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ABSTRACT

Context. In the recently published 3FGL catalogue, the Fermi/LAT collaboration reports the detection of γ-ray emission from
3034 sources obtained after four years of observations. The nature of 1010 of those sources is unknown, whereas 2023 have well-
identified counterparts in other wavelengths. Most of the associated sources are labelled as blazars (1717/2023), but the BL Lac or
FSRQ nature of 573 of these blazars is still undetermined.
Aims. The aim of this study was two-fold. First, to significantly increase the number of blazar candidates from a search among the
large number of Fermi/LAT 3FGL unassociated sources (case A). Second, to determine the BL Lac or FSRQ nature of the blazar
candidates, including those determined as such in this work and the blazar candidates of uncertain type (BCU) that are already present
in the 3FGL catalogue (case B).
Methods. For this purpose, multivariate classifiers – boosted decision trees and multilayer perceptron neural networks – were trained
using samples of labelled sources with no caution flag from the 3FGL catalogue and carefully chosen discriminant parameters. The
decisions of the classifiers were combined in order to obtain a high level of source identification along with well controlled numbers
of expected false associations. Specifically for case A, dedicated classifications were generated for high (|b| > 10◦) and low (|b| ≤ 10◦)
galactic latitude sources; in addition, the application of classifiers to samples of sources with caution flag was considered separately,
and specific performance metrics were estimated.
Results. We obtained a sample of 595 blazar candidates (high and low galactic latitude) among the unassociated sources of the 3FGL
catalogue. We also obtained a sample of 509 BL Lacs and 295 FSRQs from the blazar candidates cited above and the BCUs of the
3FGL catalogue. The number of expected false associations is given for different samples of candidates. It is, in particular, notably
low (∼9/425) for the sample of high-latitude blazar candidates from case A.

Key words. gamma rays: galaxies – galaxies: active – BL Lacertae objects: general – methods: statistical – catalogs

1. Introduction

The LAT telescope, on board the Fermi satellite, has been
mapping the γ-ray sky (above 100 MeV) since 2008 with un-
precedented angular resolution and sensitivity. In the recently
published 3FGL catalogue (Acero et al. 2015), the Fermi/LAT
collaboration reports the detection of γ-ray emission from 3034
sources above 4σ significance, obtained after four years of ob-
servations. Among these sources, 2025 have been associated1

with sources of well known types detected at other wavelengths.
Most of them are active galactic nuclei (AGN) (1752), and, of
particular interest here, blazars (1717), among which 660 are la-
belled as BL Lacertae objects (BL Lac), 484 as flat spectrum ra-
dio quasar (FSRQ) and 573 as blazars of undetermined type. The

? Full Tables 5 and 7 are only available at the CDS via anonymous
ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/602/A86
1 Including the so-called identified sources showing periodic emission,
variability, or extended morphology in different wavelengths.

remaining fraction is composed of galactic sources, mainly pul-
sars (166) and also supernovæ remnants or pulsar wind nebulæ
(85). Nevertheless, one third of the 3FGL catalogue sources are
still of unknown nature because of the lack of firmly identified
counterparts at other wavelengths. It is likely that a significant
fraction of these unassociated sources are blazars, considering
the incompleteness of counterpart catalogues, the existence of
γ-ray sources with multiple candidate associations due to the
large error localisation of the Fermi/LAT, and also a deficit seen
at low values (|b| ≤ 10◦) in the latitude distribution of Fermi
blazars (Acero et al. 2015).

The understanding of the blazar population and its evolu-
tion – for example the validity of the “blazar sequence” – and the
determination of the extragalactic background light (EBL) are
key topics in high-energy astrophysics (Sol et al. 2013) which
are currently limited, observationally, by the small number of
detected blazars. For this reason, several studies have addressed
the question of the nature of the Fermi/LAT catalogues’ sources
of unknown type. Two different approaches are generally used,
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one based on machine-learning classification methods and the
other based on multiwavelength identifications or associations,
they are described below.

The first approach is based on the exploitation of statisti-
cal differences imprinted in the Fermi/LAT catalogues, such as
variability and spectral shape, between different populations of
sources. Classifications are built with machine-learning algo-
rithms, using given sets of discriminant parameters, to search
for particular types of sources among the unassociated ones.
Ackermann et al. (2012) identified AGN and pulsar candidates
among the 630 unassociated sources of the 1FGL catalogue
(Abdo et al. 2010b) with a classification built on the decisions
of two individual classifiers based on random forest and log-
ical regression multivariate methods. They proposed a list of
221 AGN and 134 pulsar candidates. To search for possible
dark matter candidates in the sample of the 269 unassociated
sources located at high galactic latitude (|b| > 10◦) of the 2FGL
catalogue (Nolan et al. 2012), Mirabal et al. (2012) focused on
the outliers of their own AGN and pulsar classifications built
with a random forest method. They proposed a list of 216 AGN
candidates. Hassan et al. (2013) then identified 235 possible
BL Lac or FSRQ candidates among the 269 blazars of unknown
type in the 2FGL catalogue by combining the decisions of two
classifiers based on support vector machine and random forest
methods. In another study, using a combination of neural net-
work and random forest methods, and introducing new strongly-
discriminant parameters, Doert & Errando (2014) identified a
sample of 231 AGN candidates among 576 unassociated sources
of the 2FGL catalogue. Recently, Saz Parkinson et al. (2016) ap-
plied a random forest and a logistic regression algorithm to iden-
tify pulsar and AGN candidates among the unassociated sources
in the 3FGL catalogue. They proposed a list of 334 pulsar candi-
dates and 559 AGN candidates. Finally, Chiaro et al. (2016) ap-
plied a neural network to identify BL Lacs and FSRQs among
the blazar candidates of uncertain type (BCU) in the 3FGL
catalogue. They obtained a list of 314 BL Lac candidates and
113 FSRQ candidates.

The second approach consists of finding possible counter-
parts in different wavelength bands, beyond what was done by
the Fermi/LAT collaboration for their public catalogues. Aside
from determining the nature of the source, the better localisation
of candidate counterparts simplifies more detailed identification
efforts at other wavelengths. A first attempt by Massaro et al.
(2011) used the assumption that blazars occupy a special po-
sition in the colour-colour diagram constructed with the first
three filters of the WISE satellite (Wright et al. 2010). By build-
ing “blazar” regions with a selected sample of infrared blazars,
and by comparing the distance of the unassociated sources in
the colour space to these regions, one can identify candidates for
blazar-like counterparts. This method has been improved sev-
eral times and applied to the 2FGL catalogue (Massaro et al.
2012a,b, 2013b), thus providing lists of possible blazar counter-
parts. In Massaro et al. (2013b) the authors provide 149 infrared
counterparts corresponding to 109 2FGL unassociated sources.
There is, however, no estimate of the number of false associa-
tions, as the method is based only on a selected sample of blazars
and does not consider the behaviour of other infrared source
classes. Source contamination in searches for counterparts in in-
frared catalogues is illustrated in D’Abrusco et al. (2014). Other
attempts have been made with non-parametric techniques, such
as kernel density estimators, using additional information ob-
tained in radio (Massaro et al. 2013a,c) or X-rays (Paggi et al.
2013), to identify potential blazar counterparts for a few tens
of unassociated sources in the 2FGL catalogue. Finally, one can

deal with unassociated sources individually, this is done in the
study of Acero et al. (2013) for a limited sample of sources,
by combining multiwavelength observations and analysing the
spectral energy distributions of the sources.

The aim of this study is two-fold. First, to significantly in-
crease the number of γ-ray blazar candidates from a search
among the large number of Fermi/LAT 3FGL unassociated
sources (case A). Second, to determine the nature (BL Lac or
FSRQ) of the blazar candidates, including those determined as
such in this work and those labelled as BCU (blazar candidates
of uncertain type) in the 3FGL catalogue (case B). For each case,
classifiers based on two different machine-learning algorithms
were built using only parameters from the 3FGL catalogue and
combined in order to increase the overall performance. Specifi-
cally for case A, those classifiers were trained separately for low
(|b| ≤ 10◦) and high (|b| > 10◦) galactic latitudes. Special atten-
tion was devoted to the estimation of their performance metrics.
This paper is organised as follows. In Sect. 2 we describe the
samples of sources used in this work, and also the selected sets
of discriminant parameters. In Sect. 3 we present two selected
machine-learning algorithms and their settings. In Sect. 4 we de-
scribe the training of the classifiers and performance evaluation.
Results are then presented in Sect. 5 and discussed in Sect. 6.

2. Data samples and discriminant parameters

2.1. Data samples for classifier building

The aim of the first study (case A) is to identify blazar candi-
dates among the unassociated sources of the 3FGL catalogue
(Acero et al. 2015). Considering that at high galactic latitudes
the unassociated sources are likely to be either blazars or pul-
sars (Mirabal et al. 2012), classifiers were built and tested using
a sample of 1572 blazars (including BL Lacs, FSRQs and BCUs)
and a sample of 134 pulsars, regardless of their galactic latitudes.
On the other hand, as at low galactic latitudes the unassociated
sources are likely to be blazars or any type of galactic sources,
other classifiers were built and tested using the same sample of
1572 blazars and a sample of 183 galactic sources, correspond-
ing to 134 pulsars, 34 pulsar wind nebulae (PWN) or supernova
remnants (SNR), and also a few globular clusters and binaries.
Only sources that have no caution flags2 in the 3FGL catalogue
were considered. For each case, these samples were split into
training and test samples (respectively 70% and 30%) following
a procedure explained in Sect. 4.1. The test sample was used
to determine the performance of the classifiers built with the
training sample. In addition, a sample of identified or associ-
ated flagged sources3 was used only to estimate the performance
of the classifiers specifically for flagged sources. The “high lati-
tude” and “low latitude” classifiers were applied to unassociated
sources with galactic latitudes |b| > 10◦ and |b| ≤ 10◦, respec-
tively. Numbers are summarised in Table 1.

The aim of the second study (case B) is to determine the
nature (BL Lac or FSRQ) of blazar candidates in the 3FGL cata-
logue for which this information is not known. In this case classi-
fiers were built and tested using a sample of 638 sources labelled
as BL Lacs and a sample of 448 sources labelled as FSRQs in the
3FGL catalogue. Here also, only sources with no flag were con-
sidered to build and test the classifiers. As the flagged sources

2 The flags in the 3FGL catalogue indicate that a possible problem
arose during the analysis of the γ-ray sources (Acero et al. 2015).
3 Except the so called “c-sources” which were discarded from the
study as they are considered to be potentially confused with galactic
diffuse emission.
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Table 1. Number of sources used to build each classifier and to derive its performance metrics.

Samples with no flag Samples with flags
Studies Training (70%) and test (30%) Targets Test Targets

Case A (HL) blazars (1572) pulsars (134) UnIds (422) blazars (145) pulsars (32) UnIds (109)
Case A (LL) blazars (1572) galactic sources (183) UnIds (169) blazars (145) galactic sources (75) UnIds (247)
Case B BL Lacs (638) FSRQs (448) BCUs (486) – – –

Notes. The number of sources to which each classifier was applied is also given: these “targets” correspond to unassociated sources (UnIds) for
case A or blazars of unknown type (BCUs) for case B. HL and LL refer to the high and low galactic latitude studies (case A), respectively. Only
BCUs are counted in the target sample for case B, the corresponding classifiers will be also applied to blazar candidates from case A.

were few in number (22 and 36, for BL Lacs and FSRQs respec-
tively), it was not possible to derive a reliable estimation of their
performance when applied to flagged sources. For this reason,
classifiers were applied only to the sample of blazar candidates
of unknown type and with no flag (486 BCUs from the 3FGL cat-
alogue and also the blazar candidates resulting from the case A
study). Numbers are summarised in Table 1.

2.2. Discriminant parameters

To distinguish between blazars and other source classes (case A),
two types of parameters appear to be particularly powerful.
First, those quantifying the variability of the sources, which is
a distinguishing feature of blazars over month-long time scales.
And second, spectral parameters, as blazar spectra are gener-
ally well adjusted by a simple power law or a log parabola,
whereas pulsars, for example, generally show a curved spec-
trum typically well adjusted by a broken power law or a power
law with an energy cut-off. With this in mind, we reviewed the
available parameters in the 3FGL catalogue and also examined
those already used in previous studies (Ackermann et al. 2012;
Ferrara et al. 2012; Mirabal et al. 2012; Doert & Errando 2014;
Saz Parkinson et al. 2016). We finally selected six discriminant
parameters, considering individually the increase of separation
power and the stability that they provide to the classifiers. Five of
these parameters have been used in previous studies: σ̃c, defined
asσc/σwhereσc is the significance of the curvature and σ is the
detection significance (Doert & Errando 2014); the normalised
variability, called T̃S, given by the ratio between the index vari-
ability TS and σ (Doert & Errando 2014); and the hardness ra-
tios4 HR23 and HR34 as well as their difference HR23 − HR34
(Ackermann et al. 2012). We note that we chose to discard the
hardness ratios HR12 and HR45 in our selection for the lack
of control of their discriminant power5. Additionally, we intro-
duced a new parameter, called λ, defined as the ratio between the
spectral index of the preferred hypothesis and the spectral index
of the power law hypothesis, called γ. Although for only 17% of
sources in the 3FGL catalogue an alternative hypothesis is pre-
ferred over a power law, this ratio increases to 76% for pulsars
while it is only 9% for blazars. The distribution of λ (when dif-
ferent from 1) shows an interesting separation power for blazars
and pulsars, see for example Fig. 1a. A selection of scatter plots

4 We use the definition of hardness ratio given in Ackermann et al.
(2012) which is HRi j =

Φ j〈E j〉−Φi〈Ei〉

Φi〈Ei〉+Φ j〈E j〉
, where Φi is the integral flux in

the energy band i and 〈Ei〉 is the mean energy of the band.
5 When a source is not detected in one of the five energy bands pro-
vided in the 3FGL catalogue, a 2σ upper limit is used by Acero et al.
(2015) instead of a flux measurement, leading to a shift of the hardness
ratio determination. This is in particular the case of parameters HR12
and especially HR45, that have the bigger fractions of upper limits.

is shown in Fig. 1 for the selected set of discriminant parameters,
considering the different source samples.

The selection of a set of BL Lac/FSRQ discriminant parame-
ters (case B) follows a similar approach. The photon index γ, the
pivot energy Ep (which is somewhat correlated to the position
of the high energy peak) and the normalised variability T̃S were
selected (Fig. 2 shows three scatter plots illustrating strong sep-
aration power). It is indeed shown in the Fermi/LAT 3LAC cata-
logue6 (Ackermann et al. 2015), that FSRQs tend to have softer
spectra than BL Lacs, that their high energy peaks tend to be lo-
cated at lower energies, and that they tend to show stronger vari-
ability. These parameters were also used in a similar study ap-
plied to the 2FGL catalogue by Hassan et al. (2013). The set of
six parameters selected above for the search of blazar candidates
among the unassociated 3FGL sources was also investigated. In
addition to T̃S which was already selected, the hardness ratios
HR23 and HR34 were also chosen. The other parameters were
discarded, as they showed poor BL Lac/FSRQ separation power.

3. Binary classifications based on machine-learning
algorithms

For this work, several machine-learning algorithms were tested
in order to identify blazar candidates among the 3FGL unas-
sociated sources (case A) and also to determine the BL Lac
or FSRQ nature of blazars of unknown type (case B). Using
the Toolkit for Multivariate Data Analysis (TMVA) package
(Hoecker et al. 2007) it quickly appeared that, for a given set of
discriminant parameters, methods based on random forests, neu-
ral networks, support vector machines and boosted decision trees
could reach comparable performance with very little tuning. The
choice was made to use two of these methods corresponding to
different philosophies, the boosted decision trees (BDT) and a
multilayer perceptron (MLP) neural network. In order to reduce
the false association rate, the decisions of both classifiers were
combined, then used to tag a source only if both classifiers agree
on its nature.

The BDT machine-learning algorithm is based on decision
trees, a classifier structured on repeated yes/no decisions de-
signed to separate “positive” and “negative” classes of events.
Thereby, the phase space of the discriminant parameters is
split into two different regions. The boosting algorithm, here
AdaBoost (Freund & Schapire 1996), generates a forest of weak
decision trees and combines them to provide a final strong deci-
sion. At each step, misclassified events are given an increasing
weight. Then, the generation of the following tree is done with
these weighted events allowing the tree to become specialised on
these difficult cases. At the end of the boosting phase, new events

6 The 3LAC catalogue is a by-product of the 3FGL catalogue devoted
only to AGN sources.
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Fig. 1. Scatter plots for selected couples of discriminant parameters. Blazars are represented with blue circles, sources belonging to our Galaxy
(except pulsars) with downward-pointing red triangles, pulsars with upward-pointing green triangles and unassociated sources with black dots.
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Fig. 2. Scatter plots for selected couples of discriminant parameters.
BL Lacs are represented with blue squares, FSRQs with red circles and
blazars of uncertain type with black dots.

can be processed by the forest of trees. All decisions are then
combined to give a weighted response according to the speciali-
sation of the trees. Preliminary tests, performed in order to assess
the stability of BDT classifiers, have shown that similar perfor-
mance was reached for a large range of BDT settings. Consider-
ing this we decided to use the same settings for both case A and
case B studies, with values relatively close to those of the TMVA
BDT default. Thus, a large forest of short trees (ntrees = 400,
depth = 3) was generated with a learning rate of 0.2. The learn-
ing algorithm differs slightly from the original AdaBoost: be-
fore the generation of a decision tree, during the boosting phase,
the events of the training samples are selected n times according
to a given probability following a Poisson law of parameter 0.8
(UseBaggedBoost = true, BaggedS ampleFraction = 0.8).

Neural networks methods are based on artificial neurons. It is
possible to linearly separate two populations of events by build-
ing a binary classifier with a single neuron. The latter is com-
posed of as many inputs as there are discriminant parameters
and one output describing the nature of the events. To each input
is associated a weight7. Inside the neuron, using the weights, a
linear combination of the discriminant parameters is formed and
then used as input for a transfer function which gives the output
value of the neuron. It is then possible to find the best values of
the weights allowing to get the minimum rate of misclassified
events by using a feedback process with the training sample.
Once this phase is finished, unknown events can be classified.
To tackle more complex problems, with non-linear separations
between classes of events, a possible solution is to use a multi-
layer perceptron neural network (Rumelhart et al. 1986). The lat-
ter is composed of at least one layer of neurons, called a hidden
layer, located between the input layer (made of as much single-
input neurons as there are discriminant parameters) and the out-
put layer (made of a single neuron). Additionally, each neuron is
allowed to have direct connections with only the neurons of the
following layer. The same procedure used for a single neuron is
followed to adjust the weights. As for the BDT classifiers, we
found out that similar performance can be reached with a large
range of MLP settings. We decided to use the same settings for
both case A and B studies. We set the MLP architecture to a sin-
gle hidden-layer composed of Nvar + 10 neurons8 and we used
the back-propagation algorithm to find the minimum of the error
function. Following the suggestion of Hoecker et al. (2007), the
input variables were normalised between −1 and +1 for the neu-
ral network. Finally, as the positive and negative samples have
different sizes, we normalised the events in order to have sam-
ples with identical sizes9 (NormMode = EqualNumEvents).

4. Training of classifiers and performance
evaluation

4.1. Splitting labelled sources into training and test samples

A standard practice to build and evaluate a classifier is to cre-
ate training and test samples by randomly selecting, for exam-
ple, 70% and 30% of each group of labelled events (here identi-
fied or associated sources). The training sample is used to build
the classifier, and the test sample to determine the performance
metrics. This random split is generally a good choice. However

7 There is generally an additional input called the bias to scale the
output of the neuron.
8 Nvar is the number of discriminant variables used to build up the
classification.
9 For BDT, this is naturally done with the AdaBoost algorithm.
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in this work we had to handle with small data sets (sometimes
composed of subsets of sources, e.g. the galactic source sample
for the case A study with 134 pulsars, 34 SNR or PWN, and
15 other galactic sources). As shown by Brain & Webb (1999)
this implies that the variance of classifiers corresponding to dif-
ferent randomly selected training subsamples is likely to be im-
portant, leading to performance which could be significantly
mis-estimated.

To minimise such a mis-estimation, we characterised the av-
erage performance of the BDT and MLP classifiers (with respect
to a large number of random splits of labelled sources into train-
ing and test samples), and selected a single split which provides
a pair of classifiers with performance as close as possible to this
average behaviour. To do that, we performed 100 iterations of
the following sequence:

1. random split of the labelled samples in training (70%) and
test (30%) samples;

2. training of the BDT and MLP methods using the same train-
ing sample;

3. performance evaluation for BDT and MLP using the same
test sample.

The receiver operating characteristic (ROC) curves10 obtained
for these 100 splittings are shown for case A (low and high galac-
tic latitude) and B studies in Fig. 3. In each case, the training/test
split which provides the performance closest to the average be-
haviour was selected (χ2 minimisation).

4.2. Cutoff determination on the training sample

The procedure explained above provided a pair of BDT and MLP
classifiers for each study, along with a training/test split of the
sample of labelled sources. To determine the optimal cutoff (ζ?)
in the distribution of the score (ζ) generated by each classifier,
we used a ten-fold cross validation method on the training sam-
ple, following the sequence:

1. splitting of the training sample in ten equal-size subsamples;
2. training of the BDT and MLP classifiers on nine subsamples

and application on the remaining 10th;
3. iteration over the ten subsamples until all the subsamples

were tested;
4. building of the BDT and MLP ROC curves on all the ten

tested subsamples of the training sample;
5. determination of the ζ?BDT and ζ?MLP values considering a cri-

terium defined below.

A single criterium which ensures a low rate of false positives
along with a relatively high rate of true positives was used for all
the studies (case A and B). Our choice was to consider as cut-
offs the values ζ?BDT and ζ?MLP which provide for each classifier
a false positive rate of 10%. Consequently, for case B, two dif-
ferent cutoff values were obtained for the search of BL Lacs or
FSRQs among blazars (subsequently referred to as the BL Lacs
against FSRQs or the FSRQs against BL Lacs studies, respec-
tively). All the cutoffs are summarised in Table 2.

4.3. Performance metrics

Figure 4 shows the ROC curves for each study and each clas-
sifier, first determined using the corresponding training sample

10 A ROC curve illustrates the performance of a classifier as its score
threshold varies, representing the true positive rate against the false pos-
itive rate (Fawcett 2006).

(with the ten-fold cross-validation method presented in Sect. 4.2)
and then using the test sample. For the performance metrics eval-
uation, classifiers were applied to the test samples. We then used
the cutoffs described above. Combining the outputs of the BDT
and MLP classifiers, we obtained a true positive rate of 95.6%
and a false positive rate of 7.3% for the blazars against pulsars
study (case A, to be applied to high galactic latitude sources). For
the blazars against galactic sources study (case A, to be applied
to low galactic latitude sources) we obtained slightly lower per-
formance, with a true positive rate of 87.1% and a false positive
rate of 9.1%. This loss of classifier performance is exclusively
due to the inclusion of all galactic sources (in addition to pulsars)
to the initial training sample. For case B, similar performances
were obtained for the BL Lacs against FSRQs and the FSRQs
against BL Lacs studies, with true positive rates of 83.9% and
84.4% and false positive rates of 8.9% and 10.9%, respectively.
All the true and false positive rates for the BDT and MLP clas-
sifiers (individual and combined) are summarised in Table 2.

As shown in Figs. 4a and b (also visible in Figs. 3a and b),
the ROC curves obtained when applying the case A classifiers to
a sample of flagged sources are significantly different to the ones
obtained to the test sample. Consequently, considering the cut-
off values obtained in Sect. 4.2, we used the samples of flagged
sources to determine specific performance metrics for these cat-
egories of sources. Combining the outputs of the BDT and MLP
classifiers, we obtained true and false positive rates of 88.9%
and 18.8% respectively for the blazars against pulsars study, and
true and false positive rates of 81.4% and 28.0% respectively
for the blazars against galactic sources study. In both cases, as
compared to the performance obtained on non-flagged sources,
the true positive rates are slightly reduced (by ∼7%) whereas
the false positive rates significantly increase by a factor ∼2.6–3.
The performance metrics for flagged sources are summarised in
Table 3.

5. Results

The results presented below were obtained by combining the
BDT and MLP decisions for each study.

For the blazars against pulsars study (case A, to be applied
to high galactic latitude sources), the classifiers were applied to
531 unassociated sources (422 not flagged, 109 flagged) with
|b| > 10◦. This results in 425 blazar candidates (345 not flagged,
80 flagged) with the number of false associations estimated to
∼9.3 (4.8 not flagged and 4.5 flagged). For the blazars against
galactic sources study (case A, to be applied to low galactic lat-
itude sources), the classifiers were applied to 416 unassociated
sources (169 not flagged, 247 flagged) with |b| ≤ 10◦. This re-
sults in 72 blazar candidates among the 169 unassociated sources
with no flag, with the number of false associations estimated to
be approximately nine. In addition we obtained 98 blazar candi-
dates among the 247 unassociated sources with a flag, but this
sample is dominated by false associations, which are estimated
to be ∼54. Results are summarised in Table 4 and a short sample
of sources is shown in Table 5.

For case B, the classifiers were applied to 903 blazar can-
didates (only sources with no flag were considered), 486 being
labelled as BCU in the 3FGL catalogue and 417 being labelled
as blazar candidates in our case A study. From this we obtained
a list of 509 BL Lac candidates with an estimated number of
∼29 false associations and a list of 295 FSRQ candidates with
an estimated number of ∼70 false associations, hence leaving
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Fig. 3. ROC curves corresponding to 100 random splittings of the samples of labelled sources (with no flag) used for classifier building. Perfor-
mance for sources with no flag were estimated using the test samples (green curves). Specific performance for flagged sources were estimated
using the samples of labelled sources with a flag (red curves). The left and right columns show respectively the results for the BDT and MLP
classifiers. Results for case A high galactic latitude, case A low galactic latitude and case B are shown in rows a), b), and c), respectively.
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Fig. 4. ROC curves for classifiers used in case A high galactic latitude a), case A low galactic latitude b) and case B c). In each case the left column
shows the ROC curves (green for BDT, blue for MLP) obtained with the training sample using the ten-fold cross-validation method, as explained
in Sect. 4.2. The right column shows the ROC curves obtained when applying classifiers to the test sample (solid line) or to the sample of labelled
sources with flag (dashed lines).
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Table 2. Performance summary for the classifications of cases A and B estimated on the test samples.

Classifications BDT classifier MLP classifier Combination

ζ? TP rate (%) FP rate (%) ζ? TP rate (%) FP rate (%) TP rate (%) FP rate (%)

Case A Blazars against pulsars 0.408 96.4 12.2 0.419 97.5 12.2 95.6 7.3
Blazars against galactic 0.320 90.9 12.7 0.611 88.7 9.1 87.1 9.1

Case B BL Lac against FSRQ 0.076 84.9 9.6 0.503 85.9 11.1 83.9 8.9
FSRQ against BL Lac −0.007 85.2 13.0 0.438 87.4 12.0 84.4 10.9

Notes. For each of them we indicate the cutoff value ζ?, the true positive (TP) rate and the false positive (FP) rate for the BDT and the MLP
classifiers. The true positive rate and the false positive rate are also given when the decisions of the BDT and the MLP classifiers are combined
together.

Table 3. Performance summary for the classifications of case A estimated on the flagged source samples.

Classifications BDT classifier MLP classifier Combination
TP rate (%) FP rate (%) TP rate (%) FP rate (%) TP rate (%) FP rate (%)

Case A Blazars against pulsars 91.0 21.9 91.0 25.0 88.9 18.8
Blazars against galactic 87.6 34.7 84.1 29.3 81.4 28.0

Notes. For each of them we indicate the true positive (TP) rate and the false positive (FP) rate for the BDT and the MLP classifiers. The true
positive rate and the false positive rate are also given when the decisions of the BDT and the MLP classifiers are combined together. The cutoff
values to derive those performance metrics are the same as the ones given in Table 2.

Table 4. Summary of results obtained when applying the classifiers to
the high and low galactic latitude unassociated sources.

Target Flag Ns Nc Nfalse Nmiss

High-latitude no 422 345 4.8 15.8
unassociated sources yes 109 80 4.5 9.4

Low-latitude no 169 72 8.8 9.4
unassociated sources yes 247 98 54.0 10.1

Notes. Ns and Nc are the numbers of unassociated sources and blazar
candidates, respectively. The number of false associations Nfalse and the
number of true blazars missed by the classifiers Nmiss are obtained con-
sidering that the Ns unassociated sources are either blazars or galactic
sources, and considering also the true and false positive rates given in
Tables 2 and 3.

99 blazars with uncertain type11. Details are given in Table 6
and a short sample of sources is shown on Table 7.

The lists of blazar candidates obtained in this work are avail-
able at https://unidgamma.in2p3.fr in FITS format.

6. Discussion and conclusions

The work presented here is in the continuity of previous studies
(Ackermann et al. 2012; Mirabal et al. 2012; Doert & Errando
2014; Hassan et al. 2013) which used machine-learning algo-
rithms based on parameters from different Fermi/LAT catalogues
(1FGL, 2FGL) to address the question of the nature (blazar or
other) of unassociated sources or the nature (BL Lac or FSRQ)
of blazars whose type is undetermined12. The specificity of this

11 By definition, the type of a source is considered as uncertain if
ζ
?,fsrq
BDT < ζBDT < ζ

?,bll
BDT or ζ?,fsrq

MLP < ζMLP < ζ
?,bll
MLP.

12 It is not straightforward to compare the list of candidates provided by
studies based on different Fermi/LAT catalogues (1FGL, 2FGL, 3FGL),
the number of unassociated sources and the number of blazars with

work, beyond the fact that it deals with the recently published
3FGL catalogue, is that it shows how performance of classi-
fiers differ for flagged or non-flagged sources, and it provides
for each list of candidates an estimation of the number of false
associations.

This study provides a list of 497 blazar candidates, with an
expected number of false associations ∼18 (not including the
98 low galactic latitude flagged candidates, for which we expect
a high number of false associations). This represents a substan-
tial contribution to the knowledge of the γ-ray emitting blazars
population, and complements the population of 1559 blazars in
the 3LAC catalogue.

Similarly to our case A study, Saz Parkinson et al. (2016) in
a recently published paper tackle the question of the nature of the
3FGL unassociated sources. Their work is based on a combina-
tion of a random forest and a logistic regression method, trained
using a set of nine discriminant parameters to separate samples
of well identified blazars and pulsars. Among their selected pa-
rameters five have a corresponding parameter in our study with
the same physical content, but in our case two were corrected
to reduce the flux dependency of their separation power (σ̃c and
T̃S, following a prescription of Doert & Errando (2014)); their
remaining parameters (HR12 and HR45) were discarded in our
work as it is likely that they introduce biases in the performance
of classifiers, specially when applied to low flux sources (see
Sect. 2.2). In addition, we note that the effect on the classifier
behaviour of flagged sources (present in their training and test
sample or in the sample of unassociated sources) was not taken
into account. Also, the sample of sources labelled as SNR or
PWN was not used for their classifier training while this kind of
sources represent a non-negligible fraction of galactic sources.
Applied to the set of unassociated sources, their classifiers give
a list of 559 blazar candidates, with no indication of the expected

undetermined type being significantly different from one catalogue to
another. To keep track of previous works we will indicate in Table 5
those of our candidates that have been proposed elsewhere.

A86, page 9 of 12

https://unidgamma.in2p3.fr


A&A 602, A86 (2017)

Table 5. Example illustrating the structure of tables provided in https://unidgamma.in2p3.fr as an output of the case A study.

3FGL name l (◦) b (◦) Flags log10 σ̃c log10 T̃S HR23 HR34 HR23 − HR34 λ ζBDT ζMLP Type
J0032.3−5522†?]� 308.619 −61.549 0 −1.12 1.45 −0.24 −0.21 −0.03 1.00 0.8563 0.9955 fsrq
J0537.0+0957† 195.285 −11.578 0 −0.42 1.20 −0.50 −0.69 0.18 0.89 0.5999 0.9299 fsrq
J0940.6−7609 292.247 −17.425 0 −0.95 0.68 0.08 −0.48 0.56 1.00 0.6433 0.6872 unc
J1050.4+0435† 245.550 53.413 0 −0.80 1.34 −0.22 −0.45 0.23 1.00 0.8447 1.2406 fsrq
J1221.5−0632†?]� 289.713 55.552 0 −0.75 0.66 0.04 −0.07 0.10 1.00 0.5249 0.6722 bll
J1315.7−0732†?]◦� 313.448 54.825 0 −1.82 0.75 0.05 −0.24 0.29 1.00 0.6916 1.0256 bll
J1335.2−4056†?] 311.784 21.182 0 −0.77 0.85 −0.49 −0.27 −0.22 1.00 0.5341 0.8333 fsrq
J1417.5−4402†?]� 318.864 16.150 0 −0.93 0.64 −0.10 −0.09 −0.01 1.00 0.7065 0.8152 unc
J1417.7−5026†?] 316.692 10.113 0 −1.19 0.82 −0.03 −0.36 0.33 1.00 0.6654 0.9688 fsrq
J1548.4+1455†?] 25.633 47.175 0 −1.05 0.59 −0.01 −0.13 0.11 1.00 0.6562 0.8915 bll
J1625.6−2058† 355.668 19.288 0 −0.68 0.78 −0.65 −0.08 −0.57 1.00 0.6440 0.7777 fsrq
J1704.1+1234†?] 32.465 29.424 0 −1.30 0.70 −0.42 −0.13 −0.30 1.00 0.7970 0.9701 unc
J1704.4−0528†?] 14.913 20.797 0 −1.34 0.72 −0.53 0.34 −0.86 1.00 0.8318 0.9764 bll
J1747.3+0324?] 28.606 15.797 0 −0.74 0.81 −0.05 −0.04 −0.01 1.00 0.6598 0.8106 bll
J1801.5−7825† 315.325 −24.088 0 −1.31 1.01 −0.32 −0.28 −0.05 1.00 0.8304 0.9857 fsrq
J1816.0−6407 330.337 −20.519 0 −0.70 0.71 −0.27 −0.32 0.04 1.00 0.4172 0.4639 fsrq
J1845.5−2524 9.441 −10.079 0 −0.69 0.64 −0.35 0.20 −0.55 1.00 0.4874 0.7558 bll
J1917.1−3024†?]� 7.551 −18.469 0 −1.38 0.68 −0.09 0.04 −0.13 1.00 0.8109 1.0398 bll
J2109.4+1437† 63.689 −21.881 0 −2.28 1.00 −0.70 −0.08 −0.62 1.00 0.8806 0.8886 fsrq
J2250.3+1747† 86.354 −36.331 0 −1.02 1.08 −0.28 −0.90 0.62 1.00 0.8135 1.2062 fsrq

Notes. Here we show the sample of the twenty brightest blazar candidates with no flag in the high galactic latitude region (|b| > 10◦). The
columns correspond respectively to the 3FGL source name, the galactic coordinates of the source (l, b), the 3FGL caution flag, the values of
the six discriminant parameters, and the values of the output parameters ζ built with the BDT and MLP classifiers. We added in the last column
the assignation from the case B study for the BL Lac or FSRQ nature of the source (bll for BL Lac, fsrq for FSRQ and unc for uncertain). The
superscripts correspond to a blazar candidate previously proposed by other authors: † for Saz Parkinson et al. (2016), ? for Doert & Errando
(2014), ] for Mirabal et al. (2012), ◦ for Massaro et al. (2013a) and � for Ackermann et al. (2012). The full table is available at the CDS.

number of false associations13. Setting aside the sample of low
galactic latitude sources (dominated by flagged sources, poten-
tially including SNR and PWN), they have 481 sources with
galactic latitude |b| > 10◦, 444 (∼90%) being also in our cor-
responding sample of 497 candidates. We note however that the
difference (∼10%) is much higher than our expected number of
false associations, which is ∼18.

Concerning the list of BL Lac and FSRQ candidates resulting
from this work (case B), we note a clear dominance of BL Lacs,
which represent ∼63%. This is close to the BL Lac dominance
already observed in the 3LAC catalogue (∼59%)14. Putting to-
gether the lists of BL Lacs and FSRQs from 3LAC catalogue
and from this work, we obtain a sample of 1113 BL Lacs and
709 FSRQs. BL Lacs represent then ∼61%.

13 The performance corresponding to the combination of their two clas-
sifiers decisions is not provided, while it is necessary for an estimation
of the number of false associations.
14 We note also the continuously increasing fraction of BL Lacs
among the blazars of known type in the EGRET/Fermi-LAT en-
ergy range. From ∼25% in the Third EGRET Catalog (Hartman et al.
1999), it has increased to ∼50%, ∼56% and ∼59%, respectively in the
1LAC (Abdo et al. 2010a), 2LAC (Ackermann et al. 2011) and 3LAC
(Ackermann et al. 2015) catalogues. Such an evolution is probably the
reflect of the sensitivity improvement, specially in the GeV domain, first
when passing from EGRET to Fermi-LAT and second due to the evo-
lution of the analyses methods used in the different Fermi-LAT AGN
catalogues.

Table 6. Summary of results obtained when applying the classifiers to
the BCUs and to the blazar candidates from case A.

Target Flag Ns Nbll
c Nbll

false Nbll
miss Nfsrq

c Nfsrq
false Nfsrq

miss
BCUs no 486 295 13.3 54.2 146 39.3 19.7

Blazar candidates no 417 214 16.1 38.1 149 30.2 21.9

Notes. Ns is the number of sources in the different target samples.
Nbll

c , Nbll
false and Nbll

miss are respectively the number of BL Lac candidates,
the corresponding estimated number of false associations and the es-
timated number of BL Lacs missed by the classifiers. Similarly, Nfsrq

c ,
Nfsrq

false and Nfsrq
miss are the number of FSRQ candidates, the corresponding

estimated number of false associations and the estimated number of FS-
RQs missed by the classifiers, respectively. Nfalse and Nmiss are obtained
as explained in Table 4.

In addition, an interesting comparison can be made between
the population of BL Lacs and FSRQs of the 3LAC catalogue
and the population of our BL Lac and FSRQ candidates in
terms of the position of their synchrotron peak frequencies. For
that, we considered only our candidates which were initially la-
belled as BCUs because only those have available information
about the synchrotron peak frequencies in the 3FGL catalogue.
Using the HSP, ISP and LSP definitions of Ackermann et al.
(2015), corresponding respectively to high-synchrotron-peaked,
intermediate-synchrotron-peaked and low-synchrotron-peaked,
we note that our population of BL Lac candidates is dominated
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Table 7. Results of the BL Lac/FSRQ classifications (case B) for the first ten BCUs with no flag.

3FGL name l (◦) b (◦) Class γ log10 Ep log10 T̃S HR23 HR34 ζBDT ζMLP Type
J0002.2−4152 334.070 −72.143 BCU 2.09 3.29 1.04 −0.35 0.56 0.0576 0.6513 unc
J0003.2−5246 318.976 −62.825 BCU 1.90 3.57 0.90 1.00 0.15 0.3141 1.1037 bll
J0003.8−1151 84.432 −71.084 BCU 2.02 3.36 1.06 0.17 −0.23 0.0951 0.8209 bll
J0014.6+6119 118.530 −1.239 BCU 1.89 3.71 0.84 0.46 0.28 0.4634 0.8286 bll
J0015.7+5552 117.909 −6.649 BCU 2.11 3.48 0.77 −0.29 −0.10 0.4029 1.0609 bll
J0017.2−0643 99.669 −68.036 BCU 2.12 3.28 0.78 0.39 −0.27 0.5943 1.0111 bll
J0019.1−5645 311.732 −59.822 BCU 2.39 3.04 0.97 0.06 −0.12 −0.2171 0.3723 fsrq
J0028.6+7507 121.437 12.313 BCU 2.34 3.07 0.71 −0.14 0.10 0.3046 0.6484 bll
J0030.2−1646 96.521 −78.546 BCU 1.65 3.70 0.85 1.00 0.19 0.4917 0.9672 bll
J0030.7−0209 110.859 −64.544 BCU 2.38 2.84 1.37 −0.24 −0.29 −0.4396 −0.0341 fsrq

Notes. The columns correspond respectively to the 3FGL source name, the galactic coordinates of the source (l, b), the 3FGL source class (BCU
or unassociated), the values of the five discriminant parameters, the values of the output parameters ζ built with the BDT and MLP classifiers and
the assignation for the BL Lac or FSRQ nature of the source (bll for BL Lac, fsrq for FSRQ and unc for uncertain). This table is available in its
entirety on https://unidgamma.in2p3.fr and at the CDS.

by HSP (46% HSP) as it is the case for the BL Lacs in the 3LAC
catalogue (43% HSP). Similarly, our population of FSRQ candi-
dates and the FSRQs in the 3LAC catalogue are both dominated
by LSP (78% and 88%, respectively).

The lists of BL Lac and FSRQ candidates resulting from this
work can be compared to those recently obtained by Chiaro et al.
(2016). Using a single classifier (MLP) built only from variabil-
ity features to separate BL Lacs and FSRQs, they obtained inter-
esting performance for BL Lacs, with true and false positive rates
of ∼84% and ∼5% (compared to ∼84% and ∼9% in our case B
study). For FSRQs they obtained true and false positive rates of
∼69% and ∼12% (∼84% and ∼11% in our study). Applied to
the BCUs in the 3FGL catalogue, their classifier provides a list
of 314 BL Lac and 113 FSRQ candidates. The comparison with
our corresponding 295 BL Lac candidates shows a good agree-
ment, as ∼91% of our candidates are seen also as BL Lac by
Chiaro et al. (2016), ∼6% are still undetermined and only ∼3%
obtain an FSRQ label. This ∼3% represent approximately nine
sources, which is close to our expected number of false asso-
ciations, ∼13. A poorer agreement is found for the FSRQ can-
didates. Among our 146 FSRQ candidates, only 92 are seen as
FSRQs by Chiaro et al. (2016), while 23 are seen as BL Lacs
and 31 remain of undetermined type. Interestingly, considering
the distribution of the normalised variability T̃S, which carries
in our case B study the information on temporal variability, the
23 sources for which we don’t find agreement with Chiaro et al.
(2016) are located in a region corresponding to the overlap be-
tween BL Lacs and FSRQs. However, considering different com-
binations of our selected spectral parameters, these 23 sources
appear clearly as being preferentially FSRQs than BL Lacs. This
illustrates the interest of taking into account spectral parameters
for BL Lac/FSRQ separation purposes.

Finally, an interesting validation of the quality of our re-
sults is provided by a recent campaign of spectroscopic obser-
vations performed by Álvarez Crespo et al. (2016a and 2016b).
They measured with different telescopes the optical spectra
of 60 γ-ray blazar candidates selected on the basis of their
IR colours or their low radio frequency spectra and belonging to
different Fermi/LAT catalogues (principally BCUs or potential
counterparts for unassociated sources). Their list contains five
unassociated sources and 26 BCUs with no flag in the 3FGL

catalogue. Our case B study found a high-confidence classifica-
tion for 27 out of these 31 sources as BL Lacs or FSRQs, 25 of
which are spectroscopically confirmed by Álvarez Crespo et al.
(2016a and 2016b). We note that one of the two remaining
sources is WISE J014935.28+860115.4, which shows an op-
tical spectrum dominated by the host galaxy and is identified
as BL Lac/galaxy by Álvarez Crespo et al. (2016a). The other is
WISEA J122127.20-062847.8, and is not clearly established as
the correct counterpart of the γ-ray source 3FGL J1221.5–0632
(Álvarez Crespo et al. 2016b; Massaro et al. 2013b).

This study contributes significantly to increase and better
constrain the sample of γ-ray blazars, based on the γ-ray de-
tections performed by Fermi/LAT in four years of observation.
We expect that it will trigger multiwavelength follow-ups to as-
sert the veracity of the proposed associations. Additionally, the
blazar candidate samples might be of particular interest for con-
temporary very high energy γ-ray experiments using the imaging
atmospheric Cherenkov technique such as H.E.S.S., MAGIC,
and VERITAS, and later for the next generation of arrays cur-
rently under construction by the Cherenkov Telescope Array
(CTA) Consortium. At present, population studies of very high
energy blazars are indeed limited by the small number of de-
tected sources (∼70), which is strongly dominated by BL Lac
objects.
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