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ABSTRACT

We describe a simple but efficient method for deriving a consistent set of monopole and dipole corrections for multi-frequency sky
map data sets, allowing robust parametric component separation with the same data set. The computational core of this method is
linear regression between pairs of frequency maps, often called T−T plots. Individual contributions from monopole and dipole terms
are determined by performing the regression locally in patches on the sky, while the degeneracy between different frequencies is lifted
whenever the dominant foreground component exhibits a significant spatial spectral index variation. Based on this method, we present
two different, but each internally consistent, sets of monopole and dipole coefficients for the nine-year WMAP, Planck 2013, SFD
100 µm, Haslam 408 MHz and Reich & Reich 1420 MHz maps. The two sets have been derived with different analysis assumptions
and data selection, and provide an estimate of residual systematic uncertainties. In general, our values are in good agreement with
previously published results. Among the most notable results are a relative dipole between the WMAP and Planck experiments
of 10−15 µK (depending on frequency), an estimate of the 408 MHz map monopole of 8.9 ± 1.3 K, and a non-zero dipole in the
1420 MHz map of 0.15 ± 0.03 K pointing towards Galactic coordinates (l, b) = (308◦,−36◦) ± 14◦. These values represent the sum of
any instrumental and data processing offsets, as well as any Galactic or extra-Galactic component that is spectrally uniform over the
full sky.

Key words. methods: statistical – cosmology: observations – Galaxy: general – radio continuum: general

1. Introduction

The cosmic microwave background (CMB) fluctuations consist
of small variations with a root-mean-square (rms) of 70 µK im-
printed on top of a mean temperature of 2.73 K and a Doppler-
induced dipole of ∼3 mK. These minute variations thus corre-
spond to fractional fluctuations at the level of ∼10−5 relative
to the total signal. To minimize systematic uncertainties, mod-
ern CMB anisotropy experiments are therefore forced to employ
some form of differential measuring technique, eliminating the
large 2.73 K offset already at the instrument level. Both COBE-
DMR (Smoot et al. 1992) and WMAP (Bennett et al. 2013) em-
ployed coupled differencing assemblies that only recorded tem-
perature differences between two positions on the sky, while for
Planck the instrumental offset is large and unknown, and can-
not be used to constrain the monopole (Planck Collaboration I
2014). However, while necessary for systematics suppression,
this also implies that these experiments are intrinsically unable
to measure the true absolute zero-point (or monopole) of their

final maps. In addition, the dipole is also associated with a
large relative uncertainty because of the large numerical value
of the CMB Doppler dipole; a small relative error in the deter-
mination of the CMB dipole direction can induce a dipole er-
ror of many microkelvins in a CMB map. Typically, this will
be strongly correlated among frequencies within a single exper-
iment, though, and so informative priors can be imposed among
frequency channels within a given experiment. For foreground-
dominated frequency channels, instrumental systematics, such
as gain fluctuations, may induce dipole errors.

Removing the monopole and dipole from CMB data sets
does not constitute a major limitation in terms of CMB-based
cosmological parameter analysis, since losing a handful har-
monic modes out of many thousands only negligibly reduces
the total amount of available information. However, it does
have a significant indirect impact because of the presence of
non-cosmological foreground contamination from Galactic and
extra-Galactic sources. In order to obtain a clean image of the
cosmological CMB fluctuations, this foreground contamination
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has to be removed from the raw sky maps through some form
of component separation prior to power spectrum and param-
eter estimation. A wide range of such methods have been al-
ready been proposed (e.g. Planck Collaboration XII 2014, and
references therein), ranging from the simplest of template fit-
ting and internal linear combination approaches through blind-
or semi-blind image processing techniques to full-blown para-
metric Bayesian methods employing physical models. Except
for the very simplest methods, all of these exploit the fact that all
foreground frequency spectra are qualitatively different from the
CMB spectrum. For instance, while the CMB spectrum is that of
a perfect blackbody, thermal dust emission can be well approx-
imated by that of a one- or two-component greybody. However,
such relations clearly only hold if there are no arbitrary offsets
between the different frequency maps. In other words, spurious
monopole and dipole errors can bias any estimation algorithm
that exploits frequency dependencies, and this can in turn lead
to leakage between various components, and eventually contam-
ination in the CMB estimate.

A number of methods have already been proposed in the lit-
erature for estimating monopoles, while fewer have addressed
residual dipoles. One example of the former is the co-secant
method adopted by the WMAP team (Bennett et al. 2003). In
this case, the Galactic signal is approximated as plane-parallel
in Galactic coordinates, with an amplitude falling roughly pro-
portionally with the co-secant of the latitude. The major weak-
ness of this method is that the Galaxy is neither plane-parallel
nor follows a co-secant, and the method does also not account
for residual dipole terms. A second approach was proposed
by Eriksen et al. (2008), who include the monopole and dipole
terms as additional free parameters within a global Bayesian
parametric framework. The major weakness with this method is
a large degeneracy between the monopole and dipole terms rela-
tive to the unknown zero-point of each foreground; it is possible
to add a constant to each foreground amplitude, and then subtract
a corresponding frequency-scaled offset from each monopole,
leaving the net sum unchanged.

A third widely used method for setting the zero-level of
radio maps is that of linear regression, or through so-called
T−T plots. This method has a long and prominent history in ra-
dio astronomy (see, e.g. Turtle et al. 1962; Davies et al. 1996;
Reich & Reich 1988; Reich et al. 2004; Wehus et al. 2013, and
references therein), as it provides a highly robust estimate of the
spectral index of a single signal component given observations
at two different frequencies. When plotting the measured pixel
values at one frequency as a function of the measured pixel val-
ues at the other frequency, the spectral index is given (up to a
constant factor) by the slope of the resulting T−T plot, which is
easily found by linear regression. The main virtue of this spec-
tral index estimate is that it is completely insensitive to any con-
stant offset in either of the two frequency maps, since these only
affect the regression intercept, not the slope. Intuitively, offsets
only shift the scatter plot horizontally or vertically, but they do
not deform or rotate it.

In the following, we exploit the same idea to estimate both
spurious monopoles and dipoles by noting that when the true
values are correctly determined, the regression intercept has to
be zero: if the foreground signal at one frequency is exactly zero,
it also has to be exactly zero at the other frequency1. This implies

1 Line emission processes, such as that arising from carbon-monoxide
(CO), are clearly exceptions to this, and regions with significant line
emission must be masked before applying the method presented in this
paper.
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Fig. 1. Schematic illustration of a single T−T plot evaluated for an ideal
low-frequency Planck simulation (30 and 44 GHz). Each dot represents
the observed values at two frequencies for a single pixel. The slope of
the distribution is given by the spectral index of the signal component
in the field, as indicated by the dashed lines. A constant offset in either
frequency map simply translates the entire T−T plot either horizontally
or vertically. For maps without spurious offsets, the best-fit straight line
should pass through the origin; the fundamental idea of the algorithm
presented in this paper is to ensure that this is the case for any suffi-
ciently small patch of the sky.

that a single T−T plot constrains both the spectral index of the
component and the relative offsets of the two maps, m1 and m2,
to m1 = am2 + b, where a and b are the slope and intercept of the
T−T plot. The main goal of the present paper is to develop this
simple idea into a complete and robust method for determining
both monopoles and dipoles from a set of multi-frequency sky
maps.

2. Method

Before describing the main method, we note that robust linear re-
gression is generally difficult in the low signal-to-noise regime,
as both the slope and intercept are associated with large un-
certainties. We therefore adopt a two-step process in which we
first use the main T−T plot method for high signal-to-noise fre-
quency channels, followed by a direct template fit method for
low signal-to-noise channels. The second stage, however, is both
conceptually and implementationally straightforward and well
established in the literature; the difficult task is to set the offsets
correctly for the high signal-to-noise components, and this is our
primary concern in the following.

2.1. Single region data model

We start by considering a basic data model consisting of a single
signal component on the form

dν(p) = F(ν)s(p) + nν(p) + mν, (1)

where dν(p) denotes the observed sky map value at frequency ν
and pixel p, s represents the true sky signal (at some reference

A131, page 2 of 14

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201525659&pdf_id=1


I. K. Wehus et al.: Monopole and dipole estimation for multi-frequency sky maps by linear regression

frequency, ν0), F(ν) denotes the (normalized) frequency spec-
trum of the sky signal (often called mixing matrix in the com-
ponent separation literature), nν(p) is instrumental noise, and mν

is the unknown spurious offset we want to estimate and remove.
For now, mν is taken to be a pure constant (monopole), and F(ν)
is assumed constant over the entire observed field.

For many radio astronomy applications, the signal spectrum
can be approximated by a power-law, F(ν) = (ν/ν0)β, at least
over some limited frequency range. The effective spectral index,
β, can be computed between any two frequencies, ν1 and ν2, us-
ing the so-called T−T plot technique. Let us first consider the
noiseless case without offsets. For this case, the spectral index is
given by

d2 =

(
ν2

ν1

)β
d1 ⇔ β =

log
(

d2
d1

)
log

(
ν2
ν1

) · (2)

Defining the slope as a ≡ (ν2/ν1)β, and including noise and spu-
rious offsets, this expression reads

d2 − (n2 + m2) = a [d1 − (n1 + m1)] (3)
d2 = ad1 + (m2 − a m1) + (n2 − a n1) (4)
≡ ad1 + b + n. (5)

Thus, the observed signal at one frequency is related linearly to
signal at the other frequency, with a slope given uniquely by the
spectral index, and an intercept given by b ≡ (m2 − a m1).

This relation is often conveniently visualized in terms of
scatter (or T−T) plots, as illustrated in Fig. 1. Each dot indicates
the observed data values at the two frequencies for one pixel,
while the dashed lines indicate three models with different val-
ues of β. A spurious offset in either frequency map corresponds
directly to a vertical or horizontal translation of the entire scat-
ter plot, respectively, but does not change the slope. Therefore,
the spectral index is fully insensitive to spurious constant offsets
when estimated by this T−T plot technique. However, as shown
below, spurious dipoles do bias the spectral index, because they
introduce a gradient across the field resulting in a net additional
tilt. The appropriate correction for this is discussed below.

As long as F(ν) , 0 for all ν, it is clear that if the data van-
ish in one frequency, it also has to disappear in the other. Thus,
for data free of any spurious offsets the best-fit line through the
T−T plot must pass through the origin. Correspondingly, a non-
zero regression intercept can only be due to the offset term in
Eq. (5), implying that m1 and m2 must be related by

m2 − a m1 = b. (6)

In other words, the true pair of offsets must lie somewhere along
the best-fit regression line in the T−T plot. From a single scat-
ter plot it is impossible to determine the precise location, but
this simple linear relation nevertheless forms the core unit of our
algorithm.

Before proceeding with the algorithm, we make a few com-
ments concerning the implementation of the fitting procedure for
a and b. First, since both d1 and d2 are noisy quantities, the stan-
dard method based on the normal equations does not strictly ap-
ply, as that estimator is known to suffer from so-called attenua-
tion bias; noise in the descriptor variable, d1, biases a low (e.g.
Draper & Smith 1998). Second, in real data sets strong outliers
occur quite frequently; a typical example in the CMB setting is
unmasked point sources. Since we will only apply this method
to high signal-to-noise data sets in the following, the second

problem is definitely more pressing for our purposes. We ac-
cordingly adopt the non-parametric and highly robust Theil-Sen
estimator in the following (Theil 1950): we estimate the slope as
â = median[(d2(p2) − d2(p1))/(d1(p2) − d1(p1))] evaluated over
all pixel pairs (p1, p2), and the intercept as b̂ = median[d2(p) −
âd1(p)]. If one wants to apply the same method to low signal-to-
noise observations, a more appropriate estimator is the Deming
estimator (Deming 1948), which properly accounts for uncer-
tainties in both directions. We have implemented both of these
estimators in our codes, and find fully consistent results for the
cases considered in this paper. However, given the consistency
of the two sets of results, we will for brevity only present the
results derived with the Theil-Sen estimator in the following.

2.2. Absolute monopole determination by spectral variations

Above we assumed that all pixels in the region of interest have
the same spectral index, and the entire map may therefore be
analyzed within a single T−T plot. In reality, the true spectral in-
dex varies across the sky to some extent. For instance, the spec-
tral index of synchrotron emission typically ranges between, say,
βs = −2.6 and −3.1, while the thermal dust emissivity ranges
between, say, βd = 1.3 and 1.8 (e.g. Planck Collaboration XII
2014, and references therein). To account for these variations,
it is therefore necessary to segment the sky map into disjoint re-
gions such that the index can be approximated as nearly constant
within each region. In the absence of a physically motivated seg-
mentation algorithm, a good first-order approximation is simply
to partition the sky into some coarse grid. For applications adopt-
ing the HEALPix pixelization (Górski et al. 2005), such as ours,
the nested ordering scheme proves particularly useful for this
purpose, as it allows fast and localized grid coarsening. For in-
stance, while each sky map considered here are pixelized on a
grid built up with 14′ pixels (corresponding to a HEALPix reso-
lution parameter of Nside = 256), a single constant-index region
is typically defined in terms of 3.◦8 pixels (Nside = 16), each con-
taining 16 × 16 high-resolution pixels.

Such partitioning into smaller regions is not only useful to
ensure nearly constant spectral indices, but in fact it allows an
absolute determination of the individual offsets, m1 and m2.
Let the full data set be partitioned into N regions, each with a
(nearly) constant spectral index βi, and perform an independent
linear regression procedure for each region, as outlined above.
In this case, one will obtain an independent linear constraint on
m1 and m2, given by Eq. (6), from each region. These may be
combined into the following (over-determined) linear system,
−a1 1
−a2 1
...
−aN 1


[

m1
m2

]
=


b1
b2
...

bN

 . (7)

Writing this linear system in a matrix form, Am = b, it has a
unique solution given by the normal equations, m̂ = (AtA)−1At b.
Thus, any spatial variation in the spectral index breaks the de-
generacy between the offsets at the two frequencies, and at least
formally allows absolute determination of both.

2.3. Joint monopole and dipole determination

Partitioning the sky into sub-regions further allows us to estimate
additional degrees of freedom. Specifically, suppose that the total
offset parameter space may be spanned by some set of basis vec-
tors, Tk(p), each with an unknown amplitude, zk. The archetypal
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Fig. 2. T−T summary plot of four different simulations. Each coloured
line corresponds to the best-fit to a single HEALPix Nside = 8 region,
evaluated from underlying an Nside = 256 synchrotron-only simulation.
The top left panel shows the ideal case with neither spurious offsets
nor instrumental noise; all lines converge perfectly on the origin. In the
top right panel spurious offsets of −30 and +20 µK are added to the two
frequencies, resulting in a simple corresponding translation of the entire
plot. The bottom left panel shows the effect of a spurious dipole; the
lines no longer converge on a single point, as each region is effectively
translated by a different offset. Finally, the bottom right panel illustrates
the effect of instrumental noise.

example is the space spanned by a monopole and three dipoles,
such that the total effective offset for a given frequency map is

m̃ = Tz (8)

=


1 cos φ1 sin θ1 sin θ1 sin φ1 cos θ1
1 cos φ2 sin θ2 sin θ2 sin φ2 cos θ2
...

...
...

...
1 cos φn sin θn sin θn sin φn cos θn




z0
z1
z2
z3

 , (9)

where subscripts indicate pixel number. To account for these new
degrees of freedom within a single region i, Eq. (6) generalizes
to

3∑
k = 0

Tk(i)mk,2 − a
3∑

k=0

Tk(i)mk,1 = b, (10)

where we approximate the net impact of the additional templates
as constant over the region, that is Tk(i) = 1/Npix

∑
p∈i Tk(p).

The full joint all-regions linear system, corresponding to Eq. (7),
is correspondingly generalized into Ax = b, where A now is
an N × 8 matrix containing −aiTk(i) for region i and template
component k in the first four columns, and Tk(i) in the four last
columns. The x vector has eight elements containing the tem-
plate amplitudes for the first map in the first four entries, and the
template amplitudes for the second map in the four last entries.
The right-hand side, b, is identical to that in Eq. (7). Again, this
system is solved by the normal equations, x̂ = (AtA)−1At b.

While spurious monopoles do not change the net slope of a
T−T plot, spurious dipoles do. And the larger area the considered

region covers, the larger the effect is. We account for this effect
by iteration. That is, we (1) solve Eq. (10) as described above;
(2) subtract the derived monopole and dipole estimates from the
raw input maps; and (3) iterate until all offset updates are smaller
than, say, 1% of the total value. Typically three or four iterations
are needed to reach convergence.

In Fig. 2 four different simulations illustrate the various cases
discussed so far. Each line corresponds to the best-fit linear fit
to the T−T plot of a synchrotron-only sky evaluated at 30 and
44 GHz, corresponding to the two lowest Planck frequencies.
Each sky map has an angular resolution of 1◦ FWHM, and is
pixelized on an Nside = 256 HEALPix grid. The spectral index
is chosen to be constant within each Nside = 8 pixel, and drawn
from a Gaussian distribution with β = −3 ± 0.2, resulting in
768 independent T−T plots.

In the top left panel, we show the ideal case with neither
spurious offsets nor instrumental noise. In this case, we see that
all lines truly converge on the origin, as they should. In the
top right panel we have added a −30 µK offset to the 30 GHz
channel, and a +20 µK offset to the 44 GHz channel. The en-
tire plot is translated accordingly, now focusing on the point
(d1, d2) = (−30, 20) µK. Intuitively, the main goal of monopole
correction is to re-centre the focal point on the origin.

Next, the bottom left panel shows the effect of adding a spu-
rious dipole to each frequency band. For a single region, this is
almost equivalent to a simple translation, just like a monopole;
however, each scatter plot is translated differently, depending on
its position on the sky. When considering all T−T plots simulta-
neously, the overall distribution therefore appears smeared out,
and possibly offset from the correct position, depending on the
relative orientation between the two dipoles and the dominant
Galactic signal. The intuitive goal of dipole correction is to make
the focus point of this plot as sharp as possible.

Finally, the bottom right panel illustrates the effect of instru-
mental noise. This simply smears out each individual line, mak-
ing it harder to assess where the lines converge to a single point.
When the instrumental noise becomes comparable to the signal,
robustly estimating the slopes and intercepts becomes very diffi-
cult, and we choose for now not to be aggressive in this respect;
for low signal-to-noise cases, we find that simpler template fit-
ting methods yield more robust results.

2.4. Preparing for real-world applications

The algorithm presented in the previous section constitutes the
central engine in our method, and is already at this stage a self-
contained and complete method for ideal data sets. However, real
data are seldom ideal, and several adjustments and extensions
are usually required before the method becomes practical. In this
section we present a list of these issues, as well as their solutions.

2.4.1. Analyzing multi-resolution data sets

First, most multi-frequency data sets typically have different an-
gular resolutions at different frequencies. In order to estimate
the spectral indices (i.e. slopes) reliably across frequencies, it
is therefore necessary to smooth all bands to a common an-
gular resolution. To do so, we decompose each sky map into
spherical harmonics, d(p) =

∑
`m a`mY`m(p). According to the

spherical convolution theorem, a convolution in pixel domain
translates into a multiplication in harmonic domain by the convo-
lution theorem, such that if b0

`
is the Legendre transform of the

intrinsic instrumental beam, and b` is the Legendre transform
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of the desired common beam, the smoothed map is given by
d̂(p) =

∑
`m(b`/b0

`
)a`mY`m(p).

This degradation does not change the monopole or dipoles
of the original map, and the derived low-resolution offset cor-
rections can therefore be applied also to the full-resolution data
set. However, it is important to note that information is lost in
this process, in the sense that the T−T plots exhibits a smaller
dynamic range after smoothing, effectively making it harder to
pinpoint the optimal solution. One should therefore not smooth
more than necessary to bring the frequency maps to a common
resolution.

2.4.2. Joint analysis of multiple frequency bands

Second, many recent data sets have more than two frequency
channels, whereas the T−T plot method intrinsically only in-
volves pairs of maps. To deal with multiple maps, we order
the maps according to frequency, and derive Eq. (7) for each
pair of neighbouring frequencies. Considering the simplest case
with only a monopole degree-of-freedom for each of k frequency
bands, this results in the following joint system,
−a1 1 0 . . . 0 0

0 −a2 1 . . . 0 0
0 0 −a3 . . . 0 0
...

...
...

...
...

...
0 0 0 . . . −ak−1 1




m1
m2
...

mk

 =


b1
b2
...

bk

 . (11)

Generalization to dipole estimation and multiple regions is
straightforward, although somewhat notationally involved. Note
also, of course, that nothing prevents including frequency pairs
beyond neighbouring in the fit; the only limitation is that any
given frequency pair should be well described by a single domi-
nant signal component, which typically sets an effective limit on
the allowed frequency range.

2.4.3. Subtracting CMB fluctuations

For frequencies between 30 and 143 GHz, the Planck and
WMAP sky maps are dominated by CMB fluctuations rather
than diffuse Galactic foregrounds. Over the cleanest regions of
the sky, these fluctuations can therefore in principle serve as the
signal for evaluating the scatter plot slopes and intercepts. How-
ever, this is non-trivial for at least two reasons. First, the CMB
variance is typically of the order of 70 µK on degree angular
scales, while both the desired offset precision and the instrumen-
tal noise are typically just a few microkelvins. Second, since the
CMB frequency spectrum follows a blackbody, it has by defi-
nition a constant spectral index (equal to 0) at all frequencies
and positions on the sky. Offset estimation on CMB fluctuations
therefore give at most relative results, and even those are associ-
ated with relatively large uncertainties.

The most straightforward solution, and the one adopted in
the following, is to subtract an estimate of the CMB sky (e.g.
Planck Collaboration XII 2014; Bennett et al. 2013) from all sky
maps prior to offset estimation. The accuracy of this estimate is
not critical, as the nature of CMB fluctuations are very close
to Gaussian, and they therefore mostly add random noise to the
T−T plots. As long as the CMB uncertainties are significantly
smaller than the absolute foreground amplitude of the relevant
channel, which usually is the case with current CMB experi-
ments, the fit is stable. However, in order to ensure that the result-
ing offset correction estimates are directly applicable to the orig-
inal sky maps, one should ensure that whatever CMB estimate is

subtracted is orthogonal to all basis vectors, Tk, which in prac-
tice implies making sure that it does not have any monopole or
dipole components. Although, similar to the CMB fluctuations,
the precision with which the monopole and dipoles are removed
is not critical; since the same CMB template is subtracted from
all frequency maps, the corresponding frequency spectrum of
these modes is precisely that of a perfect blackbody. Therefore,
as long as subsequent component separation algorithms either
fits for or marginalize over a CMB-type monopole and dipole,
they will be completely safe with respect to potential residuals
at this stage.

2.4.4. Handling multiple signal components by masking

Related to the previous issue, the algorithm intrinsically as-
sumes the presence of only one dominant foreground compo-
nent per region. For data sets such as the low-frequency and
synchrotron dominated 408 MHz Haslam and 1420 MHz Reich
& Reich maps, this is for most parts of the sky not an is-
sue. Neither is it for the high-frequency Planck channels above
143 GHz, which are dominated by thermal dust emission. How-
ever, for the low-foreground Planck and WMAP CMB channels
between, say, 30 and 100 GHz somewhat greater care is war-
ranted. For these frequencies, the overall signal budget is made
up by a combination of synchrotron, free-free, anomalous mi-
crowave emission (AME; spinning dust), CO and thermal dust
emission (Planck Collaboration XII 2014). For some frequen-
cies, this complication can be solved by masking, by remov-
ing spatially localized components such as CO and free-free.
For other frequencies, say, between 20 and 40 GHz, where both
synchrotron and AME are significant and not spatially local-
ized, more sophisticated component separation methods should
be used, simultaneously accounting for multiple components.

2.4.5. Template fitting near the foreground minimum

Near the foreground minimum around 70 GHz, low-frequency
foregrounds (AME, free-free and synchrotron) and thermal dust
contribute (by definition) equally, and the scatter plot technique
is therefore intrinsically unreliable. In addition, the foreground
signal-to-noise level is low, further destabilizing the T−T plot
technique. On the other hand, the absolute foreground levels are
also correspondingly low, and even simple methods are typically
able to derive quite accurate monopole and dipole estimates. We
therefore adopt the following template fitting technique for fre-
quencies between 33 (WMAP Ka-band) and 100 GHz: we first
derive absolute offset corrections for all high-foreground fre-
quencies, and apply these to the respective (CMB-subtracted)
channel maps. We then adopt the nearest neighbours on either
side of the foreground minimum (i.e. the Planck 30 and 143 GHz
maps) as low-frequency foreground and thermal dust templates,
respectively. We then fit these together with the monopole and
three dipoles to the low-foreground channels by solving the gen-
eralized normal equations,

z = (TTN−1T)−1TTN−1d, (12)

where T is the Npix×6 matrix listing each template column-wise,
and N is the (assumed diagonal) pixel noise covariance ma-
trix. A very conservative mask excluding both point sources and
residual Galactic contamination is applied in the fit, as shown in
Fig. 4.

We typically find that the uncertainties from this fit are on
the order of a few microkelvins. However, even such small
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Fig. 3. Recovered offset coefficients as a function of analysis iteration
for a two-band simulation. The true input values are shown as dashed
horizontal lines. The values change between iterations because spuri-
ous dipoles bias the slope of the T−T plots; iterative dipole correction
remove this bias. Overall, the method reproduces the true input values
to .1 µK. However, the adopted bootstrap uncertainties tend to under-
estimate the uncertainties in the sub-dominant channels (44 GHz in this
case), and are only intended to give an indication of the true uncertain-
ties. End-to-end simulations are required for fully reliable uncertainty
estimation.

uncertainties can in principle be detected by detailed χ2 based
analyses, for instance as implemented in parametric foreground
methods like Commander (Eriksen et al. 2008). For such applica-
tions, we recommend that one fits (or at least verifies) the offset
amplitudes for these channels within the joint analyses itself, ac-
counting simultaneously for foreground amplitudes and overall
offsets.

Fig. 4. Joint mask used for the analysis of the WMAP, Planck and
100 µm maps.

2.4.6. Stabilization by a positivity prior

To improve the rigidity and physicality of the fit, it can be ad-
vantageous to impose a positivity prior on the foreground am-
plitudes, by requiring that the post-correction frequency map is
non-negative everywhere. We implement this as an optional fea-
ture in our codes as follows. We locate the coldest set of pixels
on the sky, separated by at least 10◦ on the sky. Each pixel value
defines an independent inequality constraint on the offset coeffi-
cients given by

d(p) −
4∑

i = 1

Ti(p)zi ≥ 0. (13)

For cases with significant noise contribution, the inequality
should be relaxed by adding Nσ(p) to the right-hand side, where
σ(p) is the instrumental noise rms in pixel p, and N is a thresh-
old level in units of σ; we adopt 4σ as our positivity threshold.
Note that optimization of, say, Eq. (11) under these constraints is
a substantially more computationally complicated problem than
solving the linear normal equations, and must be performed us-
ing non-linear methods.

2.4.7. Uncertainty estimation

Finally, we make a short note on estimation of statistical uncer-
tainties, but emphasize that this topic is by far the most compli-
cated part of the entire procedure, and the method outlined here
is only intended to give a rough estimate of the uncertainties. The
fundamental problem is that for most current experiments, the
monopole and dipole coefficient uncertainties are vastly dom-
inated by systematic effects (foreground modelling, optical im-
perfections etc.), rather than instrumental noise. Noise-based un-
certainties are therefore virtually meaningless for describing true
uncertainties. For this reason, we adopt a Monte Carlo based
bootstrap method for now, aiming to capture some of these
intrinsic systematic uncertainties in a non-parametric manner.
From a data set consisting of m disjoint sky regions, we select
randomly a sub-sample of m regions (i.e. one region may be in-
cluded several times), and perform the full analysis on this sub-
sample in the same manner as for the original data set. This pro-
cess is repeated typically 100 times, and the resulting variance
among those 100 resamples is taken as the bootstrap uncertainty.
Further, any tunable parameter, such as whether to perform the
analysis on Nside = 4, 8 or 16 regions, are also drawn randomly
within their allowed ranges between each resample.

The main advantage of this bootstrap approach is that it does
to some extent account for foreground modelling uncertainties
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Fig. 5. Difference maps between the CMB and high-frequency channels and the 70 GHz map, before (first and third columns) and after (second
and fourth columns) offset corrections. The bottom row shows the pre- and post-correction 70 GHz map itself.

and algorithmic choices. However, it is still determined by the
actually realized sky, and can therefore only account for those
variables that vary within our actual data set; not those that are
fixed for a given realization, but in principle stochastic. The
method will therefore necessarily underestimate the true uncer-
tainties, and we caution against interpreting these as Gaussian

68% confidence levels. For fully reliable uncertainty estimation,
proper end-to-end simulations (including different foreground
realizations in each simulation) are likely to be the only truly
satisfactory solution, which is outside the scope of the current
paper.
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2.5. Analysis of a simple simulation

Before applying our method to real observations, we analyze
a simple well-controlled simulation, to check that the method
produces sensible results in this case. Ideally, these simulations
should be as realistic as possible, and include the full complex-
ity of both the astrophysical foreground sky in terms of spec-
tral index variations and potential instrumental systematic ef-
fects. In principle, the existing FFP6 or FFP8 Planck simulations
(Planck Collaboration XII 2016) would be ideal for this purpose.
Unfortunately, this is not practically possible, because the FFPx
simulations only include support for Planck channels, not for
WMAP, the 408 or 1420 MHz, or the IRAS 100 µm maps, all
of which are essential for our analysis. Furthermore, general-
izing the FFP simulation pipeline to include support for these
channels represents a work-load far beyond the scope of this
paper. For this reason, we choose instead to consider a simple
simulation in which we control all aspects to perfect accuracy.
Specifically, we employ the same synchrotron-plus-noise simu-
lation discussed above, with the signal component evaluated at
the two lowest Planck frequencies, 30 and 44 GHz, but this time
adopting the spatial spectral index distribution derived from the
408 and 1420 MHz maps in Sect. 4. In addition, we add spuri-
ous monopoles and dipoles to both maps ranging between −60
and +90 µK.

The results from this simulation are summarized in Fig. 3
for each offset parameter, as a function of analysis iteration. The
dashed lines show the true value, and the uncertainties indicate
the bootstrap errors described above. The general behaviour seen
in this plot is typical for all cases we have analyzed, and there-
fore serves as a useful tool for building intuition about the per-
formance of the method. First, and most importantly, we see that
the method overall reproduces the true input values in terms of
absolute values to a precision of at worst 1−2 µK.

Second, we see that the largest changes are observed be-
tween the first and the second iteration. This is due to the al-
ready mentioned fact that a spurious dipole introduces a bias in
the effective slope (or spectral index) of the T−T plots, and this
in turn leads to a leakage of dipole power into the monopole.
However, even the first-order dipole correction leads to a vastly
improved monopole estimate, and subsequently nearly stable re-
sults; the 30 GHz monopole jumps directly from +15 µK to the
true value of −10 µK in the second iteration. Additional itera-
tions only change the results by small amounts.

Third, as already stressed in Sect. 2.4, we see that the boot-
strap uncertainties do not adequately describe the true uncertain-
ties in the fit for all coefficients. While they do a reasonable job
for the dominant 30 GHz channel, they underestimate the uncer-
tainties at 44 GHz by up to a factor of four or five. However, it
is again important to note that the absolute uncertainties for the
same coefficients are small. In general, the bootstrap errors tend
to produce a reasonable estimate for the dominant channels, but
underestimate the uncertainties in the sub-dominant channels. In
this paper, we will never quote uncertainties smaller than 1 µK
for any component, even if the formal bootstrap uncertainty for
a few cases is as low as 0.2 µK.

3. Data and analysis setup

We now turn our attention to a set of 17 publicly available full-
sky maps of the radio, millimeter and sub-millimeter sky, with
the goal of establishing a consistent set of offset coefficients
that can be used for multi-experiment CMB component sepa-
ration analysis. We include in the following (1) the nine Planck

2013 temperature sky maps (Planck Collaboration I 2014), rang-
ing between 30 and 857 GHz; (2) the five 9-year WMAP temper-
ature sky maps (Bennett et al. 2013) at the K- (23 GHz), Ka-
(33 GHz), Q- (41 GHz), V- (61 GHz) and W-bands (94 GHz);
3) two low-frequency maps at 408 MHz (Haslam et al. 1982)
and 1420 MHz (Reich 1982; Reich & Reich 1986; Reich et al.
2001), respectively; and 4) the 100 µm map by Schlegel et al.
(1998). For Planck and WMAP we use the non-foreground
cleaned co-added frequency maps; for the 408 MHz map, we
use the version available on LAMBDA2 that has no filtering ap-
plied; and the 100 µm map accounts for the DIRBE and IRAS
bandpasses. All maps are downgraded to a common resolution
of 1◦, and repixelized at a HEALPix resolution of Nside = 256.
No further corrections are applied to any map.

For the positivity prior, we need a rough estimate of the in-
strumental uncertainty per pixel. For WMAP and Planck we
base this on the provided high-resolution noise variance maps.
For the two low-frequency and the 100 µm channels we enforce
a strict positivity prior, and simply demand that there should be
no negative pixels at all.

The 408 and 1420 MHz maps are analyzed together, and sep-
arately from the other 15 maps, which are all analyzed jointly.
For the low-frequency analysis, we adopt the WMAP KQ85
mask (Bennett et al. 2013), and for the main analysis we addi-
tionally apply the Planck GAL60 Galactic and PCCS+SZ point
source mask (Planck Collaboration XII 2014). This joint mask
is first smoothed by a 10′ Gaussian beam, and thresholded at a
value of 0.5, to remove the very smallest source holes from the
Planck mask. Then it is smoothed by a 1◦ Gaussian beam, and
thresholded at 0.99, to exclude residual foregrounds leaking out
of the mask after smoothing each frequency map to the common
resolution of 1◦. The resulting mask is shown in Fig. 4, and per-
mits a total of 38% of the sky.

We use the main T−T scatter plot technique for the
408−1420 MHz combination, as well as for the combination
of WMAP K-band and Planck 30 GHz and for all frequencies
above 143 GHz. For the frequencies between WMAP Ka-band
and Planck 100 GHz we use the template fit technique de-
scribed in Sect. 2.4, and adopt the Planck 30 and 143 GHz
channels as foreground tracers for low-frequency foregrounds
and thermal dust, respectively. For CMB suppression, we adopt
the Planck Commander solution from which the monopole and
dipole has been removed outside the Commander analysis mask
(Planck Collaboration XII 2014). For robustness, we also per-
formed an analysis using the low-foreground 9-year WMAP
ILC CMB map (Bennett et al. 2013), obtaining nearly identical
results.

To explore overall stability with respect to analysis choices,
we additionally analyze a subset of the above. As reported
by Planck Collaboration XII (2014), the spectral index of ther-
mal dust below 353 GHz is found to be lower than the ex-
pected value of 1.3−1.7 over extended regions of the sky. This
may be explained either in terms of systematic uncertainties
in the maps, or a break in the spectral index around 353 GHz,
or simply a general break-down of the simple one-component
greybody model. When including the high-frequency channels,
as above, this feature is regularized by high signal-to-noise
measurements, resulting in a far more stable fit. However, this
stability comes at a cost; if there happens to exist a second ther-
mal dust component, the scatter plot technique is not well de-
fined. In this case, it would be better for the low-frequency chan-
nels to exclude the high-frequency channels, and thereby reduce

2 http://lambda.gsfc.nasa.gov
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Table 1. Monopole and dipole estimates for two different analysis configurations.

Sky map Method Partner(s) Monopole X dipole Y dipole Z dipole Unit

17 band combination; tuned mask; no external priors

Haslam 408 MHz . . . . T−T fit 1420 MHz 8.9 ± 1.3 3.2 ± 1.5 0.7 ± 1.4 −0.8 ± 1.5 K
R&R 1420 MHz . . . . T−T fit 408 MHz 3.28 ± 0.02 0.07 ± 0.03 −0.09 ± 0.03 −0.08 ± 0.03 K
WMAP K-band . . . . . T−T fit 30 GHz −14 ± 2 2 ± 3 16 ± 4 7 ± 2 µK
WMAP Ka-band . . . . Template fit 30 + 143 GHz 3 ± 1 1 ± 1 2 ± 1 7 ± 1 µK
WMAP Q-band . . . . . Template fit 30 + 143 GHz 1 ± 1 1 ± 1 0 ± 1 6 ± 1 µK
WMAP V-band . . . . . Template fit 30 + 143 GHz 1 ± 1 1 ± 1 −3 ± 1 5 ± 1 µK
WMAP W-band . . . . Template fit 30 + 143 GHz 2 ± 1 2 ± 1 −4 ± 1 5 ± 1 µK
Planck 30 GHz . . . . . T−T fit K-band 10 ± 1 −1 ± 2 7 ± 2 8 ± 1 µK
Planck 44 GHz . . . . . Template fit 30 + 143 GHz 3 ± 1 1 ± 1 7 ± 1 −4 ± 1 µK
Planck 70 GHz . . . . . Template fit 30 + 143 GHz 14 ± 1 1 ± 1 4 ± 1 −3 ± 1 µK
Planck 100 GHz . . . . Template fit 30 + 143 GHz 15 ± 1 5 ± 1 8 ± 1 −7 ± 1 µK
Planck 143 GHz . . . . T−T fit 217 GHz 34 ± 1 5 ± 1 8 ± 1 −8 ± 1 µK
Planck 217 GHz . . . . T−T fit 143 + 353 GHz 84 ± 1 7 ± 2 9 ± 3 −9 ± 2 µK
Planck 353 GHz . . . . T−T fit 217 + 545 GHz 315 ± 9 33 ± 16 22 ± 22 −14 ± 11 µK
Planck 545 GHz . . . . T−T fit 353 + 857 GHz 0.12 ± 0.01 0.03 ± 0.02 −0.02 ± 0.02 0.03 ± 0.01 MJy/sr
Planck 857 GHz . . . . T−T fit 545 GHz + 100 µm 0.17 ± 0.03 0.12 ± 0.05 −0.05 ± 0.04 0.07 ± 0.03 MJy/sr
SFD 100 µm . . . . . . T−T fit 857GHz 0.24 ± 0.02 0.25 ± 0.07 −0.05 ± 0.01 0.02 ± 0.01 MJy/sr

14 band combination; WMAP KQ85 mask + |b| > 25◦; fixed 353 GHz monopole and WMAP dipoles

Haslam 408 MHz . . . . T−T fit 1420 MHz 7.2 1.7 1.0 −1.2 K
R&R 1420 MHz . . . . T−T fit 408 MHz 3.28 0.04 −0.10 −0.12 K
WMAP K-band . . . . . T−T fit 30 GHz 27 0a 0a 0a µK
WMAP Ka-band . . . . T−T fit 30 GHz + Q-band 16 0a 0a 0a µK
WMAP Q-band . . . . . T−T fit Ka-band + 44 GHz 10 0a 0a 0a µK
WMAP V-band . . . . . T−T fit 30 + 143 GHz 6 0a 0a 0a µK
WMAP W-band . . . . T−T fit 30 + 143 GHz 7 0a 0a 0a µK
Planck 30 GHz . . . . . T−T fit K-band 29 −1 −2 8 µK
Planck 44 GHz . . . . . T−T fit Q-band + V-band 12 1 7 −7 µK
Planck 70 GHz . . . . . T−T fit V-band + W-band 20 1 7 −7 µK
Planck 100 GHz . . . . T−T fit W-band + 143 GHz 17 3 8 −7 µK
Planck 143 GHz . . . . T−T fit 100 GHz + 217 GHz 33 2 13 −12 µK
Planck 217 GHz . . . . T−T fit 143 + 353 GHz 73 2 13 −11 µK
Planck 353 GHz . . . . T−T fit 217 GHz 308b 5 41 −33 µK

Notes. The top section summarizes the results for the main analysis of all 17 frequency maps considered in this paper, and the bottom section shows
the results from the reduced 14 frequency data set employing external priors and different masks. Uncertainties are defined to be the maximum of
the Monte Carlo-based bootstrap error described in Sect. 2.4 and 1 µK. Conversion between Galactic Cartesian and polar coordinates is given by
(l, b) = (90◦ − acos[Z/A], atan2[Y/A, X/A]), where A =

√
X2 + Y2 + Z2 is the dipole amplitude. Temperatures are given in thermodynamic units.

(a) Dipoles fixed to official WMAP values. (b) 353 GHz monopole fixed by HI cross-correlation (Planck Collaboration VII 2014).

the overall sensitivity to this second component. The second
data set considered here therefore comprises the 14 frequency
bands up to (and including) the Planck 353 GHz channel. How-
ever, as noted by Planck Collaboration XII (2014), this does re-
sult in a large uncertainty for the 353 GHz monopole. There-
fore, we also fix this number to 308 µK, a value determined by
Planck Collaboration VII (2014) through cross-calibration with
HI observations.

We make three additional changes for this particular analy-
sis. First, we fix the WMAP dipoles to zero, recognizing that the
WMAP scanning strategy should be well suited to measure this
particular mode. Second, to probe sensitivity to sky coverage, we
impose a less conservative sky cut consisting only of the union
of the WMAP KQ85 mask and a straight |b| > 25◦ mask, in to-
tal allowing 54% of the sky. In this case, we use the T−T plot
technique for all frequencies.

Analogous to fixing the WMAP dipole to zero in the con-
sistency run, it is of course simple to impose additional exter-
nal constraints whenever available, and these will always im-
prove the rigidity of the overall fit. For example, the dominant
source of dipole uncertainty for the CMB-dominated channels
is the CMB dipole itself, as indeed is demonstrated in the fol-
lowing. In these cases, one may therefore impose a sharp prior
on the dipole direction by including only a single dipole tem-
plate in Eq. (10), with a direction equal to the CMB dipole. A
second example is the high-frequency channels above 353 GHz,
that are strongly signal dominated and may be assumed to have

lower relative dipole errors than the CMB channels. Imposing
a zero prior on these components may be justifiable. However,
in this paper, we fit explicitly for all components without such
priors, both to demonstrate the method and to derive minimal-
assumption and conservative estimates for all channels.

4. Results

A complete summary of our main results is presented in Table 1,
listing the monopole and dipole coefficients for all sky maps con-
sidered in the analysis. The top section shows the results from
the main 17 frequency analysis, and the bottom section the re-
sults from the reduced 14 frequency analysis. The uncertainties
are taken to be the maximum of the bootstrap errors discussed in
Sect. 2.4 and 1 µK (see Sect. 2.5); no uncertainties are reported
for the 14 frequency analysis, as the presence of external priors
make these very hard to assess.

When interpreting these results, it is important to remember
that the algorithm has been explicitly designed to leave features
that are spatially varying (i.e. Galactic structures) unchanged,
while any isotropic signal is fitted out. Thus, the fitted monopole
consists of the sum of any instrumental and data processing off-
sets and any Galactic or extra-Galactic component that is spec-
trally uniform over the full sky. Three typical examples are the
CMB monopole of 2.73 K, the mean value of the cosmic infrared
background (CIB), and the mean generated by extra-Galactic
point sources. We note, though, that the zero-level of the Galactic
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Fig. 6. Mean antenna temperature as a function of frequency, measured
outside the union mask before (red points) and after (black points) offset
corrections. The dashed lines shows the best-fit sum of a low-frequency
power-law (with free spectral index) and a one-component greybody
(with fixed emissivity of βd = 1.6 and temperature TK = 18 K; Planck
Collaboration XI 2013; Planck Collaboration XII 2013; Planck Collab-
oration Int. XVII 2014; Planck Collaboration Int. XXII 2014) to each
of the two cases.

foregrounds are not necessarily fitted out, because these compo-
nents have a spatially varying spectral index, and a monopole at
one frequency therefore does not correspond to a monopole at
other frequencies. Only components that are well approximated
as monopoles at all frequencies are removed by our fit.

In Fig. 5 we show the difference between each of the CMB
and high-frequency channels with the 70 GHz channel before
and after applying the monopole and dipole corrections. The
70 GHz channel is chosen as a reference because it has the low-
est foreground contamination, and each difference map should
therefore ideally be dominated by red colours. Visual inspec-
tion shows several interesting points in this plot: First, we see
significant relative dipoles in many of the pre-correction maps.
Just a few examples are WMAP Q-band, Planck LFI 44 GHz,
and Planck HFI 100 GHz. After applying our dipole corrections,
such residuals are no longer visible. Second, we see that several
of the maps are dominated by blue colours, suggesting a rela-
tive monopole offset. Again, after applying our monopole cor-
rections, such features are no longer visible. Indeed, Fig. 5 pro-
vides a direct and robust validation of the new results tabulated
in Table 1, conclusively demonstrating the major improvement
resulting from the method presented in this paper as compared
to the default WMAP and Planck approaches.

In Fig. 6 we plot the mean temperature of the same maps out-
side the union mask adopted in this analysis, adopting antenna
temperature units, both before and after offset corrections. The
dashed lines show the best-fit sum of a low-frequency power-law
and a high-frequency one-component greybody component to
each of the two data sets. While the pre-correction mean exhibits
quite random behaviour between channels, the post-correction
mean follows quite well the expected physical behaviour. The
best-fit low-frequency power-law indices are βs = −2.36 and
−2.87, respectively.

As described in Sect. 2.4, we adopt a straight template-fit
procedure for the low-foreground frequencies between 33 and
100 GHz. A potential concern is therefore that a spatially vary-
ing foreground spectral index can leak low-multipole power into

the monopole and dipole coefficients. To get an intuitive feeling
for the magnitude of this effect, we show in Fig. 7 the resid-
ual maps obtained by subtracting the best-fit templates (CMB,
monopole, dipole, low-frequency foregrounds/30 GHz and ther-
mal dust/143 GHz) from each frequency map. While correlated
large-scale features are indeed seen in these figures, indicating
the presence of spatial variations, it is important to note that the
colour scale ranges between −10 and 10 µK, and the magnitudes
of these features are therefore small.

Next, in Fig. 8 we compare the pre- and post-correction
408 and 1420 MHz maps. The single most striking feature in
this plot is a clear dipole extending from south to north in the
1420 MHz map. Converting the Cartesian dipole coefficients
for the 1420 MHz map in Table 1 into spherical coordinates,
we find that the best-fit dipole is 0.15 ± 0.03 K, pointing to-
wards Galactic coordinates (l, b) = (308◦,−36◦) ± 14◦. Inter-
estingly, this direction is consistent with the Equatorial south
pole, (l, b) = (303◦,−27◦), possibly suggesting that the observed
dipole might be interpreted effectively in terms of an declination
dependent offset.

After offset corrections, one can still see hints of an east-
west type dipole in both the 408 and 1420 MHz maps. It is not
directly obvious whether this feature is physical or not, as the X
and Y dipole coefficients for these maps are quite large (as well
as correlated), and if for instance the Y-dipole in the 408 MHz is
shifted by only one standard deviation, from 0.7 to 2.1 K, the
visual impression becomes far more symmetric. On the other
hand, it is worth noting that the low-frequency WMAP polariza-
tion maps shows a similar asymmetry (see, e.g. Fig. 4 in Bennett
et al. 2013), due to the presence of strong synchrotron radiation
near the Fan region.

In Fig. 9 we compare the spectral index between the 408 and
1420 MHz maps before and after offset corrections, as estimated
from the T−T plot distributions. Note that since monopoles do
not change the index at all, these differences are all due to the
dipole correction. Thus, the typical dipole-induced bias on the
mean spectral index as computed over Nside = 4 regions is ±0.2
for these maps.

Finally, we consider the stability of the derived results by
comparing the results from the 17 and 14 band analyses, as
presented in the top and bottom sections of Table 1. First, re-
garding the low-frequency 408 and 1420 MHz channels, we see
that almost all deviations are smaller than 1σ when including
16% more sky area, with the biggest difference is seen for the
408 MHz monopole at 1.3σ.

On the high-frequency side, we see that the 353 GHz
monopole of 315 ± 9 µK derived within the 17 band solution is in
excellent agreement with HI cross-correlation result of 308 µK
(Planck Collaboration VII 2014). The 353 GHz dipoles shows
larger variations at the 2σ level. Imposing an HI prior also on
this component should prove useful for the 14-band analysis.

For the CMB-dominated frequencies, we see that the dipoles
are overall in good agreement in terms of absolute numbers, de-
spite the fact that the WMAP dipoles are forced to zero. This
robustness gives added credibility to the derived Planck dipoles.
On the other hand, it is also clear that the reported uncertainties
are too small, as already seen in simulations.

Finally, we note relatively large differences in the monopole
values for frequencies between 23 (K-band) and 94 GHz (W-
band), both for WMAP and Planck. This may be linked to the
relatively large K-band dipole of 16 ± 4 µK in the 17-band anal-
ysis; when forcing this value to be zero, the monopole at the
same frequency increases from −14 to 27 µK, and this must
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−10 10WMAP Ka-band [µK] −10 10WMAP Q-band [µK]

−10 10Planck 44 GHz [µK] −10 10WMAP V [µK]

−10 10Planck 70 GHz [µK] −10 10WMAP W-band [µK] −10 10Planck 100 GHz [µK]

Fig. 7. Map residuals after subtracting the best-fit template set (CMB, monopole, dipole, synchrotron/30 GHz and thermal dust/143 GHz).

1 200Input Haslam 408 MHz - 8.9K[K] 1 200Corrected Haslam 408 MHz [K]

0.01 10Input Reich & Reich 1420 MHz - 3.2K[K] 0.01 10Corrected Reich & Reich 1420 MHz [K]

Fig. 8. Comparison of the 408 (top) and 1420 (bottom) MHz low-frequency maps before (left) and after (right) offset corrections.

A131, page 11 of 14

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201525659&pdf_id=7
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201525659&pdf_id=8


A&A 597, A131 (2017)

-4 -2Before dipole correction

-4 -2After dipole correction

-0.4 0.4Difference

Fig. 9. Estimates of the spectral index derived from the combination of
the 408 and 1420 MHz maps using T−T plots, both before (top) and
after (middle) applying the offset corrections. The bottom panel shows
the difference. These differences show directly the magnitude of the bias
in T−T plot based spectral indices due to spurious dipoles.

in turn be accommodated by increased monopoles at higher
frequencies.

5. Summary and conclusions

One of the most difficult tasks in physical CMB component sep-
aration is the determination of absolute offsets, that is spuri-
ous monopoles and dipoles. Unless accounted for, such offsets
may bias the estimation of spectral parameters significantly, and
this can in turn lead to errors in the actual CMB map. Ideally,
the optimal approach would be to fit the offsets and foreground

model jointly, as for instance implemented by Gibbs sampling
(Eriksen et al. 2008); however, if the data model contains a large
number of spectral indices, say, one per square degree pixel,
the system is often not sufficiently rigid to uniquely determine
the optimal solution. The offsets are nearly degenerate with the
effective zero-level of each foreground component, and the only
feature that breaks this degeneracy is spatial variation in the
spectral parameters.

In this paper, we have presented an alternative method for
estimating spurious monopoles and dipoles in multi-frequency
data sets. This method builds on a well-established methodol-
ogy from the radio astronomy literature called T−T plots. The
main advantages of this method over the Bayesian approach are
that (1) it makes minimal assumptions about the nature of the
signal components; (2) it is computationally cheap; and (3) it is
trivial to tune the number of regions to the point that the degener-
acy between the spectral indices and the offsets are broken. The
latter can of course also be implemented within the Bayesian
framework, at which point we expect the two methods to per-
form similarly. The main disadvantage of the current method is
a relatively large systematic uncertainty when no signal com-
ponent dominates, which for CMB purposes typically happens
near the foreground minimum at 70 GHz. In the present paper,
we have adopted a straight template-fit approach for these fre-
quencies, but note that a true multi-component fit is certainly
preferable. The most likely application for the current method
is therefore to set the offsets at the foreground-dominated fre-
quencies, which will then serve as an anchor for the Bayesian
fit, effectively breaking the degeneracies between the offsets and
the spectral parameters.

The main products presented in the paper are two different,
but each internally consistent, sets of monopole and dipole coef-
ficients. Overall, the two sets agree well with each other, except
for a single common monopole extending from 23 to 94 GHz.
This is largely due to the significant systematic uncertainty asso-
ciated with the WMAP K-band and Planck 30 GHz offsets. We
recommend that methods employing our offset values for sub-
sequent analyses consider both sets for systematic uncertainty
assessment.

An early version of the method presented in this paper was
already adopted by the 2013 Planck release to determine the
zero-levels for the physical component separation results, but
only applied to the Planck frequencies between 30 and 353 GHz
(Planck Collaboration XII 2014). In this paper we have extended
the total data set to also include the WMAP frequencies, the
Planck 545 and 857 GHz frequencies, and the 100 µm SFD map.
Overall, the results presented here are in good agreement with
the earlier results, with a largest relative monopole difference of
2 µK for all channels between 30 and 217 GHz. The only sig-
nificant outlier is the 353 GHz channel, for which we derive a
value of 315 ± 9 µK, whereas Planck Collaboration XII (2014)
obtained a value of 414 µK. A third and fully independent esti-
mate of this number was provided by Planck Collaboration VII
(2014) based on cross-correlation with HI observations, who re-
ported a value of 308 ± 23 µK, in excellent agreement with our
result. Similarly, at 857 GHz Planck Collaboration VII (2014)
reports a value of 0.147±0.0147 MJy/sr from HI measurements,
which is to be compared with our fully internal estimate of
0.17± 0.03 mK; for the 545 GHz the corresponding numbers are
0.107 ± 0.017 to be compared with our value of 0.12 ± 0.01.
Other channels are also in good agreement. However, for the
SFD 100 µm map, we note that the X-dipole has both a large
value and a large uncertainty, suggesting a less constrained fit
overall. This is not unexpected, as this particular channel is only
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coupled to the Planck 857 GHz map through a long frequency
extrapolation. The offset values for this channel are clearly less
robust than for the HFI channels, and its role is primarily to sta-
bilize the 857 GHz results, rather than derive independent and
robust offsets for the SFD map itself.

On the low-frequency side, the 408 MHz and 1420 MHz
monopoles have already been subject of considerable discussion
in the literature. Haslam et al. (1982) estimated that the zero-
level uncertainty of the 408 MHz survey was ±3 K, with an addi-
tional multiplicative calibration of 10%. The corresponding data
for the 1420 MHz survey are ±0.5 K and 5% (Reich & Reich
1988). Lawson et al. (1987) used a comparison with a 404 MHz
map to determine a uniform background for an assumed correct
zero-level of 5.9 K, which consists of the CMB monopole and
an isotropic extra-galactic contribution from source counts. They
also quote a zero-level correction of −0.13 K for the 1420 MHz
survey, where the uniform background is 2.8 K. From a T−T-
plot analysis Reich & Reich (1988) found a −2.1 K zero-level
offset for the 408 MHz survey, when assuming that the zero-
level at 1420 MHz is correct. Later, Reich et al. (2004) used an
improved source-count correction, which results in a uniform
background at 408 MHz of 5.4 ± 0.6 K. The zero-level correc-
tion is −2.7 K then. Tartari et al. (2008) used absolute bright-
ness measurements at 600 MHz and 820 MHz and derived zero-
level offsets of −3.9 ± 0.6 K at 408 MHz and −0.12 ± 0.14 K at
1420 MHz. All together these studies show that the zero-level of
the 408 MHz survey is too low and requires corrections between
+2.1 K and +3.9 K, while the 1420 MHz survey requires correc-
tions up to +0.13 K. All these studies assume that the remain-
ing extended emission in the survey maps is of Galactic origin.
Spectral index maps (e.g. Reich & Reich 1988; Lawson et al.
1987) do not contradict this assumption. However, the min-
ima in the survey maps at 408 MHz and 1420 MHz, with the
zero-level, isotropic source-count and CMB corrections by the
Reich et al. (2004) values, are about 9.5 K and 0.4 K at 2◦ an-
gular resolution. This means that there is room for a Galactic
contribution to a monopole and higher order components, but
also for a larger isotropic extra-galactic component than calcu-
lated from source counts, as discussed in Sun & Reich (2010).
Without any correction the survey minima are 12.2 K and 3.2 K
at 2◦ resolution, respectively, which constrain the monopole
components when derived directly from the survey data. Re-
cently, Bennett et al. (2013) used the same co-secant method
as they applied to the WMAP CMB frequencies to derive a
background value of 7.4 K at 408 MHz. Fornengo et al. (2014)
used six surveys to model the Galactic synchrotron and ther-
mal emission and found an isotropic background value, with-
out CMB, of 11.8 ± 1.1 K at 408 MHz and 0.58 ± 0.025 K
at 1420 MHz. They conclude that their results agree with
the extra-galactic component from ARCADE 2 (Fixsen et al.
2011). Subramanian & Cowsik (2013) also modelled the Galac-
tic disk and halo emission and showed that the simple co-secant
method used to fit Galactic emission is the reason for the AR-
CADE 2 excess and that there is no need for an isotropic extra-
galactic component beyond that from source counts. The cur-
rently deepest source count data by Vernstrom et al. (2015),
which also include diffuse extra-galactic emission at 1.75 GHz,
give a strong indication that the excessive temperature found
by ARCADE 2 is not of extra-galactic origin. Our current
monopole values of 8.9 ± 1.3 K for 408 MHz and 3.28 ± 0.02 K
at 1420 MHz are in the possible range allowed by the survey
data.

While the method presented in this paper is very general,
and can deal with spurious monopole and dipoles of any origin,

it is worth noting that by far the dominant source of dipole un-
certainty in current CMB maps comes from estimating the solar
CMB dipole. For instance, even small calibration uncertainties
can lead to a significant uncertainties in the recovered dipole.
However, this uncertainty is perfectly correlated between chan-
nels within a given experiment, and it is therefore possible to
impose the prior that the corrections should be identical across
frequencies.

Finally, we conclude with two important caveats. First and
foremost, it is important to realize that while the method pre-
sented here is extremely efficient at establishing relative offsets
between channels (which by far is the most important problem
for most component separation algorithms), it requires both high
signal-to-noise observations and significant spatial spectral vari-
ations across the sky to determine absolute offsets. With the data
sets studied in this paper, it appears that these criteria hold for
both the low-frequency 408 and 1420 MHz maps and the high-
frequency channels above 100 GHz, but not for the intermedi-
ate CMB channels between 23 and 94 GHz. Again, as shown in
Sect. 3 the systematic uncertainty on the WMAP K-band offsets
is large. More conservatively, we caution against adopting any of
the derived offsets for frequencies between 23 and 44 GHz with-
out further cross-checks because of the presence of multiple sig-
nificant foreground components (i.e. synchrotron, free-free and
AME). Instead a full parametric fit is should be used for these
channels. Second, we emphasize that accurate uncertainty esti-
mation is difficult, because the dominant sources of uncertain-
ties are generally systematic in nature. In the present paper, we
have adopted an internal bootstrap approach, which is able to
capture some, but not all, of these uncertainties. For more real-
istic systematic uncertainty assessment, we recommend propa-
gating both offset sets provided in this paper through subsequent
analyses.
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