

xi
Nb = xi

Nm + ∇ iLNm→Nb, (30b)

where LNm→Nb = 3H Nm
L . Recall that we have chosen to initialize

our simulations in Nm coordinates that agree initially with the Nb
coordinates. The Nb gauge enforces H Nb

L = 0, but the presence of
radiation during the simulation run generates non-zero values of HL

in the Nm gauge. Thus, the spatial gauge transformation (30b) to
the Nb gauge resets H Nm

L �= 0 to H Nb
L = 0, which can be verified by

the standard methods of cosmological perturbation theory (see e.g.
Villa & Rampf 2016). Further details on this gauge transformation
and its computation in CLASS can be found in Fidler et al. (2016).
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We compute the potential of the displacement field LNm → Nb cor-
responding to this gauge transformation in our modified version of
CLASS. Since gevolution can be run in Newtonian mode, we em-
ploy the output of gevolution in this mode and pass the information
of the gauge transformation from CLASS to gevolution. The gauge
transformation is then implemented on the final output providing
the particle positions in the Nb gauge.

The advantage of this method is that the step-size in the N-body
simulation is unaffected by the small time-scale of the radiation
perturbations that is taken into account consistently in the Einstein–
Boltzmann solver. The disadvantage is that the non-linear growth of
fluctuations induced from the radiation perturbations themselves are
also included at the level of the space–time that is computed only to
linear order. However, as discussed in previous works (Fidler et al.
2016; Brandbyge et al. 2017) and shown by the results presented
in this paper, these corrections are negligible at least in a standard
model cosmology.

4 R ESULTS

Brandbyge et al. (2017) carried out a set of N-body simulations
with COSIRA. These use a comoving box of size 16 384 Mpc h−1

that contains 10243 particles. The cosmology is chosen as fol-
lows: �m = 0.3133, �b = 0.0490, h = 0.6731, ns = 0.9655
(kpivot = 0.05 Mpc−1), As = 2.215 × 10−9, TCMB = 2.7255 K,
Neff = 3.046 (three massless neutrinos). To compare with these
existing runs, we perform a new set of N-body simulations with
gevolution using the same cosmological parameters and the same
initial redshift zini = 99. Here, we choose a regular lattice of 20483

grid points and the same number of particles in order to compensate
for the lack of adaptive force resolution – gevolution employs a
particle-mesh scheme on a fixed regular mesh while COSIRA inherits
the TREEPM algorithm from GADGET-2 that resolves the (Newtonian)
force at subgrid scales. We have also run simulations with 5123,
10243, and even 40963 grid points and particles, to investigate thor-
oughly the convergence of our results.

4.1 Overview of simulations

We explore various choices of handling early radiation effects, sum-
marized in Table 1, which are as follows.

(I) Using the ‘Newtonian’ mode of gevolution, we include the
effect of radiation perturbations in the same manner as it is done in
COSIRA. This yields a relativistic simulation output in the Nb gauge.

(II) Using the ‘relativistic’ mode of gevolution, which employs
Poisson gauge, we include the effects of radiation perturbations in
an analogous manner, but adapted to Poisson gauge as explained
in Section 2.1. However, in order to compare the final result with
the other runs, we have to convert it from Poisson gauge to Nb
gauge. This is done by actively displacing the particles at final time

Table 1. Summary of simulations performed in order to study different
possibilities of handling early radiation.

Simulation Gauge Radiation treatment

I N-body Direct simulation
II Poisson Direct simulation
III Newtonian motion Post-processing
IV Poisson None
V N-body None
VI N-body None/backscaling

according to a linear displacement field LP→Nb, the spatial gauge
generator that connects the two gauges.

(III) We run gevolution in ‘Newtonian’ mode, but instead of
adding radiation perturbations in the simulation, we retroactively
include radiation when interpreting the output in the Nm gauge. In
order to compare the final result, we convert it from Nm gauge to the
Nb gauge by a gauge transformation, connected by the displacement
field LNm→Nb.

(IV) We run gevolution in a ‘relativistic’ mode employing the
Poisson gauge, but we completely neglect the presence of radia-
tion perturbations. The final result is brought back to Nb gauge
in the same way as for case (II). Note that this run does include
other relativistic contributions in the Poisson gauge according to
the weak-field expansion employed in gevolution.

(V) We run gevolution in ‘Newtonian’ mode neglecting the pres-
ence of radiation perturbations. As the Nb gauge equations in this
limit are entirely Newtonian, this corresponds to a relativistic sim-
ulation in the Nb gauge when neglecting radiation perturbations.

(VI) We finally run another simulation in ‘Newtonian’ mode
with gevolution where radiation perturbations are ignored in the
evolution; however, starting on initial data that was designed to
obtain the correct power spectrum at redshift z = 0. For that purpose,
the linear transfer functions are scaled back from z = 0 to the initial
redshift using the linear (growing-mode) solution of matter that
would be obtained if radiation was only present in the background.
In practice, this is one of the most common ways to deal with the
effect of early radiation, and in the following we call this method
‘backscaling’. See Fidler et al. (2017) for a thorough theoretical
discussion on this method in terms of the Nb and Nm gauges.

The three cases (I)–(III) correspond exactly to the three different
approaches discussed in the previous section that are designed to
correctly include linear radiation effects, and each of them is related
to a respective gauge discussed in Section 2. The other three cases
(IV)–(VI) all ignore the effect of early radiation, but they differ in
the choice of gauge or initial conditions. Hence, the induced errors
in the evolution will be different for these three cases.

4.2 Radiation effect on matter power spectra

We present our main results in Fig. 1, where we compare the sce-
narios without radiation, cases (IV)–(VI), to the corresponding sim-
ulations that include radiation at four different redshifts. This illus-
trates the error introduced by neglecting radiation perturbations in
the various schemes. All realizations use the same random numbers
to set the perturbation amplitudes and phases, such that the ratio of
numerical spectra is not affected by cosmic variance.

In case (IV), the evolution is solved in Poisson gauge, but the
contribution of radiation to equations (9) and (11) is neglected. We
compare this run (red, double dash dotted curve) against case (II),
which is a simulation where radiation is included. The initial data
are prepared using the linear transfer functions that include radiation
perturbations. The error is therefore zero at initial time, builds up
to a certain amplitude at high redshift, and then essentially stops
evolving when radiation becomes more and more diluted.

Ignoring a physical effect is not a gauge-invariant operation and
it can therefore make a difference in which coordinate system one
chooses to neglect radiation perturbations. To illustrate this, we
repeat the same exercise using Nb gauge for the evolution, where
case (V) neglects the effects of radiation and case (I) includes them
(light blue, dashed curve). We find that the error has a different shape
and grows to about 4 per cent on the largest considered scales. For
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Figure 1. This figure shows the relative change in the Nb-gauge matter power spectrum at different redshifts for our simulations that did not include radiation
effects, compared to those that did include them. For the red (double dash dotted) curve, the simulations were carried out in Poisson gauge, cases (II) and (IV)
in the text, but we still show the ratio of the Nb-gauge power spectra. The light blue (dashed) curve shows the analogous result if the simulations are performed
directly in Nb gauge, cases (I) and (V). A comparison with the dark blue (dot–dashed) curve shows that nearly identical results are obtained with COSIRA, and
serves as a validation of the two independent numerical implementations. The orange (solid) curve finally shows a simulation in Nb gauge where, instead of
including radiation in the dynamics, the initial data were manipulated in such a way that the error on the linear power spectrum is cancelled at redshift z = 0,
a method called ‘backscaling’ or case (VI).

comparison, we also plot the results that Brandbyge et al. (2017)
obtained with COSIRA (dark blue, dot–dashed curve). Apart from the
first data point that they already had noticed to be somewhat off we
find a very good agreement between the two codes.

In our final example, we discuss the common procedure to han-
dle early radiation effects. As noted above, for cases (IV) and (V),
we have zero error on the power spectrum at the initial time, and
consequently the improper handling of radiation causes the power
spectrum to be offset from the true solution at later times. Given
that most of the observations of large-scale structure are taken at
low redshift, it actually seems more natural to impose a vanish-
ing error at late time, e.g. at redshift z = 0. Since early radia-

tion affects only linear scales, this can be achieved by the follow-
ing procedure. First, compute the linear matter power spectrum at
z = 0 using a Boltzmann code, fully taking into account radia-
tion. Next, solve the linear mode equations for matter perturba-
tions for the given cosmological background, however, assuming
that radiation has no perturbations at all. Finally, use the linear
growing-mode solution for matter to scale the transfer functions
from z = 0 back to the initialization redshift of the simulation.
This is the backscaling procedure that is commonly applied in the
literature.

With this procedure, the initial transfer functions will no longer
agree with the relativistic ones, but they are designed in such a way
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that the error introduced in the evolution by neglecting radiation
is cancelled out at low redshift. A more detailed discussion of this
method is presented in Fidler et al. (2017), where it is shown that this
method works best using the present-day Nb gauge power spectrum.
For this reason, we compare the results obtained in scenario (VI)
with the relativistic simulation (I) in the Nb gauge. Our plot confirms
that the error at the present time is vanishing, while at high redshifts
a mismatch of several percent is found on large scales.

4.3 Linear post-processing

A separate issue we want to discuss briefly is the numerical error
that can be introduced by acting a gauge transformation on the final
particle configuration. By its nature, a linear gauge transformation
is only applicable in the linear regime. However, in the particular
scenario studied in this paper, the relativistic effects only appear on
very large scales that remain linear to a high degree even down to
redshift z = 0. If we were to consider a situation where smaller scales
would be affected, as could be the case in some inhomogeneous
dark energy models or models of modified gravity for example, the
linear relation between Poisson and Nb gauge would be lost. In
such a situation, the Poisson gauge provides a framework where
relativistic effects can be studied even at non-linear scales. The Nb
or Nm gauge framework are so far only defined to first order and it
remains to be seen whether they provide a useful concept in such
an analysis.

Fig. 2 compares scenarios (I) and (II) that both include radiation
but are evolved in different gauges. The ratio of power spectra is
taken after the gauge transformation to Nb gauge, and we expect
a ratio of unity if physical results do not depend on the coordinate
system used for the calculation. Indeed, for the reasons noted above,
we find very good agreement between the simulations in the two
gauges. A small disagreement of less than a percent is visible at the
smallest scales, but this is probably due to discretization effects, as
we see the effect decreasing if we increase the resolution. One might
wonder if the next-to-leading order weak-field effects, in particular
frame dragging or the anisotropic stress of dark matter, could also
play a role on those scales. After all, these effects are taken into

Figure 2. Comparison of two simulations that both include radiation, cases
(I) and (II). The first simulation is performed directly in Nb gauge, whereas
the second is performed in the Poisson gauge and subsequently converted to
the Nb gauge by acting a gauge transformation on the final particle positions.
Since both simulations contain the same linear physics and the scales plotted
are all in the linear regime, the ratio is unity up to errors introduced by the
gauge transformation and the discretization.

account in case (II) but are neglected in case (I). However, these
relativistic effects have a much smaller impact on the matter power
spectrum, and are well below the permille level.

A somewhat larger disagreement between cases (I) and (II) ap-
pears at the largest scales and is of completely different origin. Here,
we are confronted with the situation that the matter perturbations
have very little power in Nb gauge, while the perturbations in Pois-
son gauge approach a nearly scale-invariant spectrum outside the
horizon. This relatively large perturbation has to be taken off by the
gauge transformation that takes the Poisson gauge to Nb gauge, and
achieving this to high precision can be difficult numerically. The
numerical error is exacerbated by the fact that we are showing the
relative power in Nb gauge where the power itself is small. Taking
all this into account, we think that the agreement between cases (I)
and (II) is very convincing.

As will become evident in the next subsection, the gauge trans-
formation required in our scenario (III) that connects Nm gauge and
Nb gauge is much less problematic, mainly due to the fact that the
two gauges are much more closely related.

4.4 Application of the Nm gauge

Scenario (III), which employs the Nm gauge, does not fit into the
above comparisons as it is non-sensical to neglect radiation in an
Nm gauge. In Fig. 3, we compare the output of case (III) before
and after the gauge transformation to case (I) in the Nb gauge. Be-
fore the gauge transformation, case (III) is effectively identical to a
Newtonian simulation and thus does not reproduce the results of the
relativistic simulation (I). It does however match the comparison of
the Newtonian power spectrum with the Nb gauge power spectrum
at linear order performed in CLASS to great accuracy. After displac-
ing the particles according to the gauge transformation to the Nb
gauge, we find a remarkable agreement with the results of simulation
(I) with errors significantly below the per cent level on all exam-
ined scales. On small (very non-linear) scales, radiation effects are

Figure 3. The cyan (dashed) line shows the matter power spectrum at
redshift z = 0 of a Newtonian simulation that ignored radiation perturbations,
relative to a simulation that included those perturbations in Nb gauge. As
shown, this discrepancy is well described by a linear prediction computed
in CLASS (blue, dot–dashed line). It can be accounted for by interpreting the
result in terms of the Nm gauge. To demonstrate this, the red (solid) line
shows the matter power spectrum after the particles have been displaced
according to the gauge transformation that brings them from Nm gauge
back to Nb gauge. The N-body simulations for this plot were performed
with gevolution, and the linear transfer function for the gauge generator was
provided through a modified version of CLASS.
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Figure 4. Shown is the dimensionless power spectrum of χ at different
redshifts. The solid red line is the linear contribution coming from radiation
(photons and massless neutrinos). The dashed red line shows the second-
order contribution from CDM and geometry, as computed in Appendix. The
solid blue line is the one found in a numerical simulation with gevolution.
The dotted violet line shows the dimensionless power spectrum of γ for
comparison.

generally negligible, while on the larger scales the linear approxi-
mation of the Nm gauge metric potentials is a good approximation.

Note that an alternative version of the Nm gauges defined in Fidler
et al. (2017) exists, which eliminates the error of the commonly
employed backscaling method (VI) compared to the full Nb gauge
simulation (I) by a similar gauge transformation.

4.5 Anisotropic stress

A hallmark feature of relativistic physics is the presence of two
distinct gravitational potentials. Free-streaming photons and neu-
trinos (which are taken massless in our study) generate anisotropic
stress even at first order, sourcing χ according to equation (11). This
first-order contribution is gauge-invariant and appears in Nb gauge
as a contribution to γ ; see equation (21). The anisotropic stress of
matter vanishes at first order, but it appears at higher order. While its
second-order contribution to χ can be computed perturbatively (see
Appendix), gevolution can construct it non-perturbatively from the
N-body ensemble. At this order, a new geometric contribution from
the weak-field expansion has to be taken into account as well; see
equation (12). Since the Nb gauge framework is only developed up
to leading order, we can do this computation so far only in Poisson
gauge.

Fig. 4 shows the dimensionless power spectrum of χ , defined in
equation (A5), at four different redshifts. We show separately the
first-order contribution from radiation and the second-order contri-
bution computed in Appendix, as well as the total (first-order ra-
diation plus second-order weak-field plus non-perturbative N-body
contributions) found in the N-body simulation. On the scales cov-
ered by the simulation, we find excellent agreement with the per-
turbative results. Non-perturbative effects would only show up on
even smaller scales than what is resolved in these simulations. For
comparison, we also show the power spectrum of γ , computed only

to first order since we have no second-order expression at hand. It
turns out that γ is typically about one order of magnitude larger than
χ on intermediate scales. Nevertheless, its (first-order) amplitude
eventually drops below the second-order result for χ , indicating
that a first-order calculation may no longer be meaningful beyond
those scales. However, for both, χ and γ , the overall amplitude de-
creases dramatically on small scales, and their effect can eventually
be neglected.

5 SU M M A RY A N D C O N C L U S I O N S

We have presented a detailed study that investigates the effect of
early radiation perturbations on the matter power spectrum at vari-
ous times. We have tested three methods that incorporate radiation,
i.e. by the use of (1) the hybrid N-body code COSIRA, (2) the relativis-
tic N-body code gevolution and (3) the framework of Nm gauges.
The last method does not require a modification of the Newtonian
N-body approach itself and includes, as a limit, the commonly
applied method to use modified initial data obtained through
‘backscaling’.

In more detail, the hybrid code COSIRA modifies the N-body
TREEPM-code GADGET-2 and couples it to the linear Einstein–
Boltzmann code CLASS. Radiation perturbations and GR effects are
incorporated to the leading order, and the N-body output is given
in Nb gauge. The second method is the relativistic N-body particle-
mesh code gevolution, which includes GR corrections up to second
order in the weak-field expansion in Poisson gauge. The linear ef-
fects of radiation are also obtained by interfacing the code with
CLASS. Method (3) is the Nm gauge framework that retroactively
applies linear radiation and GR effects to unmodified Newtonian
N-body simulations. Here, the output of the simulation is to be in-
terpreted within the Nm gauge, and the respective linear (metric)
perturbations are determined with a modified version of CLASS. This
includes the method of backscaling where Newtonian simulations
are initialized by using an appropriately rescaled present-day matter
power spectrum.

To compare the various methods – which make use of different
gauges – we transformed the simulation outputs to Nb gauge (if
required). For this, we have applied an active linear gauge transfor-
mation on the final particle positions that displaces the particles to
the correct final positions in the Nb gauge. We have determined the
required gauge generators by using a modified version of CLASS.

Our main results are summarized in Figs 1–3, where we take ra-
tios of power spectra of the various methods that neglect/incorporate
radiation. From Fig. 1, it is evident that the two relativistic codes
COSIRA and gevolution agree very well, which gives us confidence
that the two independent numerical implementations produce valid
results. Only on very large scales, there is a slight discrepancy be-
tween the codes that results from insufficient number of particles
in the simulation carried out with COSIRA. Furthermore, it is inter-
esting to note that the results obtained in Poisson gauge (here by
gevolution) are only very mildly affected by the presence of radi-
ation perturbations, at most an effect of about 1 per cent. In the
Nb gauge, by contrast, the impact of radiation is up to 4 per cent
(for an initial redshift of zini = 99) on large scales. For a standard
�CDM universe, the backscaling method works very accurately at
the present time when interpreting the output in the Nb gauge; how-
ever, this simple interpretation is lost at the earlier times. A correct
interpretation can still be achieved by employing the appropriate
Nm gauge metric. In Fig. 3, we show our results obtained from the
Nm gauge framework, where the impact of radiation is added to a
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Newtonian simulation as a post-processing. The results we obtain
agree at better than per cent-level accuracy on all studied scales.

In conclusion, we have established a comprehensive picture of the
effects of early radiation in relativistic N-body simulations. These
effects appear on very large scales that can be treated linearly even
at the present time. Using a relativistic framework, it is therefore
straightforward to take them into account, and we have shown three
different implementations that lead to similar results. We have also
verified that the backscaling approach accurately describes the mat-
ter power spectrum in the Nb gauge, with corrections from the full
Nm metric relevant only on very large scales and smaller than a few
per cent, provided that the initialization redshift of the simulation
is below z 	 99. Furthermore, we have verified that the backscaling
method accurately simulates the evolution of the baryonic acoustic
oscillation (BAO) feature. For this, we have investigated the two-
point matter correlation function for the various methods and found
no significant discrepancy.

Perhaps, it is relevant here to have a closer look at whether ig-
noring GR and radiation perturbations could potentially be an ob-
servable effect in upcoming surveys. Since the effect grows with
increasing length-scale, it mainly affects surveys with large vol-
umes, i.e. photometric surveys, rather than spectroscopic surveys
that typically have smaller effective volumes but allow for very ac-
curate reconstruction of the BAO feature. The largest such survey
currently planned is the photometric redshift survey component of
the Euclid satellite mission (Laureijs et al. 2011). As a very crude
estimate of the precision with which the matter power spectrum
can be probed at a given wavenumber k, we can use the approxi-
mate relation �P (k)/P (k) ∼ [

Veffk
3/(2π)3

]−1/2
with an effective

survey volume Veff of approximately 1000 Gpc3, which yields

�P (k)/P (k) ∼ 0.015
(

k

0.01 h Mpc−1

)−3/2
. At k ∼ 0.01 h Mpc−1, we

thus find �P(k)/P(k) ∼ 0.015 and at 0.001 we get �P(k)/P(k) ∼ 0.5.
Clearly, the effect of early radiation is at most marginally observable
with Euclid data. However, future 21-cm surveys potentially have
significantly larger effective volumes and in this case the effect is
potentially both important and directly observable.

Finally, we note that the methods presented in this paper could
be used to study other types of (linear) relativistic effects that could
occur, e.g. in models with inhomogeneous dark energy or other
exotic sources of perturbations.

Code availability. A new release of gevolution that includes the
treatment of radiation effects is available on a public GIT repository.4

The radiation module requires CLASS to be linked as a library. We
recommend to use the most recent public release. The modified
version of CLASS computing the Nm gauge potentials and gauge
transformations is available upon request.
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A P P E N D I X : S E C O N D - O R D E R
C O N T R I BU T I O N S TO χ

Deep inside the horizon and after the end of radiation domination
the linear source terms for χ decay and the non-linear contributions
start to dominate. Here, we present a perturbative calculation of
these contributions that is accurate to second order and hence valid
for mildly non-linear scales (see also Ballesteros et al. 2012). To this
end, we estimate the right-hand side of equation (12) by inserting
the linear solutions that can be computed with a Boltzmann code.
In particular, for non-relativistic matter, the stress is approximately
given by

δjkT
k
i = ρ̄ ∇iv∇j v, (A1)

where v is the linear velocity potential. Pressureless matter, even
if it behaves like a perfect fluid, produces some anisotropic stress
when you look at it in a frame other than its rest frame. Defining a
time-dependent density parameter

� = 8πGa2ρ̄

3H2
, (A2)

MNRAS 470, 303–313 (2017)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/470/1/303/3815549 by guest on 18 January 2022

https://github.com/gevolution-code/gevolution-1.1.git
http://arxiv.org/abs/1702.03221


Early radiation in N-body simulations 313

and moving to Fourier space, equation (12) becomes

χk = 1

k4(2π)3/2

∫
d3q

[
φqφk−q + 3

2
H2�vqvk−q

]

× [
3 (q ·k)2 − 2k2 (q ·k) − k2q2

]
. (A3)

Note that we use the unitary Fourier convention. The linear pertur-
bation variables φk and vk are related to the initial amplitude of the
gauge-invariant curvature perturbation ζ in

k through linear transfer
functions,

φk(τ ) = ζ in
k T

φ
k (τ ), vk(τ ) = ζ in

k T v
k (τ ). (A4)

Let us also define the dimensionless power spectrum �ζ (k) as

4πk3 〈ζkζk′ 〉c = (2π)3 δ
(3)
D (k + k′) �ζ (k), (A5)

and similarly for other scalar quantities. With this definition and our
Fourier convention, the normalization of �(k) agrees with the one
chosen by Bernardeau et al. (2002). A straightforward calculation
gives the following expression for the power spectrum of χ ,

�χ (k) = 1

2πk5

∫
d3q

[
T φ

q T
φ
|k−q| +

3

2
H2�T v

q T v
|k−q|

]2

× �ζ,in(q)

q3

�ζ,in(|k − q|)
|k − q|3

[
3 (q ·k)2 − 2k2 (q ·k) − k2q2

]2
.

(A6)

At this point, we would like to add a remark concerning the choice
of metric parametrization. It was noted by Adamek, Durrer & Kunz
(2014) that a similar calculation for a slightly different definition
of χ , related to the metric parametrization of Green & Wald (2012,
see also our footnote 1) that was followed also in gevolution prior to
the latest version 1.1, gives an integral expression that is divergent
in the infrared. This implies that the two-point correlation for χ

(in that parametrization) does not have a good fall-off behaviour at
infinity. The divergence can be traced back to the appearance of a
term like δijφ∇2φ in the equation that determines χ . Such a term is
absent in our corresponding equation (12), and the integral above
therefore has no infrared problem. This is an additional motivation
for choosing the exponential metric parametrization.

To clarify this point more explicitly, let us formally expand the
potentials as

φ = φ(1) + φ(2) + · · · , (A7a)

ψ = ψ (1) + ψ (2) + · · · , (A7b)

and let us do the same for the potentials � and  used by Adamek
et al. (2014). Comparing the line elements, equation (1) in their

work and our equation (6), we establish

�(1) = φ(1), (A8a)

 (1) = ψ (1), (A8b)

�(2) = φ(2) − (
φ(1)

)2
, (A8c)

 (2) = ψ (2) + (
ψ (1)

)2
. (A8d)

Therefore, (� − ) and (φ − ψ) are the same at first order and
correspond to the gauge-invariant quantity of equation (11), whereas
they clearly differ at second order due to the reparametrization.
Furthermore, the second-order contribution does not correspond to
a gauge-invariant quantity – we simply compute it in a specific
gauge. In this appendix, we estimate χ (2) = φ(2) − ψ (2), which
differs from (�(2) −  (2)) by a term quadratic in the first-order
potentials. It is the latter that causes an infrared problem.

In order to evaluate the convolution integral of equation (A6)
numerically, it is convenient to employ a variable transformation
w = q/k, u =

√
1 − 2wμ + w2, where μ is the cosine of the angle

between k and q (e.g. Lu et al. 2009, appendix C). The azimuth
angle can be integrated out directly, leaving us with

�χ (k) =
∞∫

0

dw

w2

w+1∫
|w−1|

du

u2

[
T

φ
kwT

φ
ku + 3

2
H2�T v

kwT v
ku

]2

�ζ,in(kw)

× �ζ,in(ku)

(
1

4
+ 1

2
w2 + 1

2
u2 + 3

2
w2u2 − 3

4
w4 − 3

4
u4

)2

.

(A9)

As noted at the beginning of this section, this result is valid if the
first-order contributions to χ are subdominant. Of course, there
exists a regime where first- and second-order contributions are of
similar amplitude. In this case, one can simply add the two contribu-
tions, noting that their cross-correlation has to vanish in perturbation
theory if one assumes Gaussian initial conditions for ζ .

This paper has been typeset from a TEX/LATEX file prepared by the author.
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