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Abstract

Classical results and recent developments on the theoretical description of
elementary particles with “continuous” spin are reviewed. At free level, these
fields are described by unitary irreducible representations of the isometry group
(either Poincaré or anti de Sitter group) with an infinite number of physical
degrees of freedom per spacetime point. Their basic group-theoretical and field-
theoretical descriptions are reviewed in some details. We mention a list of open
issues which are crucial to address for assessing their physical status and potential
relevance.
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1 Introduction

Wigner taught [1] us that free elementary particles propagating on Minkowski spacetime are
in one-to-one correspondence with unitary irreducible representations (UIRs) of the Poincaré
group.1 This motivated his classification [1] of all such representations in the case of space-
time dimension four. In this section, we briefly review the main topics and results to be
covered in the body of the paper.

1.1 Definition and exotic properties

Among the massless representations, the so-called “continuous-spin” representations are ac-
tually the generic ones. In fact, the eigenvalue of the quadratic Casimir operator (= the
square of the momentum Pµ) vanishes for these representations (i.e. they are massless),

C2
(
iso(3, 1)

)
:= −P 2 = 0 , (1.1)

but not the quartic Casimir operator (= the square of the Pauli-Lubanski vector Wµ) which
is a positive real number,

C4
(
iso(3, 1)

)
:= W 2 = µ2 > 0 , (1.2)

where Wµ := 1
2
εµνρσP

νJνρ , with so(3, 1) = span{Jµν}. Notice that we work in the “mostly
plus” signature.

Although they appear in a natural way and are somewhat generic from a mathematical
point of view (as UIRs), elementary particles described by continuous-spin representations
are usually discarded by high-energy theoretical physicists on the basis of two exotic features:

1. They are characterized by a continuous parameter with the dimension of a mass, al-
though they are massless.

2. They have infinitely many degrees of freedom per spacetime point.

The first exotic property is the origin of the unfortunate terminology “continuous-spin”.
These UIRs are indeed characterized by the continuous parameter µ > 0 but it is somewhat
misleading to interpret it as related to spin. Actually the “spin” of these particles is by
no means continuous, in contrast with anyons in three dimensions. Rather, the helicity
eigenvalues are discrete: either all integers, or all half-integers, in four-dimensional spacetime.

The meaning of the second property is that the helicities in their spectrum are unbounded.
More precisely, these particles are described by the countably infinite tower of all helicity
states (either all integer or all half-integer helicities) mixing under Lorentz boosts. Since one
definition of the “spin” is as the bound on the (absolute value of the) helicity eigenvalues,
Wigner later [3] proposed the alternative (presumably better) terminology “infinite spin”
to refer to these exotic representations. Unfortunately, terminological habits are difficult to
change so we will mostly stick to the standard terminology in this review paper.

1Apart from Wigner’s seminal paper [1] on the subject, another classical introduction to this subject is
the short review on this topic inside his seminal work [2] with Bargmann on relativistic wave equations.

3



1.2 Speculations

The infinite number of degrees of freedom (per spacetime point) was the main reason of
Wigner’s rejection of the continuous-spin representation. He claimed that this property
implies that the heat capacity of a gas of such particles is infinite [3].

However, from the point of view of higher-spin gravity the two exotic properties of
continuous-spin particles can be turned upside-down as two positive qualitative features
to expect for a candidate theory of interacting massless particles of higher helicities in a
flat spacetime. Firstly, an infinite spectrum of helicities is a standard feature of higher-spin
theories in dimension four (and higher). More importantly, the spectrum of helicities of a
continuous-spin particle coincides with the one in higher-spin gravity.2 Secondly, higher-
spin vertices are typically higher-derivative, thus a dimensionful parameter for weighting
them is a necessary feature of any interacting theory. In fact, it has been suggested [4] that
continuous-spin gauge fields might be able to circumvent the no-go theorems3 preventing the
existence of interacting particles of spin greater than two in flat spacetime via a mechanism
similar to what happens [7] in the presence of a cosmological constant (which plays the role
of the dimensionful parameter). Accordingly, one may speculate that they might provide
a subtle flat spacetime analogue of higher-spin gravity, since both spectra coincide at free
level.

Unfortunately, although this exotic representation is known for many decades, the liter-
ature and positive results on continuous-spin particles are scarce because they are usually
discarded without serious scrutiny. However, Schuster and Toro recently proposed a class of
soft factors for these massless particles, from which they argued that the phenomenology of
continuous-spin particles might be better behaved than expected, in the sense that [8, 9]:

• These particles might circumvent Weinberg’s no-go theorem [10] on long-range inter-
actions mediated by massless particles of helicity higher than two in flat spacetime.

• At energies higher than the characteristic mass parameter alluded above, they may
experience “helicity correspondence” in that they effectively behave like massless par-
ticles with helicities not higher than two.

These expectations are suggestive but these authors had to postulate a suitable class of form
factors which, to be confirmed, should be derived from first principles.

Due to these various motivations, these exotic representations have recently attracted
some attention, though many open problems within reach remain to be explored in order to
clarify the status of the previous suggestive scenarios.

1.3 State of the art and main challenges

In order to investigate the properties of these exotic particles without any prejudice and reach
definite conclusions about their phenomenological viability, one should start by developing

2More precisely, the helicity spectra coincide for the bosonic case in D > 4 and for its supersymmetric
extension in D = 4.

3See e.g. [5, 6] for some introductory reviews of these no-go theorems.
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further their field-theoretic description. To be more specific, one should achieve on a first-
principle basis the following tasks:

• Kinematics: present covariant descriptions, on-shell (linear wave equations) and off-
shell (quadratic Lagrangians).

• Dynamics: classify their consistent interactions, off-shell (vertices) and on-shell (scat-
tering amplitudes).

Although their dynamics is a rather challenging problem which has not been explored yet,
some progress has been made on the front of kinematics during the last decade.4

While covariant wave equations describing a continuous-spin particle date back to Wigner
himself [13], the inverse variational problem5 (i.e. obtaining an action from which they derive
as Euler-Lagrange equations) remained an important open problem for quite a long time. A
first step in this direction was made by obtaining a gauge formulation [4] for these fields in
terms of a deformation of the Fronsdal equation [14, 15], which was shown to be equivalent
to Wigner’s original system of equations [13]. The equation of Fronsdal describes a massless
particle with discrete/finite spin (i.e. a helicity UIR of the Poincaré group) and is associated
to an action principle [14,15] so this first step was encouraging. Recently, action principles for
continuous-spin gauge fields have been proposed in the bosonic [16] and fermionic [17] cases,
which are analogous to the action proposed by Segal [18] for bosonic higher-spin gauge fields
on (anti) de Sitter spacetime (see also [19] for some analyses of the bosonic action [16]).
A remarkable new step forward was performed by Metsaev who proposed [20, 21] action
principles for continuous/infinite spin particles, either on Minkowski or on (anti) de Sitter
spacetimes. These actions have the virtue of being deformations of the action principles
of Fronsdal [14, 15, 22, 23] to which they reduce in the limit µ → 0. It turned out that
the Metsaev action is directly related to the action for massive higher-spin fields proposed
by Zinoviev long ago [24]. Also, an unfolded formulation for continuous-spin fields was
implicitly constructed [26] in the course of constructing the unfolded formulation of massive
higher-spin fields. Lastly, wave equations for continuous-spin particles were derived from
first-quantization of particle/string models [27].

Although the first task (kinematics) in the list has essentially been completed since
Lagrangians have been proposed for continuous-spin gauge fields, one should emphasize
that an important consistency check remains to be done: by extracting the corresponding
propagator and computing the corresponding current exchange, one should check that only
physical degrees of freedom propagate. Indeed, as exhibited by the example of higher spins,
some subtleties may arise at the level of the propagator [28].

Anyway, much more challenging is the second task (dynamics). A preliminary investiga-
tion would be the classification of the consistent cubic vertices for continuous-spin particles,

4We will not discuss here the purely quantum field-theoretical approach to continuous-spin particles [11,
12]. The results there show that, under some general hypotheses, quantum fields transforming as continuous
spin representations cannot have pointlike localization and are, at best, localized on semi-infinite spacelike
strings.

5The inverse variational problem is usually referred to as the “Fierz-Pauli programme” in the higher-spin
literature.
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either self-interacting or interacting with lower-spin matter (such as scalar fields, gauge vec-
tors, or gravitons). Even a negative answer (the absence of consistent interactions) would
be an important result since it would provide a no-go theorem against the physical relevance
of these representations. On the contrary, a positive result (the existence of cubic self-
interactions) would be a very strong indication that continuous-spin particles might provide
the proper flat spacetime analogue of higher-spin gravity.

1.4 Plan of the paper

In section 2, the continuous-spin particles on flat spacetime are introduced from a group-
theoretical point of view via their classification, either following the method of induced
representations or according to the eigenvalues of Casimir operators. In section 3, we pro-
vide a review of covariant equations describing either massive (or massless) representations
of discrete/finite spin or massless representations of continuous/infinite spin, as well as the
relations between them. In section 4, we briefly discuss action principles for bosonic (higher-
spin or continuous-spin) gauge fields on flat spacetime. In section 5, we chart the landscape
of unitary continuous-spin fields on anti de Sitter spacetime, found by Metsaev in his ex-
ploration of action principles on constant-curvature spacetimes, and the relation to earlier
constructions by Zinoviev is clarified. Also in section 5, we discuss the one-loop partition
functions. We conclude with a list of open problems in section 6.

2 Wigner classification

Let us start by reviewing the representation theory of the Poincaré group.6 Actually, we will
restrict our attention to the Lie algebra for simplicity.

2.1 Method of induced representations for the Poincaré algebra

The Poincaré algebra iso(D−1, 1) = RD B so(D−1, 1) is the semidirect sum of the Abelian
algebra RD and the semisimple Lie algebra so(D−1, 1), therefore Wigner’s method of induced
representation applies and amounts to the following steps:

1. Consider the UIRs of the Abelian subalgebra RD: they are labelled by real eigenvalues
(unitary & irreducible) of the generators P̂µ, i.e. by the momentum pµ.

2. Identify the orbit and stabilizer of these eigenvalues: they are, respectively, the “mass
shell” and “little group” in physicist language.

3. Induce the UIR of the full algebra from a UIR of the stability subalgebra: this latter
representation spans the “spinning” degrees of freedom (or “physical components”) of
the corresponding field.

The various possibilities are summarized in Table 1.

6See e.g. [29] for a pedagogical introduction to the classification in any dimension.
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Table 1: Classification of the UIRs of the Poincaré algebra iso(D − 1, 1)

UIR Orbit Stability # of components

Massive 2-sheeted hyperboloid p2 = −m2 so(D − 1) finite

Massless light-cone p2 = 0 iso(D − 2) finite or ∞
Tachyonic 1-sheeted hyperboloid p2 = +m2 so(D − 2, 1) 1 or ∞

Zero-momentum origin pµ = 0 so(D − 1, 1) unfaithful irrep

The number of physical degrees of freedom per spacetime point (also called the number of
independent physical components) is the dimension of the UIR of the little group. A trivial
representation of the little group corresponds to a scalar field. In the other cases, the number
of physical components is finite if and only if the little group is compact. In particular, the
massive representations always have a finite number of components. In contrast, the only
tachyonic representation which has a finite number of components is a scalar tachyonic field.

2.2 Massless representations

Consider a massless particle in D-dimensional Minkowski spacetime RD−1,1, with light-like
momentum pµ (µ = 0, 1, 2, · · · , D − 1). A spacelike plane orthogonal to this light-like
momentum will be called a “transverse plane” RD−2 ⊂ RD−1,1. The generators of the
Lorentz algebra so(D − 1, 1) are denoted Ĵµν and obey the commutation relations[

Ĵµν , Ĵρσ

]
= i
(
gνρĴµσ − gµρĴνσ − gνσĴµρ + gµσĴνρ

)
, (2.1)

where gµν is the Minkowski metric (in the “mostly plus” signature).
To discuss massless particles, it turns out to be convenient to use light-cone coordinates

x± = 1√
2

(
x0 ± xD−1

)
adapted to the momentum, i.e. the latter has zero components except

for p+ = −p− . The Minkowski metric reads

ds2 = − 2 dx+dx− + dxidxi , (i = 1, 2, · · · , D − 2) , (2.2)

where xi are Cartesian coordinates on the transverse plane.
The massless little group ISO(D − 2) leaving the momentum invariant is formed of:

• rotations of the transverse plane, generated by

Ĵij (i, j = 1, 2, · · · , D − 2)

• transverse null boosts, generated by

π̂i := Ĵ+i =
1√
2

(
Ĵ0i + ĴD−1 i

)
(i = 1, 2, · · · , D − 2) .
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The generators span a Lie algebra isomorphic to the Euclidean algebra iso(D− 2) of the
transverse plane [

Ĵij, Ĵkl

]
= i (δjkĴil − δikĴjl − δjlĴik + δilĴjk) , (2.3)[
π̂i, Ĵkl

]
= i (δikπ̂l − δilπ̂k) , (2.4)

[π̂i, π̂j] = 0 . (2.5)

Therefore, the problem of classifying the massless UIRs of the Poincaré algebra iso(D−1, 1)
reduces to the classification of the UIRs of the Euclidean algebra iso(D − 2).

The Euclidean algebra iso(D− 2) of the transverse plane is noncompact and all its non-
trivial faithful UIRs are infinite-dimensional. Thus the massless representations either (i)
have a finite number of components corresponding to trivial or unfaithful representations of
iso(D−2), or (ii) have an infinite number of components corresponding to faithful represen-
tations of iso(D − 2):

(i) Discrete/finite spin representations: The first case of massless representations
are the “helicity” (also called “discrete/finite-spin”) representations. They arise from
a trivial representation of the transverse “translation” subalgebra RD−2 ⊂ iso(D− 2),
thus effectively, they are induced from a UIR of the transverse rotation subalgebra
so(D − 2) ⊂ iso(D − 2). The latter algebra is compact and semisimple, therefore it
only has finite-dimensional UIRs. The corresponding fields have indeed a finite number
of components (“finite spin”)

(ii) Continuous/infinite spin representations: The second case of massless represen-
tations arise from nontrivial representations of the transverse “translation” subalgebra
RD−2 ⊂ iso(D−2), hence they are induced from infinite-dimensional UIRs of the little
group ISO(D − 2).

In fact, let us consider more closely the representation of the massless little group
ISO(D − 2) by applying the method of induced representations to the Euclidean group
ISO(d) on its own. The Euclidean algebra iso(d) = Rd B so(d) is the semidirect sum of
the Abelian algebra Rd and the semisimple Lie algebra so(d). Wigner’s method of induced
representation, applied to this case, goes as follows:

1. Consider the UIRs of the Abelian subalgebra Rd: they are labelled by real eigenvalues
of the generators π̂i (i = 1, 2, · · · , d). This defines a vector wi of the plane.

2. Identify the orbit and stabilizer of these eigenvalues.

3. Induce the UIR of the Euclidean algebra from an UIR of the stability subalgebra.

The result is summarized in Table 2.
Particularizing this result to d = D−2 and looking for the representations of the Poincaré

algebra iso(D − 1, 1) induced from the Euclidean algebra iso(D − 2), one finds the result
charted in Table 3.

The subgroup SO(D − 2) ⊂ ISO(D − 2) of the massless little group can be called
the “effective little group” of helicity representations. It admits nontrivial representations

8



Table 2: Classification of the UIRs of the Euclidean algebra iso(d)

UIR Dimension Orbit Stability Example

Unfaithful finite origin wi = 0 so(d) Spherical harmonics

Faithful infinite sphere w2 = µ2 so(d− 1) Solutions of Helmholtz eq

Table 3: Classification of the massless UIRs of the Poincaré algebra

UIR # of components Little subgroup

Discrete spin finite SO(D − 2)
Continuous spin infinite SO(D − 3)

for spacetime dimensions D > 5 only. Therefore, in four dimensions, discrete/finite-spin
representations are labelled by a single real number: their helicity.

The subgroup SO(D−3) ⊂ ISO(D−2) of the massless little group is sometimes called the
“short little group” of continuous-spin representations [30]. This group is degenerate for D 6
3 and admits nontrivial representations for D > 6 only. Therefore, in four dimensions, there
exist only two infinite-spin representations: the single-valued (bosonic) and the double-valued
(fermionic) ones, whose physical components span all (integer or half-integer) helicities.

2.3 Spinning degrees of freedom

For spacetime dimension D = 4, the physical components forming a UIR of the little group
ISO(2) can be realized as square-integrable functions on the circle in the transverse plane,
hence these UIRs are labelled by the radius µ of the corresponding circle. There are two
natural bases7 for the spectrum of states:

• “angle basis”: The states | θ 〉 are eigenstates of the null boosts (the “translations”
in the transverse plane) but transverse rotations transform these states into each other
| θ 〉 → | θ + α 〉.

• “helicity basis”: The Fourier dual basis elements | h 〉 are eigenstates of the transverse
rotation generator, but the null boosts mix this infinite tower of helicity eigenstates.

Remark that the mixing of helicity eigenstates disappears in the limit µ → 0 in which the
continuous-spin representation becomes the direct sum of all (integer or half-integer) helicity
representations. In more physical terms: at energies E � µ, free continuous-spin particles
behave as an infinite tower of particles with distinct helicities.

7These two bases correspond to the position and momentum representation of these square-integrable
functions on the circle.
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2.4 Casimir operators of the Poincaré algebra

Another traditional method for classifying UIRs of the Poincaré group is to make use of the
eigenvalues of the Casimir operators. It has virtues and drawbacks:

+ In this approach, Lorentz covariance is more direct and the physical interpretation
of Casimir operators (e.g. in D = 4: the squares of momentum and Pauli-Lubanski
vectors) may be more enlightening than the method of induced representations.

- The UIRs of (finite-dimensional) semisimple Lie algebras are characterized uniquely
by the eigenvalues of their independent Casimir operators. However, this is not nec-
essarily true for non-semisimple Lie algebras (such as Poincaré algebra), there can be
degeneracies (e.g. all helicity representations have vanishing quadratic and quartic
Casimir operators).

The quadratic Casimir operator of the Lorentz algebra so(D − 1, 1) is the square of the
generators Ĵµν :

Ĉ2
(
so(D − 1, 1)

)
=

1

2
Ĵµν Ĵµν . (2.6)

The quadratic Casimir operator of the Poincaré algebra iso(D − 1, 1) is the square of the
momentum

Ĉ2
(
iso(D − 1, 1)

)
= −P̂ µP̂µ , (2.7)

while the quartic Casimir operator of the Poincaré algebra iso(D − 1, 1) is

Ĉ4
(
iso(D − 1, 1)

)
= −1

2
P̂ 2Ĵµν Ĵ

µν + ĴµρP̂
ρĴµσP̂σ , (2.8)

which, for D = 4, is the square of the Pauli-Lubanski vector,

Ŵ µ :=
1

2
εµνρσĴνρP̂σ . (2.9)

The massive and massless representations for D = 4 spacetime dimensions are respec-
tively characterized by the following eigenvalues:

C2
(
iso(3, 1)

)
=

{
m2

0
, C4

(
iso(3, 1)

)
=

{
m2 s(s+ 1)

µ2 . (2.10)

All helicity representations are such that both Casimir operators vanish (m2 = 0 = µ2).
Three limits of representations are of particular interest:8

• Massless limit (spin fixed): The limit m → 0 of a spin-s massive representation
gives the direct sum of helicity representations of spin s, s− 1, s− 2, ..., 1, 0 .

8It can be illuminating to visualize these limits on Fig. 1. The massless (respectively, helicity) limit
corresponds to going towards the origin along a spin-s massive line (respectively, along a vertical line). The
zero-mass/infinite-spin corresponds to increasing the slope of the massive line till it becomes a vertical line.
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Figure 1: Unitary irreducible representations of iso(3, 1) with non-negative mass squared:
Single-valued UIRs sit on blue lines while double-valued ones are in dashed red. The two
continuous-spin representations sit on the vertical axis. All helicity representations sit on
the origin. (This figure is adapted from Fig.2 in [8].)

• Helicity limit: The limit µ → 0 of a single continuous-spin representation (either
bosonic or fermionic) gives the direct sum of an infinite tower of helicity representations
(either all integer spins or all half-integer spins).

• Zero-mass/Infinite-spin limit (product fixed): The spin-s massive representation
becomes the continuous-spin representation (either bosonic or fermionic) in the limit
[31]

m→ 0 , s→∞ , µ = ms fixed . (2.11)

The last limit is particularly interesting. It provides an interpretation of a continuous-spin
particle as the high-energy (E � m) large-spin (s � 1) limit of a massive particle (in the
regime E ∼ µ = ms) giving a simple and physical explanation of both exotic properties
(i)-(ii). In particular, the energy scale µ can be seen as the remnant of the mass in the
subtle massless limit (2.11).

At the level of the little group, the massless limit is the Inönü-Wigner contraction of the

little groups SO(D−1)
m→0−→ ISO(D−2) . A geometrical interpretation of this limit is that

the Inönü-Wigner contraction of groups

SO(d+ 1)
R→∞−→ ISO(d)

corresponds to the contraction of the isometry group of the sphere in the limit of infinite
radius:

Sd R→∞−→ Rd .

At the level of representations, the simplest example of UIR of the rotation algebra so(d+1)
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are the spherical harmonics, i.e. the solutions of the equation(
∆Sd +

s(s+ d− 1)

R2

)
Y s
m(~θ) = 0 (2.12)

whose limit
R→∞ , s→∞ , µ = s/R fixed (2.13)

is the Helmholtz equation (
∆Rd + µ2

)
Φ(~x) = 0 , (2.14)

whose space of solutions carries the simplest UIR of the Euclidean algebra iso(d). This is
precisely what happens at each point of spacetime in the zero-mass/infinite-spin limit: the
spinning degrees of freedom of a massive particle can be realized as spherical harmonics on
a sphere SD−2 ⊂ RD−1 and, in the massless limit, the sphere SD−2 becomes the transverse
plane RD−2.

3 Wigner equations

In the 1930’s and 1940’s, various equivalent covariant equations have been proposed (notably
by Dirac, Fierz, Pauli, ...) for higher-spin fields, the solution space of which carries a massive
(or helicity) UIR of the Poincaré group. In 1947, Wigner proposed covariant equations, the
solution space of which carries a continuous-spin UIR of the Poincaré group [13]. Retrospec-
tively, Wigner’s equations can be obtained from a suitable zero-mass/infinite-spin limit of
some massive higher-spin equations [4].

We will restrict the discussion to bosonic symmetric tensor fields. The reader is referred
to [4] for the fermionic and mixed-symmetry fields.

3.1 Massive higher-spin equations

For integer spin s ∈ N, covariant equations carrying the massive UIR of the Poincaré group
ISO(D−1, 1) induced from the symmetric tensor representation of the little group SO(D−1)
can be formulated in terms of a symmetric Lorentz tensor:

(p2 +m2)ϕµ1µ2...µs(p) = 0 , (3.1)

pνϕνµ1µ2...µs−1(p) = 0 , (3.2)

ϕννµ1µ2...µs−2(p) = 0 . (3.3)

Indeed, in a rest frame the second equation implies the vanishing of all timelike components
while the third equation implies the so(D − 1)-irreducibility.

A standard trick for higher-spins is to contract all indices with an auxiliary vector, say
uµ, and introduce the generating function

ϕ(p, u) =
1

s!
ϕµ1...µs(p)u

µ1 · · ·uµs (3.4)

12



so that the massive equations (3.1)-(3.3) read:

(p2 +m2)ϕ(p, u) = 0 , (3.5)(
p · ∂

∂u

)
ϕ(p, u) = 0 , (3.6)(

∂

∂u
· ∂
∂u

)
ϕ(p, u) = 0 . (3.7)

To which, we should now add the homogeneity equation(
u · ∂

∂u
− s

)
ϕ(p, u) = 0 , (3.8)

to keep track of the fact that the spin is fixed, i.e. equation (3.4).
Unfortunately, the homogeneity equation (3.8) is singular in the limit s→∞. However,

the massless limit with fixed spin is well defined, as investigated in the next subsection.

3.2 Finite-spin/Massless limit of massive equations

The massless limit m→ 0 (with spin s fixed) of the massive equations (3.5)-(3.7) are

p2 ϕ(p, u) = 0 , (3.9)(
p · ∂

∂u

)
ϕ(p, u) = 0 , (3.10)(

∂

∂u
· ∂
∂u

)
ϕ(p, u) = 0 , (3.11)(

u · ∂
∂u
− s

)
ϕ(p, u) = 0 . (3.12)

However, these equations propagate too many degrees of freedom for describing a single
helicity representation.

In order for the space of solutions to carry the spin-s helicity UIR of the Poincaré group
ISO(D−1, 1) induced from the rank-s symmetric tensor representation of the effective little
group SO(D − 2), gauge equivalent solutions must be identified:

ϕ(p, u) ∼ ϕ(p, u) + (u · p) ε(p, u) . (3.13)

In other words, longitudinal components are pure gauge:

ϕµ1...µs(p) ∼ ϕµ1...µs(p) + p(µ1εµ2...µs)(p) , (3.14)

where the round bracket stands for the total symmetrisation over all indices. Strictly speak-
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ing, for consistency the gauge parameter ε(p, u) should obey to similar equations

p2 ε(p, u) = 0 , (3.15)(
p · ∂

∂u

)
ε(p, u) = 0 , (3.16)(

∂

∂u
· ∂
∂u

)
ε(p, u) = 0 , (3.17)(

u · ∂
∂u
− (s− 1)

)
ε(p, u) = 0 . (3.18)

3.3 Massless higher-spin equations

One way to get rid of the equivalence relation is to leave the space of polynomials in the
auxiliary vector and reformulate the equations in terms of the gauge-invariant distribution

φ(p, u) = δ(p · u)ϕ(p, u) . (3.19)

In terms of this distribution, the finite-spin massless equations take the form:

p2 φ(p, u) = 0 , (3.20)

(p · u)φ(p, u) = 0 , (3.21)(
p · ∂

∂u

)
φ(p, u) = 0 , (3.22)(

∂

∂u
· ∂
∂u

)
φ(p, u) = 0 , (3.23)(

u · ∂
∂u
− (s− 1)

)
φ(p, u) = 0 . (3.24)

Notice that this system of equations is formally identical to the one obeyed by “reducibili-
ties”, also called “Killing tensor fields” in the present case, i.e. gauge parameters ε(p, u) such
that the corresponding gauge transformation (3.13) vanishes. More explicitly, the system
(3.20)-(3.24) of five equations has the same form as the system (3.15)-(3.18) of four equations
supplemented by the Killing-like equation (u · p) ε(p, u) = 0. Naively, a paradox seems to
appear: the same set of equations can describe two distinct irreducible representations of
the Poincaré group. In the present case, the system (3.20)-(3.24) allows to describe either a
spin-s massless representation (which is infinite-dimensional and unitary) or a spin-(s − 1)
Killing tensor (which span a finite-dimensional non-unitary representation). The resolution
of the apparent paradox is that equations by themselves do not determine the space of
their solutions, one should always specify the functional space one considers. For instance,
the gauge parameter ε(p, u) is polynomial in u while the gauge-invariant field φ(p, u) is a
distribution of the form (3.19) where the gauge field ϕ(p, u) is polynomial in u.9

9Strictly speaking, one should also specify the dependence in the momentum p. For instance, it is possible
to state the functional class for Killing tensor fields in terms of their Fourier transform ε(x, u), which are
required to be smooth functions of the position x. This assumption together with the polynomiality in p
and the Killing equation ( ∂

∂x ·
∂
∂u )ε(x, u) = 0 imply that ε(x, u) is actually polynomial also in x.
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The effective little group of massless particles in D + 1 dimensions is SO(D − 1) which
coincides with the little group of massive particles in D dimensions. This is the group
theoretical explanation behind the technique of dimensional reduction for obtaining massive
equations from massless equations in one higher dimension, where one considers a single
massive Kaluza-Klein mode. If the higher-dimensional massless fields are gauge fields, then
the dimensional reduction typically produces a tower of lower-spin fields, which are either
Stuckelberg (i.e. pure gauge) or auxiliary (i.e. which can be eliminated via their own
algebraic equations of motion). Massive equations in such a Stuckelberg approach turn out
to be more convenient for taking the infinite-spin massless limit of massive equations.

3.4 Dimensional reduction of massless equations

Writing capital letters for the quantities in D+1 dimensions, the analogue of (3.20)-(3.24)
reads:

P 2 Φ(P,U) = 0 , (3.25)(
P · U

)
Φ(P,U) = 0 , (3.26)(

P · ∂
∂U

)
Φ(P,U) = 0 , (3.27)(

∂

∂U
· ∂
∂U

)
Φ(P,U) = 0 , (3.28)(

U · ∂
∂U
− (s− 1)

)
Φ(P,U) = 0 . (3.29)

Consider the D + 1 splittings of the momentum and of the auxiliary vector:

PM = (pµ,m) , UM = (uµ, v) , (3.30)

the system (3.25)-(3.29) then reads:

(p2 +m2) Φ(p, u, v) = 0 , (3.31)

(p · u+mv) Φ(p, u, v) = 0 , (3.32)(
p · ∂

∂u
+m

∂

∂v

)
Φ(p, u, v) = 0 , (3.33)(

∂

∂u
· ∂
∂u

+
∂2

∂v2

)
Φ(p, u, v) = 0 , (3.34)(

u · ∂
∂u

+ v
∂

∂v
− (s− 1)

)
Φ(p, u, v) = 0 , (3.35)

and provides massive equations in D dimensions. These massive equations are somehow a
“gauge-fixed” version of the Stuckelberg formulation.

Let us point out that this system of equations is formally identical to the one obeyed by
reducibilities in the genuine Stuckelberg formulation. For m 6= 0, one can show (by taking
derivatives and evaluating at the origin) that in the space of polynomial functions of u and
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v there are no nontrivial solutions of the system (3.31)-(3.35). This is consistent with the
fact that, in the initial formulation of massive higher-spin field in the section 3.1, there were
no gauge symmetries. In fact, the space of reducibilities is not affected by the introduction
of Stuckelberg or auxiliary fields.

Returning to the original goal, it is clear from the equation (3.35) that the infinite-spin
limit is ill-defined in terms of the field Φ. In order to get a well defined limit, one has to
extract an infinite factor from Φ and also to assume a suitable scaling of the variable v, as
is done in the next subsection.

3.5 Infinite-spin/Massless limit of massive equations

Let us introduce the parameter µ and the variable α by

µ = sm, α = v/s . (3.36)

The precise limit we are interested in is: s goes to infinity, with µ and α both finite.
Consider the limit (2.11) and the change from the auxiliary variables (uµ, v) to the new

variables (ωµ, α) that will be kept finite:{
uµ = ωµ α

v = s α
⇐⇒

ωµ =
s

v
uµ

α =
v

s

. (3.37)

In fact, the problematic homogeneity condition (3.35) can be solved as(
u · ∂

∂u
+ v

∂

∂v
− (s− 1)

)
Φ(u, v) = 0 ⇐⇒ Φ = αs−1Ψ

(u
α

)
, (3.38)

where Ψ(ω) := Φ(ω, s) . The remaining equations (3.31)-(3.34) can all be expressed in terms
of the new field Ψ which will remain finite in the limit. Before the limit, these equations
still describe spin-s massive fields but their zero-mass/infinite-spin limit (2.11) provides the
following continuous-spin equations:

p2 Ψ(p, ω) = 0 , (3.39)

(p · ω + µ) Ψ(p, ω) = 0 , (3.40)(
p · ∂

∂ω

)
Ψ(p, ω) = 0 , (3.41)(

∂

∂ω
· ∂
∂ω

+ 1

)
Ψ(p, ω) = 0 . (3.42)
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3.6 Continuous-spin equations

Performing a Fourier transform over the auxiliary vector ω leads exactly to Wigner’s equa-
tions:

p2 Ψ̃(p, w) = 0 , (3.43)(
p · w

)
Ψ̃(p, w) = 0 , (3.44)(

p · ∂
∂w
− i
)

Ψ̃(p, w) = 0 , (3.45)(
w2 − µ2

)
Ψ̃(p, w) = 0 , (3.46)

in terms of the wave function

Ψ̃(p, w) =

∫
dω Ψ(p, ω) exp

(
− i (w · ω)/µ

)
. (3.47)

The physical components carry a UIR of the massless little group ISO(D − 2) because the
auxiliary vector w belongs to the sphere SD−3 ⊂ RD−2 inside the transverse plane.

The latter fact is not obvious. The proof goes as follows: the first equation, (3.43),
obviously states that the support of the wave function is such that the momentum is lightlike.
The 2nd equation, (3.44), implies that the support of the function is such that w and p are
orthogonal. The 3rd equation, (3.45), is solved as

Ψ̃(p , w + θ p) = ei θ Ψ̃(p , w) , ∀θ ∈ R , (3.48)

which shows that the longitudinal part of w is pure gauge. Together, the 2nd and 3rd
equations, (3.44)-(3.45), imply that one can assume that the auxiliary vector belongs to the
transverse plane: w ∈ RD−2. Then the 4th equation, (3.46), leads to the conclusion we were
looking for, i.e. w ∈ SD−3.

4 Action principles on flat spacetime

Wigner’s equations, as their finite-spin massive ancestors, do not arise as Euler-Lagrange
equations from an action principle. The example of massless higher-spin fields suggests to
make use of a gauge formulation. Indeed, gauge-invariant action principles corresponding to
the helicity representations of the Poincaré group were written for arbitrary integer [14] and
half-integer [15] spin by Fang and Fronsdal. A similar formulation actually exists also for
continuous-spin fields.

We will restrict our discussion to the simplest continuous-spin representation: the single-
valued one with trivial representation of the short little group SO(D − 3).

4.1 Fronsdal action

The Fronsdal equation [14]

Fµ1···µs ≡ p2 ϕµ1···µs − p(µ1p
νϕµ2···µs)ν + p(µ1pµ2ϕµ3···µs)ν

ν = 0 (4.1)
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is the higher-spin generalization of Klein-Gordon (s=0), Maxwell (s=1) and linearized Ricci
(s=2) equations. It is invariant under the gauge transformations where the gauge parameter
is traceless:

δεϕµ1···µs = p(µ1εµ2···µs) , εννµ1···µs−3 = 0 . (4.2)

The space of double-traceless (ϕνρνρµ1···µs−4 = 0) and gauge-inequivalent solutions of Fronsdal
equations carries the helicity UIR of the Poincaré group ISO(D − 1, 1) induced from the
symmetric tensor representation of the effective little group SO(D − 2).

The Fronsdal equation Fµ1···µs = 0 is not variational for s > 2. For instance, the Ricci
equation is not the Euler-Lagrange equation of the Einstein-Hilbert action. But the higher-
spin generalization

Gµ1···µs ≡ Fµ1···µs − 1
2
g(µ1µ2Fµ3···µs)ν

ν = 0 (4.3)

of linearized Einstein’s equation is variational [14]. The Lagragian is simply the contraction
of the gauge field ϕµ1···µs with the Einstein-like tensor Gµ1···µs .

Again it turns out to be technically convenient to make use of the generating function
(3.4), which gives[

p2 − (p · u)

(
p · ∂

∂u

)
+

1

2
(p · u)2

(
∂

∂u
· ∂
∂u

)]
ϕ(p, u) = 0 (4.4)

with the conditions(
u · ∂

∂u
− s
)
ϕ(p, u) = 0 ,

(
∂

∂u
· ∂
∂u

)2

ϕ(p, u) = 0 (4.5)

and gauge equivalence
δεϕ(p, u) = (p · u) ε(p, u) (4.6)

with (
u · ∂

∂u
− (s− 1)

)
ε(p, u) = 0 ,

(
∂

∂u
· ∂
∂u

)
ε(p, u) = 0 . (4.7)

Performing the same steps as in the previous section (and a rescaling ω → µ−
1
2ω), one may

obtain the infinite-spin counterpart of Fronsdal’s formulation via the following rules:

1. remove the homogeneity conditions,

2. perform the following replacement u→ ω, and

3. take into account the replacement rules:

p · u −→ p · ω + µ
1
2 ,

∂

∂u
· ∂
∂u
−→ ∂

∂ω
· ∂
∂ω

+ µ .

This leads to:[
p2 − (p · ω + µ

1
2 )

(
p · ∂

∂ω

)
+

1

2
(p · ω)2

(
∂

∂ω
· ∂
∂ω

+ µ

)]
ϕ(p, ω) = 0 (4.8)
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with the conditions (
∂

∂ω
· ∂
∂ω

+ µ

)2

ϕ(p, ω) = 0 (4.9)

and gauge equivalence
δεϕ(p, ω) = (p · ω + µ

1
2 ) ε(p, ω) (4.10)

with (
∂

∂ω
· ∂
∂ω

+ µ

)
ε(p, ω) = 0 . (4.11)

These equations provide a gauge formulation of a bosonic continuous-spin field, reproducing
in the limit µ→ 0 the Fronsdal formulation of massless higher-spin fields.

To determine the space of reducibilities in this Fronsdal-like approach is a subtle issue.
Formally, the system of equations obeyed by the reducibilities takes (up to the rescaling

ω → µ
1
2ω) exactly the same form as the Wigner equations (3.39)-(3.42). As explained

in the section 3.3, one should specify carefully the functional space in order to determine
the precise space of reducibilities. This issue is an important one when looking for the
nonlinear theory. In higher-spin gravity, the space of all Killing tensor fields on AdS, for
the whole tower of gauge fields, can be endowed with a Lie algebra structure and forms
the AdS higher-spin algebra, which is instrumental for introducing consistent interactions.
In the case of continuous-spin gauge fields, the issue remains elusive because there are no
polynomial solutions (not even formal power series) in ω to Wigner’s equations.10 In fact,
the analogy between continuous-spin and massive particles of large spin suggests the absence
of any reducibility. Nevertheless, the existence (or not) of a continuous-spin algebra remains
an open issue in the present stage of understanding.

As far as an action principle for continuous-spin fields is concerned, unfortunately the
(index-free version of) the Einstein-like equation (4.3) blows up in the limit s→∞, even if
one takes into account the infinite rescaling [4]. As explained in details in [32] and reviewed
here, one way out is to perform Fourier transforms over the auxiliary vector and solve
the tracelessness constraints by distributions, thereby recovering the equations of motion
presented by Schuster and Toro.

4.2 Schuster-Toro action

The Fourier transform over the auxiliary vector for the gauge parameter and field are:

ε̃(p, w) =

∫
dω ε(p, ω) exp(−i µ

1
2 w · ω) , (4.12)

ϕ̃(p, w) =

∫
dω ϕ(p, ω) exp(−i µ

1
2 w · ω) . (4.13)

This Fourier transformation allows to solve the tracelessness constraints by distributions. In
particular, distribution theory states that(

w2 + 1
)
ε̃(w) = 0 ⇐⇒ ε̃(w) = δ(w2 + 1) ε(w) (4.14)

10The proof relies on the simple fact that, for µ 6= 0, the operator p · ω + µ is invertible in the space of
formal power series in ω. Thence (3.40) has no nontrivial solution in this functional space.
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and (
w2 + 1

)2
ϕ̃(w) = 0 ⇐⇒ ϕ̃(w) = δ′(w2 + 1) Φ(w) . (4.15)

In terms of this new field Φ, the Fronsdal-like equation reads K̂Φ = 0 where the kinetic
operator

K̂ = − δ′(w2 + 1) p2 +
1

2

(
p · ∂

∂w
− i µ

)
δ(w2 + 1)

(
p · ∂

∂w
− i µ

)
(4.16)

is manifestly Hermitian, K̂† = K̂, with respect to the conjugation

w† = w ,

(
∂

∂w

)†
= − ∂

∂w
. (4.17)

The gauge symmetries read

δε,χΦ =

[
p · w − 1

2

(
w2 + 1

)(
p · ∂

∂w
− iµ

)]
ε+

1

2

(
w2 + 1

)2
χ (4.18)

This explains the origin of the bosonic action proposed by Schuster & Toro [16]:

S[Φ] =
1

2

∫
d4x d4w Φ(x,w) K̂ Φ(x,w) (4.19)

= − 1

2

∫
d4x d4w Φ

[
− δ′(w2 + 1)2 + 1

2
(∂w · ∂x + µ) δ(w2 + 1) (∂w · ∂x + µ)

]
Φ

A similar action principle was proposed by Segal in 2001 for higher-spin massless fields on
(anti) de Sitter spacetime [18]. The above line of reasoning was applied in the fermionic case
to construct the action [17], as will be presented in details in [32].

5 Anti de Sitter spacetime

Tachyonic as well as continuous-spin fields seem non-unitary on de Sitter spacetime, as
they are absent from the dictionary between UIRs of SO(D, 1) and fields on dSD [33].
Similarly, they are also absent from the well-established dictionary between lowest-weight
UIRs of SO(D− 1, 2) and fields with bounded energy on anti-de Sitter space AdSD [34,35].
However, Metsaev proposed [20,21] action principles, which we discuss below, for the spinning
tachyonic fields as well as for continuous-spin11 fields on (A)dSD. According to his analysis,
continuous-spin fields can be unitary (in the sense of the absence of ghosts, i.e. negative
kinetic terms in the action) on anti-de Sitter spacetime under some conditions on the two
continuous parameters entering the action.

11These fields on anti de Sitter space were referred to as “continuous-spin fields” in the sense that they
have an infinite number of physical degrees of freedom.
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5.1 Some representation theory

For the sake of simplicity, let us particularize the discussion to the case D = 4 for a moment.
The lowest-weight UIRs of AdS4 isometry algebra so(3, 2) = span{ĴAB} (A,B = 0, 1, 2, 3, 4)
are characterized by the lowest energy E0 (in units of the inverse of the curvature radius
R) and the so(3)-spin s. The corresponding eigenvalues [36] are for the quadratic Casimir
operator

C2
(
so(3, 2)

)
:=

1

2
JABJ

AB = −9
4

+
(
E0 + 3

2

)2
+ s(s+ 1) , (5.1)

and for the quartic operator (= the square of the Pauli-Lubanski vector)

C4
(
so(3, 2)

)
:= WAW

A =
[
−1

4
+
(
E0 − 3

2

)2 ]
s(s+ 1) , (5.2)

where WA := 1
8
εABCDEJ

BCJDE . The Inönu-Wigner contraction so(3, 2)
R→∞−→ iso(3, 1) is

implemented via the relation Pµ := Jµ4/R. At the level of the Casimir operators and
eigenvalues, the relation reads

1
R2C2

(
so(3, 2)

)
R→∞−→ C2

(
iso(3, 1)

)
, (5.3)

1
R2C4

(
so(3, 2)

)
R→∞−→ C4

(
iso(3, 1)

)
, (5.4)

E0

R

R→∞−→ m, (5.5)

which reproduces the eigenvalues (2.10) for a massive spin-s representation in the flat limit.
The continuous-spin representation is obtained in the following scaling limit

E0 ∼ (µR)
1
2 ∼ s (5.6)

on the energy and spin.
At finite spin and curvature, the generic situation is as follows: the eigenvalues C2

(
so(3, 2)

)
=

(mR)2 and C4
(
so(3, 2)

)
= (µR)2 of the two Casimir operators define two energy scales m

and µ (on top of the curvature radius). Consider such a massive particle on AdS with the
scaling behaviour (5.6). In the limit of large spin (s� 1):

µ� m� 1

R
(5.7)

since m ∼ µ
s

and 1
R
∼ µ

s2
. At very large energy E � µ, this particle cannot be distinguished

from a massless particle of large spin on flat spacetime. At energies of the order µ, the
mixing of helicity states under Lorentz boosts becomes relevant and this particle appears as
a continuous-spin particle on flat spacetime. At energies of the order m ∼ µ

s
, the the particle

appears as a massive particle of large spin, still on flat spacetime. It is only at energies of
the order of the scalar curvature 1

R
∼ µ

s2
, that the spacetime is probed as AdS spacetime.

While the representation theory of continuous-spin fields in (anti)-de Sitter space has not
been elaborated on, let us propose a plausible scenario, which is based on AdS/CFT inspired
considerations. By the usual AdS/CFT argument, any bulk field in anti-de Sitter space (i.e.
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a representation of the anti-de Sitter algebra) should correspond to some conformal field
on the boundary. The duality map at the free level is an intertwining operator [37] that
maps the compact slicing so(D− 1)⊕ so(2) of the anti-de Sitter algebra so(D− 1, 2) to the
non-compact one so(D − 2, 1) ⊕ so(1, 1). Usual fields in anti-de Sitter space, i.e. massive,
massless and partially-massless (see [34,38–41] and refs therein) are lowest-weight irreducible
representations. They are characterized by the weights of the maximal compact subalgebra
so(D−1)⊕so(2) ⊂ so(D−1, 2). This construction does not seem to apply to the continuous-
spin case since such representations do not appear in the known classification. A possible
scenario is to induce a representation from an irreducible representation of so(D − 2, 1) ⊕
so(1, 1). In its turn, representations of so(D−2, 1) are constructed as induced representations
that are characterized by a weight of so(D− 3) and an additional parameter, continuous for
the principal and complementary series (see e.g. [33] for a review of the classification). As
a result, we can have two continuous parameters and the spinning degrees of freedom are
specified by a representation of so(D − 3). This situation coincides qualitatively with the
flat space counterpart.

Let us illustrate the relation between different representations of the Poincaré and anti-
de Sitter algebra that are relevant both for continuous-spin and higher-spin theories. In
the simplest case one can start with the free massless scalar field on Minkowski spacetime
RD−2,1, which is a representation of the Poincaré algebra iso(D − 2, 1). As is well-known,
it is also a representation of the conformal algebra so(D − 1, 2), which is the same as the
isometry algebra of anti-de Sitter spacetime AdSD. This representation was dubbed “Rac”
by Flato and Fronsdal, who discovered the remarkable fact that [58] the tensor product of
two Rac’s decomposes into the sum of the anti-de Sitter algebra so(D−1, 2) representations
corresponding to massless fields of all integer spins s = 0, 1, 2, .... The flat limit, i.e. R→∞,
of this spectrum is the direct sum of all massless higher-spin fields in flat spacetime, which
is the same as the µ→ 0 limit of a continuous-spin particle:

Rac
⊗

> Rac⊗ Rac
Decomposition

>
∑
s

HS gauge fields on AdS

Continuous-Spin on flat
µ→ 0

>
∑
s

HS gauge fields on flat

R→∞
∨

Note that the Rac, on the upper left of the diagram, is a field living in D − 1 dimensions
while the massless higher-spin fields (both in anti-de Sitter and in flat spacetime) as well as
the continuous-spin field, live in D dimensions. This diagram might suggest the question:
is there any analog of Rac for continuous-spin fields? The answer seems to be negative,
since continuous-spin representations are irreducible, they correspond to elementary parti-
cles (both in flat and AdS spacetimes) which are, by definition, not composed of a more
elementary particle (the would-be flat counterpart of the “Rac”). For this reason, it appears
that one should not look for a Flato-Fronsdal theorem for continuous-spin fields, although
the question remains tantalising.
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5.2 Action principles on (anti) de Sitter spacetime

We discuss below the progress [20,21] with action principles for continuous-spin fields in anti-
de Sitter space. Fronsdal fields, discussed in section 4.1, turn out to be a very convenient
building block for massive, partially-massless [39] and continuous-spin fields, as we review
below.

Let us begin with the case of a massive bosonic spin-s field in flat or (anti)-de Sitter
space. The idea of Zinoviev [24] is to take advantage of the fact that the helicity content of a
massive spin-s particle is that of a direct sum of massless particles with spins from 0 to s. Of
course, the representation is not a direct sum. Nevertheless, one can try to write down the
most general two-derivative and quadratic in the fields action for Fronsdal tensors ϕµ1...µk
(k = 0, 1, ..., s) and make it gauge invariant under the most general gauge transformation
law that one can construct with the help of parameters εµ1...µn (n = 0, ..., s− 1).

In practice [24], one takes the sum of the flat12 space Fronsdal actions [14] with partial
derivatives ∂ replaced by covariant ones∇ and also one adds all possible mixing terms, which
are of two types: derivative and non-derivative, i.e. mass-like terms,

L =
s∑

k=0

LF (ϕk) +
∑
k

[
dk (ϕk)

2 + ek (ϕ′k)
2 + fk ϕkϕ

′
k+2

]
+

+
∑
k

(−)k
[
ak ϕk−1(∇ · ϕk) + bk ϕ

′
k(∇ · ϕk−1) + ck (∇ · ϕ′k)ϕ′k−1

]
,

where ak, bk, ck, dk, ek, fk, are real coefficients. Here LF (ϕk) is the Fronsdal Lagrangian
with derivatives covariantized,13 ϕ′k denotes the trace ϕννµ3...µk , while ∇ · ϕk denotes the
divergence ∇νϕνµ2...µk and all other indices are assumed to be contracted. Also, one takes
the most general form of gauge transformations

δϕk = ∇εk−1 + αk εk + βk g εk−2 , (5.8)

where ∇εk−1 stands for the symmetrized covariant gradient ∇(µ1εµ2...µk) and g εk−2 ≡
g(µ1µ2εµ3...µk). Lastly, one requires the action to be gauge invariant. As a result, all the
free coefficients at fixed k get expressed in terms of αk. Furthermore, one also arrives at a
single recurrence relation for the coefficients qk := α2

k :

qk−1
2k(D + 2k − 5)

D + 2k − 6
− qk

(k + 1)(D + 2k − 2)

D + 2k − 4
+ (1− k)qk−2 − 2Λ(D + 2k − 5) = 0 ,

where Λ is the cosmological constant. The most general solution of this second order re-
currence relation depends on two constants. However, if ones requires that the Lagrangian
truncates and does not contain fields with spin greater than s, then we have to impose qs = 0.
As a result, the second constant can be related to the mass, a convenient normalization being

12This was the ansatz adopted in [24], while an equally good starting point would be to take the AdS
Fronsdal actions.

13The convention for the Riemann tensor is Rµν,αβ = −Λ(gµαgνβ − gµβgνα)
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qs−1 = m2/s (as it will be clear below, m2 = 0 corresponds to the massless spin-s field). The
solution is [24]

qk =
(s− k)(D + k + s− 3) (m2 − Λ(s− k − 1)(D + k + s− 4))

(k + 1)(D + 2k − 2)
(5.9)

for k = 0, 1, ..., s . The gauge invariance of the action facilitates the counting of physical
degrees of freedom: they indeed correspond to a rank-s irreducible representation of so(d−1).
Another way to see that the action describes a massive spin-s field is to use the algebraic
(shift) part of the gauge transformations (5.8), to be precise the second term there, in order
to set to zero ϕ0, ϕ1 and the traceless part of the ϕk (k = 2, ..., s − 1) with the help of the
parameters εk (k = 0, ..., s− 1). As a result, one recovers (in flat space) the field content of
the Singh-Hagen action [42] for a single massive spin-s field.

The zoo of irreducible fields in (anti)-de Sitter space is more diverse as compared to the
flat space and understanding various limits is important. In particular, there exist partially-
massless fields [39]. In the simplest case of totally-symmetric fields, a partially-massless field
is specified by its spin s and the depth t of partial masslessness, the gauge transformation
law having higher derivatives

δϕµ1...µs = ∇(µ1 · · · ∇µtεµt+1...µs) . (5.10)

For t = 1 we have the usual massless fields, but all integers t in the range 1, ..., s are allowed.
The number of physical degrees of freedom of partially-massless fields lies in between those of
massive and massless ones. In particular, in the case of spacetime dimension D = 4 a spin-s
and depth-t partially-massless field possesses helicities in the range ±(s− t+ 1), ... ,± s .

The Zinoviev action also includes all partially-massless cases. Indeed, by fine-tuning m2

in (5.9) we can get qs−t = 0 for

m2
s,t = Λ(t− 1)(D + 2s− t− 4) , (t = 1, ..., s) (5.11)

and the action splits into two parts: the fields ϕs−t+1, ..., ϕs describe a partially-massless
field of spin-s and depth-t while the fields ϕ0, ..., ϕs−t describe a non-unitary massive field
of spin s − t. There is also a truncation to the massless field for t = 1, where one is left
with the Fronsdal action with an appropriate mass-like term. Frame-like Lagrangians for
partially-massless [25] and massive [26] fields were also constructed following the procedure
of Zinoviev.

The idea of the Metsaev action [20] for continuous-spin fields can be interpreted as follows:
we do not have to fix the free parameters so that qs = 0. Rather, one can keep the two free
constants as genuine parameters of a solution. As a result, the most general solution is

qk =
(s′ − k)(s′ +D + k − 3)

(k + 1)(s′ − s+ 1)(D + 2k − 2)(s′ +D + s− 4)
×

×
(
Λ(s′ − s+ 1)(k − s+ 1)(s′ +D + s− 4)(D + k + s− 4) +m2(D + 2s− 4)

)
.

(5.12)

It reduces to (5.9) if we set s′ = s. Here we expressed the first constant as a condition
that qs′ = 0 where s′ does not have to be an integer. Therefore, in this technical sense, one
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can think of continuous-spin fields as of particles with fractional spin (see also [49] ). This
analogy is not to be taken literally, continuous-spin have standard statistics (either bosonic
or fermionic).

An even simpler form is obtained if we associate the two constants with two points where
the function qk goes to zero, qs1 = qs2 = 0:

qk = −Λ (k − s1) (k − s2) (D + k + s1 − 3) (D + k + s2 − 3)

(k + 1)(D + 2k − 2)
. (5.13)

We again would like to stress that s1, s2 are two formal parameters for which the two
constants were traded for and they do not have to be integers. As a consequence, the generic
gauge invariant action does not stop at ϕs and contains instead Fronsdal fields with all spins
s = 0, 1, 2, ... This action depends on two parameters, such as s′ and m2 (or, equivalently,
s1 and s2). Whenever s1 and/or s2 is an integer we have a clear interpretation: the action
splits into several parts. Solution (5.13) is suitable for AdS space, while in the flat space
one should introduce at least one dimensionful parameter instead of Λ.

The crucial novelty of the most general solution, obtained by Metsaev, i.e. equivalently
(5.12) or (5.13), is the presence of the two free parameters, which should correspond to the
two Casimir operators of the previous subsection. At generic point in the parameter space
one has an irreducible system that depends on all symmetric tensor fields ϕk (k = 0, 1, 2, ...).
It is difficult to determine at present which solutions correspond to unitary representations.
Nevertheless, one can use a simple reasoning as to single out the cases that are definitely
not unitary. Indeed, note that qk = α2

k and therefore unitarity requires qk > 0. This way it
is easy to see that partially-massless fields, i.e. t > 1, are non-unitary in anti-de Sitter but
may be (and actually are) unitary in de Sitter.

It is also clear that the Lagrangian splits into two (or three) parts whenever s1 or s2
is (or, respectively, both of them are)14 non-negative integer(s), which allows one to see
various massive, partially-massless and massless truncations. For example, the massless case
corresponds to qs = qs−1 = 0 and the action splits into three parts for fields with spins
0, ..., s− 1, the massless field with spin s and the rest with spins s+ 1, s+ 2, ....

The analysis of (5.13) is very simple: there are explicitly four roots and, depending on
the position of the roots, qk is either positive for all k > 0, or can become negative for some
k. For the de Sitter case Λ > 0, we immediately see that (5.13) goes negative for sufficiently
large k and therefore, continuous-spin fields cannot be unitary in de Sitter (as confirmed by
their absence in the known classification of UIRs). In the anti-de Sitter case qk is always
positive for sufficiently large k. Therefore, if there is a range where qk goes negative for
k > 0 then we should arrange one (or two) of the roots to be integers, so that the action
can split into two (or three) parts, with unitarity preserved by at least one of them. When
the action splits into two parts, the first one for the finite number of fields s = 0, 1, ..., s′

describes a massive spin-s′ field. Whenever the action splits into three parts the middle part
that contains fields with spins s′ − t + 1, ..., s′ describes a spin-s′ depth-t partially-massless
field. On Fig. 5.2 we showed several plots of qk for different values of s1 and s2.

14The roots are exchanged under si → −D − 3− si.
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Figure 2: Typical plots of qk as a function of k for various values of s1 and s2. The regions
where qk is negative correspond to violation of unitarity unless the root is an integer and
then the action splits into two (or three) parts. Those parts that have qk > 0 can be unitary.

5.3 Some remarks

There is one crucial difference between continuous-spin fields in flat and anti-de Sitter spaces.
In flat spacetime, there is a limit where a continuous-spin particle reduces to a direct sum
of massless particles of all spins, which can be seen either from representation theory (see
section 2) or from the action (that splits into a direct sum of Fronsdal actions). The latter fact
suggests that constructing interactions for continuous-spin fields should be closely related
to higher-spin gauge theories in flat space, if any [50–57]. On the contrary, in anti-de
Sitter spacetime the maximal decomposition of the continuous-spin action we can achieve
is splitting into three parts and there is no limit where one finds a direct sum of Fronsdal
actions. At group-theoretical level, the UIRs of so(D−1, 2) corresponding to massless spin-s
fields saturate the unitarity bound: they are labeled by the energy E0 = s + D − 3. The
point is that their Casimir operators are distinct15 for distinct s, in contrast with the flat
case where they vanish for all helicity representations. Therefore, continuous-spin fields on
AdS do not seem to be related in any obvious sense to AdS higher-spin gravity theories. In
other words, in the diagram below there is no upper arrow relating the left and right upper
corners:

CS field on AdS
∑

HS gauge fields on AdS

CS field on flat

Λ→ 0
∨ µ→ 0

>
∑

HS gauge fields on flat

Λ→ 0
∨

Let us also note that the unfolded formulation of a massive spin-s field was also con-
structed [26]. This was done by following Zinoviev’s idea that a massive spin-s field can
be described as an appropriate mixture of massless fields with spins 0, 1, ..., s . Likewise, in
order to construct the frame-like action of a massive spin-s field one should take the field
content of unfolded formulations of massless fields with spins 0, 1, ..., s and add all possible
mixing terms. In practice, as in the case of the Zinoviev action, one has to solve certain
recurrence equations and the most general solution was found [26]. It depends on two pa-
rameters, which is in accordance with the discussion above. If one of these parameters is
taken to be an integer, then the solution truncates at some spin and the second parameter
can be associated with the mass.

15For instance, (5.1)-(5.2) for the case D = 4 with E0 = s + 1 give C2
(
so(3, 2)

)
= 2(s + 2)(s + 1) and

C4
(
so(3, 2)

)
= s2(s+ 1)(s− 1).
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Another extension along the same lines is to explore continuous-spin fields of mixed-
symmetry type.16 The idea is the same: continuous-spin particles can be thought of as an
infinite-spin limit of massive ones. In particular, one takes the action [43] for massive field
whose spin is described by a two-row Young diagram (s1, s2), s1 > s2, and formally let s1 to
be non-integer [59]. An obstacle that prevents one from studying the most general case of
mixed-symmetry continuous-spin fields is the lack of a Lagrangian formulation for massive
fields whose spin is characterized by an arbitrary Young diagram, i.e. a representation of
so(D − 1).

5.4 Vacuum Partition Function

Vacuum partition function of continuous-spin fields have also been studied [20, 21]. The
results are similar to those for massless higher-spin multiplets in flat [44] and anti-de Sitter
space [45–47].

In flat space there is a heuristic arg ument for why the vacuum partition function of
higher-spin theories has to be one [44]. For free fields we easily find

Z1-loop =
1

det
1/2
0 | − ∂2|

∏
s>0

det
1/2
s−1,⊥ | − ∂2|

det
1/2
s,⊥ | − ∂2|

, (5.14)

where det⊥ is the determinant on the space of transverse and traceless tensors. This repre-
sentation is obtained from a partition function of a spin-s massless field

Zs =
det

1/2
s−1 | − ∂2| det

1/2
s−1 | − ∂2|

det1/2s | − ∂2| det
1/2
s−2 | − ∂2|

, (5.15)

where det is the determinant on the space of traceless tensors. The partition function
corresponds to the decomposition of the Fronsdal field into traceless tensors of ranks s and
s− 2, while the enumerator accounts for the gauge symmetries. In order to get (5.14) from
(5.15) one needs to use detk = detk,⊥ detk−1.

Assuming that we can cancel the neighbours in the infinite product (5.14) we observe an
exact cancellation, thence Z1-loop = 1. Similar arguments can be applied to a continuous-spin
field in flat spacetime.17 The situation in anti-de Sitter spacetime is more complicated.

At the free level the partition function is given by the product of determinants of the
Fronsdal kinetic terms divided by the determinants of the ghosts associated with gauge
symmetries. As a result one gets [45,46]

Z1-loop =
1

det
1/2
0 | − ∇2 −m2

0|

∏
s>0

det
1/2
s−1,⊥ | − ∇2 +M2

s |
det

1/2
s,⊥ | − ∇2 +m2

s|
, (5.16)

m2
s = Λ[(s− 2)(D + s− 3)− s] , (5.17)

M2
s = Λ(s− 1)(D + s− 3) , (5.18)

16Mixed-symmetry continuous-spin fields have been discussed at the group-theoretical level in [30] and at
the level of wave equations in [4].

17These cancellations are not unrelated to the formal similarity (observed in the section 3) between the
equations obeyed by the wave function and by the gauge parameter on shell.
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where m2
s is the mass-like term of a massless spin-s field and M2

s is the one for its ghost.
Differently from the flat case, trivial cancellation of the neighbours in the product is im-
possible since the mass-like term of the ghost does not coincide with that of a spin-(s − 1)
field: M2

s 6= m2
s−1. Nevertheless, it can be shown [45–47] that Z1-loop = 1 for the spectrum

containing all integer spins s = 0, 1, 2, ....
Continuous-spin fields on AdS can also be shown [20, 21] to have Z1-loop = 1. This is

similar to the flat space counterpart:

Z1-loop =
∞∏
k=0

det
1/2
k−1,⊥ | − ∇2 +M2

k−1|
det

1/2
k,⊥ | − ∇2 +M2

k|
, (5.19)

M2
k = −µ0 − Λ[k(k +D − 1) + 2D − 4] , (5.20)

where, remarkably, the same M2
k corresponds to the mass-like terms for the fields and

ghosts. Here µ0 is one of the free dimensionful parameters in the solution. Upon cancelling
the neighbours in the product one finds Z1-loop = 1. The result for a single massless spin-s
field, which is a consistent truncation, can be obtained by noticing that this truncation has
µ0 = −2Λs(s+ d− 3). Then, M2

s = m2
s and M2

s−1 = M2
s−1.

Note that the simplest higher-spin multiplets contain either all even spins (“minimal Type
A” theory) or all integer spins (so-called “non-minimal Type A”). There does not seem to
be an analog of the minimal Type-A multiplet for continuous-spin particles since they must
contain all integer helicities (consistently with their interpretation as the infinite-spin limit
of a massive particle).

6 List of open problems

To conclude, let us present a list of some open problems:

1. Action principles:

• Determine the precise relation (if any) between the Fronsdal-like actions of Met-
saev [20,21] and the Segal-like actions [16,17];18

• Generalize those actions to mixed-symmetry representations (relevant for space-
time dimensions D > 7), where another problem still open is how to construct
the action for the most general massive mixed-symmetry field.

2. Consistency of scattering:

• Clarify the current exchanges obtained from known action principles;19

• Extend the Weinberg soft theorems as to arrive at definite (either no-go or yes-go)
conclusions.

3. Classification of consistent self-interactions in flat spacetime:

18While this work was completed, paper [60] appeared that addresses this issue.
19Some detailed investigation reveal that the issue is a subtle one [32].
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• Cubic order: analyze whether there exist consistent vertices20;

• Quartic and higher orders: extend this analysis to quartic order and, hopefully,
to all orders.

Here the easiest way seems to apply the light-cone approach [52] along the lines
of the usual massless fields.21 However, in the covariant approach the crucial
question is what is the underlying gauge algebra, if any.

4. Nonvanishing cosmological constant:

• It is still important to understand the group-theoretical origin of continuous-spin
UIRs of anti de Sitter isometry algebra so(D − 1, 2);

• A related issue is the holographic interpretation of bulk continuous-spin gauge
fields as boundary conformal operators;

• If a continuous-spin algebra exists (this question was raised above), then it would
be natural to ask whether it arises from an exotic nontrivial flat limit of AdS
higher-spin algebra.
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