
HAL Id: hal-01582224
https://hal.science/hal-01582224

Submitted on 5 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A critical assessment of flux and source term closures in
shallow water models with porosity for urban flood

simulations
Vincent Guinot

To cite this version:
Vincent Guinot. A critical assessment of flux and source term closures in shallow water models
with porosity for urban flood simulations. Advances in Water Resources, 2017, 109, pp.133-157.
�10.1016/j.advwatres.2017.09.002�. �hal-01582224�

https://hal.science/hal-01582224
https://hal.archives-ouvertes.fr


A critical assessment of �ux and source term closures in

shallow water models with porosity for urban �ood simulations

This is the preprint of an article accepted for publication in Advances in Water Re-
sources. doi link: https://doi.org/10.1016/j.advwatres.2017.09.002

Vincent Guinot (1,2)
(1) Université de Montpellier, UMR HSM, CC57, 163 rue Auguste Broussonnet, 34090 Montpellier,

France
(2) Inria Lemon, Bât 5 � CC05 017, 860 rue Saint-Priest, 34095 Montpellier Cedex 5, France

Abstract

The validity of �ux and source term formulae used in shallow water models with porosity
for urban �ood simulations is assessed by solving the two-dimensional shallow water equations
over computational domains representing periodic building layouts. The models under assessment
are the Single Porosity (SP), the Integral Porosity (IP) and the Dual Integral Porosity (DIP)
models. 9 di�erent geometries are considered. 18 two-dimensional initial value problems and
6 two-dimensional boundary value problems are de�ned. This results in a set of 96 �ne grid
simulations. Analysing the simulation results leads to the following conclusions: (i) the DIP �ux
and source term models outperform those of the SP and IP models when the Riemann problem
is aligned with the main street directions, (ii) all models give erroneous �ux closures when is the
Riemann problem is not aligned with one of the main street directions or when the main street
directions are not orthogonal, (iii) the solution of the Riemann problem is self-similar in space-time
when the street directions are orthogonal and the Riemann problem is aligned with one of them,
(iv) a momentum balance con�rms the existence of the transient momentum dissipation model
presented in the DIP model, (v) none of the source term models presented so far in the literature
allows all �ow con�gurations to be accounted for(vi) future laboratory experiments aiming at the
validation of �ux and source term closures should focus on the high-resolution, two-dimensional
monitoring of both water depth and �ow velocity �elds.

1 Introduction

Shallow water models with porosity have appeared over the past two decades as an e�cient way of
upscaling free surface �ow problems in the presence of complex geometries. The main two application
�elds of such models are the simulation of shallow �ows over natural surfaces (coastal lagoons and
runo� over complex topography) and the fast simulation of urban �oods. Four main types of two-
dimensional, porosity-based shallow water models are available from the literature.

The Single Porosity (SP) model was �rst proposed to account for subgrid scale topography [1, 5, 6],
see e.g. [39] for a recent application to anisotropic topographical e�ects. Applications to urban �ood
modelling were proposed later [15, 16, 37]. The porosity re�ects the fraction of the plan view area
available to mass and momentum storage. For shallow �ows over natural topographies, the porosity
is depth-dependent [1, 5, 6, 39], while urban �ood applications consider a depth-independent porosity
[15, 16, 37, 38]. A number of numerical solution techniques have been developed for the depth-
independent SP equations [2, 4, 8, 15, 26]. Recently, a generalized source term has been proposed for
the speci�c purposes of urban �ood modelling [38].

The Integral Porosity (IP) model was introduced as a generalization of the SP model for the simu-
lation of urban �oods [34, 36]. Distinguishing between a storage porosity (isotropic) and a conveyance
porosity (anisotropic) allows for a better description of the �ow �eld than in the SP model [18, 19]. A
depth-dependent version has appeared recently [29, 30]. The connectivity porosity, that is supposed
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to account for building obstruction to the �ow, should be smaller than the storage porosity, other-
wise yielding wave propagation speeds arti�cially larger than those in free water [13], an unphysical
behaviour.

The Multiple Porosity (MP) model [11] was also developed to account for anisotropic e�ects. While
the IP model used two di�erent porosities over a given domain, the MP model uses a decomposition of
the �ow domain into several regions with di�erent hydraulic properties: an immobile region, a mobile,
isotropic region and several anisotropic regions where the �ow is one-directional. The transfer of mass
and momentum between these regions is governed by free surface elevation gradients. Speci�c mo-
mentum source term models are introduced to enforce the immobile and/or one-dimensional character
of the �ow. As a result, the wave propagation properties of the model do not obey an equation of
state: for a given depth and �ow velocity, assuming a rising or a falling water level yields di�erent
wave propagation speeds.

The Dual Integral Porosity (DIP) model [14] is a generalization of the IP model. In [14], the concept
of closure is introduced. It stems from the consideration that the dual nature of the porosity (storage
vs. porosity) should result in a dual de�nition of the �ow variables (domain-based vs. boundary-based).
The domain- and boundary-based �ow variables must be related via a closure model. The IP model
can be obtained as a particular case of the DIP formalism, by assuming a very speci�c closure. The
IP closure yields inaccurate mass and momentum �uxes [14]. Correcting this with the DIP closure
and introducing a transient momentum dissipation model derived from [11] results in substantially
improved model performance. A salient feature of the DIP model is that solution well-posedness
requires that the connectivity porosity should be smaller than or equal to the storage porosity.

While the DIP model outperforms the SP and IP models when applied to one-dimensional problems,
a two-dimensional application to a �eld scale test case (a 600m×900m neighbourhood near Sacramento)
shows that both the IP and DIP model fail to reproduce the statistical distribution of the �ow �eld
exactly [14]. In particular, the �ne grid simulation presented in [14] shows a strong polarization of
the �ow �eld along the main street axes. This is observed even though the buildings are not aligned
exactly and their spacing is not regular. In contrast, the IP and DIP models are shown to produce
more isotropic unit discharge and velocity �elds under both transient and steady state. Moreover, a
consistency and wave propagation analysis of the IP and DIP models [12] indicates that these models
are sensitive to the design of the mesh in the presence of anisotropic connectivity porosity �elds. The
DIP model, however, is less sensitive than the IP model. Whether the problems identi�ed in [14] stem
from the consistency issues found in [12] is not clear at this stage.

The purpose of the present paper is to assess critically the �ux closure and the source term models
for the SP, IP and DIP models. The MP model cannot be assessed in the same way because it does
not allow a unique �ux function to be inferred from the domain-averaged variables. Therefore, it is
excluded from the analysis. The performance of a model is usually assessed by comparing the simulation
results to reference data, obtained from experimental sets or from simulations on re�ned grids. The
model error, a measure of the di�erence between the simulation results and the reference data, may
be appreciated using various indicators. Examples are the L-norms of the water depth, free surface
elevations or velocity norm errors, or the Flood Extent Agreement (FEA) index [14, 36]. However,
due to the competing in�uence of �uxes and source terms in the governing equations, model validation
based on the sole simulation results is often indirect and incomplete. A model using erroneous �uxes
and/or source terms may appear satisfactory provided that the calibration process allows an optimal
balance between the various errors to be achieved. In the case of a poorly performing model, it is
not possible to identify the reason for model failure (for instance, does model failure result from an
erroneous �ux model, or an erroneous source term model, or the combined in�uence of both?)

The validation procedure used in the present paper aims to address these shortcomings. Validation
does not focus on the model results but on its governing assumptions. Flow simulations are carried out
over re�ned grids using a wide variety of building layouts and initial/boundary conditions. Since the
purpose is to assess the ability of the models to account for urban anisotropy, the geometries are made
intentionally strongly anisotropic, with strongly marked preferential directions. The re�ned simulation
results, considered as an experimental reference, are used to compute domain- and boundary-based
averages on the pore scale of the porosity model. The accuracy of the model is assessed by comparing
the theoretical relationships between the domain- and boundary-based averages to the experimental
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ones. This approach has the advantage that (i) the errors in the �uxes and source terms are assessed
separately, (ii) the reference data can be used to propose improved closure models, (iii) the analysis
allows guidelines to be derived for the experimental, laboratory scale validation of �uxes and source
term models. While experimental data sets would have been preferable, only re�ned �ow simulations
can be used used as reference solutions because the various laboratory experiments reported in the
literature do not allow for the direct, systematic type of validation presented here.

The �ow con�gurations explored in the present analysis are highly idealised. In particular, the
building geometries are made strictly periodic so as to yield uniform porosity parameters and well-
de�ned �ux and source term closure relationships. For the same reason, the e�ects of bottom friction,
turbulence and bottom slope are disregarded. As a result, only �at topographies are considered. This
obviously is a limitation of the present work in that real-world urban geometries are non-periodic, the
buildings are not exactly aligned, and the subgrid-scale topography may exert a very strong in�uence
on the �ow dynamics, especially when small depths are involved. All these factors may result in extra
�uxes and source terms that are not accounted for in the present study. The interactions with urban
drainage networks, that often occur during urban �ods, are also neglected. However, analyzing idealised
situations is deemed an indispensable prerequisite to applying porosity models to more complex �ow
con�gurations.

The present paper aims to answer the following questions:

Q1. How do the SP, IP and DIP models compare in terms of closure and source term model
accuracy?

Q2. Does the connectivity porosity alone provide su�cient information to compute accurate
�uxes and source terms, or are additional geometric descriptors needed?

Q3. How can the mass and/or momentum �uxes and source term closures in porosity models
be further improved?

Q4. How can the results of the present analysis be used to design laboratory experiments
(e.g. scale models of urban environments) for the experimental validation o porosity-based
shallow water models?

The paper is structured as follows. Section 2 recalls the underlying assumptions and governing equa-
tions for the SP, IP and DIP models. The equations are presented in a uniform fashion for the sake of
model comparison. Section 3 presents the simulation base. A simulation is de�ned as the combination
of an urban geometry and an initial- or boundary-value problem. In this work, 96 simulations have
been carried out on re�ned grids. Section 4 is devoted to the analysis of the �ux closure formulae in
the SP, IP and DIP models. Section 5 deals with the assessment of the source term models, including
the transient momentum dissipation model [14] and the generalised tensor model [38]. Section 6 is
devoted to a summary of results and a discussion. Conclusions are provided in Section 7.

2 Models

2.1 Overview of porosity models

The Single Porosity (SP), Integral Porosity (IP) and Dual Integral Porosity (DIP) models are obtained
by averaging the two-dimensional shallow water equations over a domain Ω with boundary Γ. The
main di�erence with the two-dimensional shallow water equations is that the domain Ω is only partially
occupied by water, part of it being occupied by a solid phase (the buildings in the case of an urban
area). Two types of porosity are de�ned: a domain-based (also called storage, or areal) porosity φΩ,
that is the fraction of plan view area available to water storage, and a boundary (or conveyance, or
connectivity) porosity φΓ, that is the frontal area available for mass and momentum transfer. Both
porosities are de�ned using a phase indicator ε (x, y), equal to unity if the point (x, y) is in the liquid
phase and that takes the value zero if (x, y) belongs to the solid phase

φΩ =
1

Ω

�
Ω

ε (x, y) dΩ, φΓ =
1

Γ

�
Γ

ε (x, y) dΓ (1)
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The governing equations for the three models can be written in the general integral form

∂t

�
Ω

udΩ +

�
Γ

FndΓ =

�
Ω

sΩdΩ +

�
Γ

sΓdΓ (2a)

u = φΩ [h, q, r]
T

= φΩ [h, hu, hv]
T (2b)

sΩ = φΩ [0, (S0,x − Sf,x) gh, (S0,y − Sf,y) gh] (2c)

where u is the conserved variable vector, F is the �ux tensor, n is the normal outward unit vector to
the boundary Γ, sΩ and sΓ are respectively the domain- and boundary-based source terms, h is the
water depth, q and r are respectively the x− and y−unit discharges, u and v are respectively the x−
and y−components of the �ow velocity. The domain-based source term sΩ accounts for the horizontal
forces arising from the bottom slope, the resistance exerted onto the �ow by the solid phase (i.e. the
buildings) and bottom friction. The boundary-based source term sΓ accounts for the pressure force
exerted by the solid-liquid interface. It includes for instance the e�ects of porosity gradients.

The dual nature of the porosity is extended to the �ow variables. A boundary-based conserved
variable uΓ = [hΓ, qΓ, rΓ] is de�ned in addition to the domain-based variable u. The di�erences between
the SP, IP and DIP models essentially result from di�erent closure models between u and uΓ.

2.2 Flux closure models

SP model. In the SP model [15, 16, 37], the storage and connectivity porosities are assumed identical

φΓ = φΩ = φ, (h, q, r)
T
Γ = (h, q, r)

T (3a)

F = φ

 q r
q2

h + g
2h

2 qr
h

qr
h

r2

h + g
2h

2

 (3b)

Integral Porosity (IP) model. The IP model [34] is derived considering that the storage and
connectivity porosities are di�erent in the general case. The domain and boundary variables are
assumed identical

(h, q, r)
T
Γ = (h, q, r)

T (4a)

F = φΓ

 q r
q2

h + g
2h

2 qr
h

qr
h

r2

h + g
2h

2

 (4b)

Dual Integral Porosity (DIP) model. As the IP model, the DIP model [14] uses φΩ 6= φΓ, but
the closure model is di�erent. The boundary unit discharge is de�ned so as to preserve continuity
across Γ

hΓ = h, (q, r)
T
Γ =

φΩ

φΓ
(q, r)

T (5a)

F = φΓ

 qΓ rΓ
q2
Γ

hΓ
+ g

2h
2
Γ

qΓrΓ
hΓ

qΓrΓ
hΓ

r2
Γ

hΓ
+ g

2h
2
Γ

 =

 φΩq φΩr
φ2

Ω

φΓ

q2

h + φΓ
g
2h

2 φ2
Ω

φΓ

qr
h

φ2
Ω

φΓ

qr
h

φ2
Ω

φΓ

r2

h + φΓ
g
2h

2

 (5b)
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2.3 Source term models

The purpose is to test expressions for the vector

sf = [Sf,x, Sf,y]
T (6)

Early versions of the SP model [15, 16, 37] and the IP model [34] use an isotropic energy loss formula
in the form

sf = kI |v|v (7)

where kI is a coe�cient that incorporates the lumped e�ects of bottom friction and building resistance.
In [15], a Borda-type head loss model was proposed. It was later invalidated by detailed inspection
of �ow simulation results over re�ned grids [11]. In [34], building and bottom drag coe�cients were
proposed as an alternative to more widespread Chezy-Manning-Strickler friction laws.

In [14], test simulations involving the propagation of positive and negative waves in idealized
networks of orthogonal streets are reported. The simulations indicate that, in the absence of bottom
friction, the momentum source term should be split into two parts as

sf = sT + sD (8)

where sT and sD are respectively a transient and a drag source term. The models for these two source
terms are examined in the following two paragraphs.

Transient momentum dissipation model. The source term sT accounts for a momentum dis-
sipation mechanism that cannot be accounted for by usual, friction-based head loss models [14]. It is
active only under transient conditions involving positive waves (rising water levels). It stems from the
dissipation of moving bores due to the re�ection against building walls. When steady state is reached,
or when the water level decreases, no momentum dissipation occurs due to shock re�ection and sT
is zero. This dissipation mechanism is essential to an accurate reconstruction of water level and unit
discharge �elds across shocks. The following form is shown to preserve the observed self-similarity
properties of the �ow solution [14]:

sT =


[
µxx µxy
µyx µyy

]
∇.Fm if ∂th > 0

0 if ∂th ≤ 0
, Fm = φΓ

[
q2

h + g
2h

2 qr
h

qr
h

r2

h + g
2h

2

]
(9)

where∇.Fm denotes the divergence of the momentum �ux tensor Fm. So far, no satisfactory model has
been proposed for the dissipation terms. Consequently, the tensor coe�cients µij must be calibrated.

Building drag dissipation model. The source term sD accounts for building drag forces. The
dynamics of free surface �ow in three and four branch crossroads has been studied extensively over
the past years, from both an experimental and numerical point of view [7, 9, 10, 17, 22, 23, 24, 25,
27, 28, 31, 32, 33]. These studies have mainly focused on the �ow distribution between the out�owing
branches of the crossroads (see e.g. [25] for the subcritical case, [33] for transcritical regimes, [32] for
the subcritical case, [17] for a numerical study). The empirical relationships derived in these studies
cannot be used as such to infer source term formulae in two-dimensional porosity models, for the
following reasons. Firstly, the studies focus on the �ow distribution between the branches. Additional
measurements (such as the distribution of the velocity �eld and free surface elevation across each of
the four branches) would be needed to infer the drag coe�cient from a two-dimensional momentum
balance. Secondly, the downstream boundary conditions are reported to have a strong in�uence on the
�ow patterns [33]. The boundary conditions used in many experiments (e.g. presence of downstream
weirs for �ow measurements) are not compatible with the �ow conditions met with series of connected
crossroads as considered in the present study. Thirdly, the purpose of the present study is to assess
upscaled model of the two-dimensional shallow water equations. Neither viscous nor turbulent head
losses are accounted for in the re�ned �ow simulations reported here, while they probably play an
important role in the reported experiments. For all these reasons, the abovementioned studies are not
used in the present work.
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Energy loss models speci�c to the shallow water models with porosity have been proposed in the
literature. In [15, 34, 37] an isotropic head loss model is used. Clearly, such a model is not adapted
to the strongly anisotropic �ow patterns occurring in urban areas. Two anisotropic models have been
proposed recently. A tensor formulation is proposed in [14]:

sD = −CD |v|v (10)

where CD and v are respectively a drag tensor and the velocity vector. A more general model is
proposed in [38] for orthogonal street networks:

sD = − (1 + a |sin 2θ|)CD |v|v (11)

where a is a positive, dimensionless coe�cient and θ is the angle between the velocity vector and the
main street axis. The �rst model requires that the drag tensor CD be calibrated, while the second
provides one more degree of freedom with the calibration of a. It is worth noting that all previously
published drag models can be rewritten as particular cases of the model (11).

All three models (7, 10, 11) are deemed incomplete in that they fail to represent an essential �ow
feature. Consider a periodic layout formed by square building blocks with equal spacing in the E-W
and N-S streets. Under the assumption of a frictionless, horizontal bottom, a uniform �ow velocity
�eld aligned with any of the two orthogonal main street directions (θ = 0 or π

2 ) yields a horizontal free
surface and a zero drag force. This yields a zero kf for the model (7) and a zero drag tensor for the
two models (10, 11). Consequently, sD is zero regardless of the magnitude and direction of the velocity
�eld v, including in the con�guration θ = π

4 , where it is known from experiments to be maximum [38]
To overcome this problem, it is proposed that the formula (11) be revised as follows

sD = − |sin 2θ|CD |v|v (12)

This model yields a zero drag force for θ = 0 and θ = π
2 , while θ = ±π4 yields a maximum drag, as

expected from [38]. The proposed model can be viewed as a limit case of Velickovic et al's model as a
tends to in�nity in equation (11). The tensor CD in equation (12) is then equal to the product aCD

in equation (11).
It must be noted that the building drag models (11, 12) are valid only for square building layouts,

that is L1 = L2 and W1 = W2. As a matter of fact, a key assumption to these two models is that the
the maximum drag occurs for θ = ±π4 . This is obviously not the case when the building geometry is
not the same in the x− and y−directions. In such a case, it would be necessary to introduce additional
parameters in the model to indicate the directions of maximum drag. Besides, it is not certain that
such directions would be orthogonal and that the tensor descriptions (11, 12) would remain meaningful.
For this reason, only square layouts are explored in the analysis of the building drag model.

3 Simulation base

3.1 Model geometries

Model geometry is based on a periodic building layout. In order to allow for accurate statistics and
to assess the self-similarity properties of the solutions, the number of periods involved is very large
(more than 100 in most simulations). The layout is generated by two series of regularly spaced, parallel
streets. The angle between the two street directions is denoted by α (see Figure 1). By assumption,
the �rst street direction is aligned with the x−axis.
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Figure 1: Model geometry. De�nition sketch.

The pth street network (p = 1, 2) yields a frontal porosity φp = Wk

Lk
, where Lk and Wk are

respectively the spacing and width of the streets. The domain porosity φΩ, de�ned as the fraction of
plan view area available for water storage, is thus φΩ = φ1 + φ2 − φ1φ2. In this work, nine di�erent
geometries are considered (Table 1).

Model name L1(m) W1(m) L2(m) W2(m) α(rad) φΩ φ1 φ2

M1a 75 25 150 50 π/2 5/9 1/3 1/3
M1b 150 50 150 50 π/2 5/9 1/3 1/3
M1c 150 50 75 25 π/2 5/9 1/3 1/3
M2 100 20 100 20 π/2 9/25 1/5 1/5
M3 100 10 100 10 π/2 19/100 1/10 1/10
M4 100 20 50 20 π/2 13/25 1/5 2/5
M5 50 20 100 20 π/2 13/25 2/5 1/5
M6 150 50 150 50 tan−1 (2) 5/9 1/3 1/3
M7 150 50 150 50 π/4 5/9 1/3 1/3

Table 1: Model nomenclature. Notation: see Figure 1.

Geometries M1a, b,c correspond to identical (α, φ1, φ2, φΩ) combinations, but these are obtained for
di�erent street widths and spacings. Model M1b is strictly isotropic, with (L1,W1) = (L2,W2), while
Models M1a and M1c are based on (L1,W1) = 1

2 (L2,W2) and (L1,W1) = 2 (L2,W2) respectively. The
purpose is to assess whether the frontal porosity alone is a su�cient descriptor of the geometry. In
Models M2 and M3, φ1 = φ2 but these values are respectively 5/3 and 10/3 times as small as those
in M1b. Comparing M2 and M3 to M1b allows the in�uence of the street width-to-spacing ratio to be
assessed. Models M6 and M7 di�er from the previous �ve in that the street angle α is not π/2. While
an intersection angle α = tan−1 2 (that is, approximately 63 degrees) may be found occasionally in
real-world street networks (model M6), α = π/4 (model M7) is introduced with the purpose of testing
extreme con�gurations. With Models M4 and M5, φ1 6= φ2, which is typical of a number of suburban
layouts.

All models have a totally �at bottom. This assumption clearly introduces limitations. However,
the main purpose here is to assess the accuracy of the porosity-based description of connectivity and
storage properties of the urban medium, all other factors being disregarded.

All models are meshed using 1m to 2.5m wide cells. The objective is to discretize the geometry
using 20 cells across the streets in as many cases as possible, so as to obtain a su�ciently accurate
description of the hydraulic �elds. To give but one example, with more than 100 street periods in the
x−direction, Model M1b counts 212,000 quadrangular cells and 222,621 nodes. The two-dimensional
shallow water equations are solved using the MUSCL-EVR technique [35].
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3.2 Initial Value Problems (IVPs)

The initial value problems are Riemann problems based on the so-called urban dambreak problem
introduced in [11]. The water is initially at rest, with water depths hL and hR on the left- and right-
hand sides of a straight line passing at (0, 0). In a number of simulations, the interface between the
left and right states is not perpendicular to the x−direction. Its normal unit vector makes an angle
β with the x−axis (Figure 2, left). Table 2 gives the characteristics of the various Riemann problems
used in the present work. When β 6= 0, the transient propagation is oblique. Computational time is
saved to a large extent by meshing only one street period in the y−direction and prescribing periodic
boundary conditions [3, 21] on the Northern and Southern boundaries of the streets (Figure 2, right).
In the example of Figure 2, sketched for a square layout, connecting the Northern boundary of a street
to the Southern boundary of the next one (A with A', B with B', etc.) allows a 45 degrees propagation
pattern to be obtained with one period only. An angle β = tan−1

(
1
2

)
is obtained by meshing two

x−streets instead of a single one.

RP name hL(m) hR(m) β(rad)
R01 1.01 1 0
R02 2 1 0
R03 5 1 0
R04 10 1 0
R05 20 1 0
R06 50 1 0
R07 1.01 1 π/4
R08 2 1 π/4
R09 5 1 π/4
R10 10 1 π/4
R11 20 1 π/4
R12 50 1 π/4
R13 1.01 1 tan−1 (1/2)
R14 2 1 tan−1 (1/2)
R15 5 1 tan−1 (1/2)
R16 10 1 tan−1 (1/2)
R17 20 1 tan−1 (1/2)
R18 50 1 tan−1 (1/2)

Table 2: Initial Value Problem (IVP) nomenclature. Notation: see Figure 2.
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Figure 2: De�ning oblique Riemann problems using periodic boundary conditions. Top: IVPs R07-
R12. Bottom: IVPsR13-R18.

3.3 Boundary Value Problems (BVPs)

The boundary value problems are used to assess the momentum source term models. The steady
state solution of the following problem is sought. A square domain of size L × L corresponding to
geometries M01-M7 is de�ned. The Western and Southern boundaries are split into two parts of equal
length (Figure 3). The half-side extending from the South-Western corner is assigned a prescribed
water level h1, while the remaining half of the Western and Southern edges are assigned an impervious
condition. The Eastern and Northern boundaries are assigned a prescribed water level h2. Table 3
gives the combinations (h1, h2) used for the various BVPs. The transient simulation is started from
a uniform initial condition u (x, y, 0) = [h0, 0, 0]

T ∀ (x, y) ∈ [0, L]× [0, L] until steady state is reached.
For L = 1800m, steady state is achieved at t = 104s.

h = h
1

h = h
2

q.n = 0

L/2

L/2

L/2

L/2

Figure 3: Boundary Value Problems. Boundary condition de�nition sketch.
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IVP name h1(m) h2(m)
B01 1.01 1
B02 2 1
B03 5 1
B04 10 1
B05 20 1
B06 50 1

Table 3: Boundary value problem (BVP) nomenclature. Notation: see Figure 3.

4 Flux model analysis

4.1 Method

The accuracy of the SP, IP and DIP �ux closure models is assessed using the numerical results of IVPs
R01-R18. A cross-section (called interface in what follows) Γ is de�ned between two adjacent buildings,
as shown in Figure 4. The interface may be normal to the x− or y−direction. An averaging volume Ω
is centred around the interface. Ω extends over one spatial period on each side of the interface. The
various �ow variables and components of the �ux tensor are averaged over Γ and Ω, in agreement with
the approach developed in [19].

x

y

W

G

Figure 4: Flux closure model analysis. De�nition sketch. Left: x−facing interface Γ. Right: y−facing
interface Γ.

The analysis consists in plotting the interface-averaged variables and �uxes versus the domain-
averaged ones and comparing these averages to the theoretical closure relationships (3a-5b). Table
4 gives the relationships derived from the SP, IP and DIP closure models. For each simulation, two
interfaces Γ with their surrounding domains Ω are chosen: one in the rarefaction wave of the Riemann
problem, the other in the shock wave. The purpose is to check the validity of the closure relationships
for both continuous and discontinuous �ow patterns.

Model hΓ qΓ rΓ

(
q2

h

)
Γ

(
qr
h

)
Γ

(
r2

h

)
Γ

(
h2
)

Γ

SP hΩ qΩ rΩ
q2
Ω

hΩ

qΩrΩ
hΩ

r2
Ω

hΩ
(hΩ)

2

IP hΩ qΩ rΩ
q2
Ω

hΩ

qΩrΩ
hΩ

r2
Ω

hΩ
(hΩ)

2

DIP hΩ
φΩ

φΓ
qΩ

φΩ

φΓ
rΩ

(
φΩ

φΓ

)2
q2
Ω

hΩ

(
φΩ

φΓ

)2
qΩrΩ
hΩ

(
φΩ

φΓ

)2
r2
Ω

hΩ
(hΩ)

2

Table 4: Relationships between the interface- and domain-averaged variables and �ux components for
the SP, IP and DIP models. The subscript (Γ or Ω) indicates the averaging domain.
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4.2 Mass �ux closure

The mass �ux is qΓ.n. It is equal to qΓ over x−facing interfaces and equal to rΓ over y− facing
interfaces. For the sake of paper readability, the graphs illustrating the analysis are sent to Appendix
A.1. Two types of behaviours are observed .

The �rst type of behaviour is found for the combinations of Models M1-5 and IVPs R01-R06. The
DIP closure is observed to be accurate for both qΓ and rΓ (Figures 12 and 13), while the SP and IP
closures yield underestimated qΓ values. Given the symmetry of the problem, rΓ is zero regardless of
the closure used. It is also zero for y−facing interfaces (as predicted by all closure models), which is
why no graph is displayed for these interfaces.

A second type of behaviour is encountered for Models M1 and M4 with IVPs R07-18, as well as
models M6-M7 with IVPs R01-R06. A common feature to these simulations is that the direction
of the Riemann problem is oblique to at least one of the principal directions of the street network.
Figures14 and 15 show respectively the scatter plots for (qΩ, qΓ) and (rΩ, rΓ) obtained from IVPs R07-
R18 and Model M1b. Similar behaviours are observed for model M4 but are not shown here for the
sake of paper conciseness. The normal component of the unit discharge (qΓ for x−facing interfaces
on Figure 14, rΓ for y−facing interfaces on Figure 15) is predicted accurately by the DIP closure and
underestimated by the SP-IP closures. All closures, however, fail dramatically in estimating the tangent
component of the unit discharge (rΓ for x−facing interfaces on Figure 14, qΓ for y−facing interfaces
on Figure 15). As a matter of fact, all tangent components over Γ are zero, while the closures predict
non-zero values. Similar trends are observed for Models M6-7 with IVPs R01-06 (Figures 16 and 17):
the normal components (qΓ along x−facing interfaces and rΓ along y−facing interfaces) are predicted
rather accurately by the DIP closure, while the tangent components (rΓ along x−facing interfaces
and qΓ along y−facing interfaces) are wrongly predicted by all closure models. Examining the unit
discharge �elds allows this failure to be explained. As an example, the unit discharge vector �eld
simulated at t = 1000s for Simulation M1b-R10 are displayed on Figure 5. The vector �eld clearly
exhibits three zones: the crossroads with vectors making roughly a 45 degree angle with the main
street axes, the E-W street with vectors parallel to the x−axis and the N-S street with vectors parallel
to the y−axis. Similar patterns are observed with non-orthogonal street networks (M6-7). The �ow
�eld in the streets is strongly aligned with the street main axis. Building layout forcing the �ow �eld
along preferential directions has been observed in simulations involving much sparser building layouts
than those explored in the present study [14].

To summarize, only the DIP closure yields a correct estimate for the normal component of the unit
discharge. All closures give erroneous estimates for the transverse unit discharge when the �ow is not
aligned with the main street directions. This, however, impacts the mass �ux in a very limited fashion
because only the normal unit discharge is involved in the mass balance.
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100 m

Figure 5: SimulationM1b-R10. Unit discharge �eld at t =1000 s for x ∈ [300m, 450 m].

4.3 Momentum �ux closure

The momentum �ux tensor involves the hydrostatic pressure term g
2h

2 and the momentum discharges
q2

h ,
qr
h ,

r2

h .
The SP, IP and DIP water depth closures are identical. This results in identical closure relationships

for the pressure term in the three models. Figure 6 shows the scatter plots obtained for all simulations
(models M1-7, IVPs R01-18). The SP, IP and DIP closures are observed to agree extremely well with
the simulation results.

Figure 6: All simulations. Scatter plot for the hydrostatic pressure term.

The momentum �ux closures follow the same trends as the mass �ux closures. When the main
two street directions are orthogonal and the Riemann problem is along one of these two directions,
the DIP closure gives very good estimates for the momentum discharge q2

h (see Appendix A.2, Figure

18). The SP and IP closures yield strongly underestimated values for q2

h . Only two types of (limited)
inaccuracy are observed for the DIP closure. The �rst is observed on Figure 18. In the rarefaction
wave, the normal momentum �ux q2/h is slightly larger than the value predicted by the DIP closure.
This is because the unit discharge �eld is not uniform across the longitudinal streets. This e�ect has
been identi�ed and explained in [14] as follows. In the rarefaction wave, the dropping water level causes
the water to �ow from the lateral streets into the main street. This water has a zero x−velocity. The
mixing with the water �owing in the x−direction result in a low-velocity layer near the walls. Since
q is not uniform over the cross-section, the average of q2 is necessarily larger than the square of the
average q. Note that this e�ect is not observed in the shock wave. The second type of inaccuracy
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is observed for the closures qr/h and r2/h (Figures 19 and 20) across x−facing interfaces. While all
closures would theoretically predict zero values owing to problem symmetry, a non-zero average qr/h
is observed for Model M4 (Figure 19) and the average r2/h is consistently non-zero (Figure 20). It
must be noted, however, that these non-zero values are several orders of magnitude smaller than those
of q2/h. Moreover, erroneous r2/h values over x−facing interfaces have no consequence on momentum
balance because r2/h contributes to the momentum balance only over y−facing interfaces.

When the Riemann problem is not aligned with the main street directions, all closures yield strongly
inaccurate estimates. This is illustrated by Figure 21, where the average momentum �ux q2/h is
displayed for Model M1b with IVPs R07-18. As shown in Figure 5, the unit discharge �eld is strongly
non-uniform across both E-W and N-S streets. It is also collinear to the street axes. This results in
(i) all closure models underestimating the average q2/2 over x−facing interfaces (Figure 21, left) and
(ii) identically zero values across y−facing interfaces when all closure models predict non-zero values
(Figure 21, right) . Similar errors are observed for Models M6-7 with IVPsR01-06 (Figure 22).

In all simulations, however, the DIP closure is consistently closer to the computed average values
than are the SP and IP closures. An accurate momentum �ux closure should incorporate two correc-
tions. The �rst is that the boundary unit discharge �eld should be aligned with the street axis, the
second is that the normal momentum �ux q2/h be replaced with χq2/h, where χ ≥ 1 is a correction
factor accounting for the non-uniform distribution of q across the interface. The non-uniform �ow
velocity �eld across the street section was mentioned in [14]. It is visible from Figure 21 (left) that χ
is little sensitive to the magnitude of the velocity (R07-R12 yield very similar correction factors, just
as R13-18 do) and that it is a function of the angle β between the main street axis and the direction of
the Riemann problem. The average χ for IVPs R07-12 (β = π

4 , Figure 21 upper left) is slightly larger
than 2, while it is only 1.1 for IVPs R13-18 (β = tan−1

(
1
2

)
, Figure 21 lower left). Proposing accurate

χ (β) functions, however, is beyond the scope of the present paper.

5 Source term model analysis

5.1 Self-similarity of Riemann Problem solutions

Numerical experiments indicate that a positive wave propagating into a periodic, orthogonal street
network along one of the main street directions generates momentum dissipation, while a negative
wave does not [14]. Moreover, the source term is known to be zero for steady state �ow parallel to one
of the the main street directions [14, 38]. Consequently, the momentum dissipation mechanism does
not obey an equation of state (it is not a function of the �ow solution alone). A speci�c momentum
dissipation model was proposed for the MP model [11] and the recently published DIP model [14] to
account for this. In this model, the momentum source term sT is a linear function of the divergence of
the momentum �ux. Incorporating this source term into the governing equations yields a homogeneous
hyperbolic system of conservation laws. A salient feature of such a system is that the solutions of the
Riemann problem are self-similar in (x, t) [20]. The solution depends only on the ratio x/t, where
x is the abscissa counted from the location of the initial discontinuity. If the hyperbolic system is
non-homogeneous (which is the case when the source term obeys an equation of state), the solution
is not self-similar. Testing the self-similarity of the Riemann problem solutions is an e�cient way of
discriminating between two source terms with di�erent structures.

The self-similarity of the solutions is checked for all the IVPs (M1-7, R01-06). Four main �ow
con�gurations are observed. They are illustrated by Figure 7. On the �gure, four typical normalized
water depth maps in the(x, t) plane are displayed. The normalized water depth h∗ is de�ned as

h∗ =
h− hR
hL − hR

(13)

It is equal to zero and unity for h = hR and h = hL respectively. The maps displayed on Figure 7 are
obtained by averaging the �ow solution over a building period L2×L1. The 42 normalized water depth
maps are shown in the Appendix (Figure 23) and will not be detailed here for the sake of conciseness.

The �rst type of behaviour is observed for simulations involving orthogonal street directions (α = π
2 )

and Riemann problems propagating along one of the two main street directions (β = 0). 42 such
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simulations have been carried out for the present work (the 7 Model geometries M1-M5 combined
with the 6 IVPs R01-06). This behaviour is illustrated by Figure 7a. The contour lines for h∗ are
straight lines in the (x, t) plane, indicating that the solution depends on the ratio x/t alone. A similar
behaviour is observed for the unit discharge maps (not shown here for the sake of conciseness). It is
observed for 37 simulations out of the total 42 .

A limited number of con�gurations (α, β) =
(
π
2 , 0
)
lead to a somewhat di�erent behaviour, as

illustrated by Figure 7b. In Simulations M1b-R04, M3-R04, M4-R02, M4-R03 and M5-R04, early times
show a self-similar behaviour. After a time ranging from 100s to 500s depending on the simulations, a
perturbation develops downstream of the initial discontinuity location. After a time ranging from 500 s
to 1000 s depending on the simulations, the contour lines delineating this perturbation tend to follow
straight lines in the (x, t) plane. This seems to indicate the emergence of a new, self-similar solution at
later times. The reason for this is unclear at the moment. Complementary simulations (not reported
in the present paper) show that modifying the left and/or right states hL and hR by 10% prevents
the perturbation from developing and the solution remains fully self-similar, as on Figure 7a. The
appearance of the perturbation may be attributed to a very speci�c combination of model geometry,
�ow velocities and water depths that may induce e.g. resonance conditions. The reader's attention is
drawn to the following points: (i) the developing perturbation seems to impact only the intermediate
region of constant state and not to impact the rarefaction wave on the left-hand side of x = 0, (ii) the
length of the perturbation (Figure 7b) at t = 1000 s is approximately 2000metres (16 building blocks).
The emergence of the perturbation could not have been detected from simulations involving only a
few building periods.

The third an fourth main con�guration types are respectively
(
α = π

2 , β 6= 0
)
(see Figure 7c) and

α 6= π
2 (Figure 7d). In both con�gurations, the self-similar character of the �ow solution is broken.

While the contour lines for h∗ seem to follow a linear trend away from the heads of the rarefaction and
shock waves, the straight lines do not converge toward the point (0, 0) in the (x, t) plane. Therefore,
the solution is not a function of the ratio x/t alone.

As a conclusion, while Riemann problems propagating along one of the main directions in orthogonal
street networks yield self-similar solutions, other con�gurations do not. Checking the validity of the
transient momentum dissipation model [14] is thus meaningful only for simulations (α, β) =

(
π
2 , 0
)
,

that is, Models M1-5 with IVPs R01-06. This does not mean that this model is invalid in other
�ow con�gurations. However, for α 6= π

2 and/or β 6= 0, its e�ects are clearly overridden by those of
larger momentum source terms with a di�erent nature. This is con�rmed by the analysis in the next
subsection.
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Figure 7: The four typical behaviours for the normalised water depth maps in the (x, t) plane for various
simulations. (a) Simulation M5-R06, (b) Simulation M1b-R04, (c) Simulation M1b-R08, (d) Simulation
M6-R02. The small triangular contour lines on the right-hand side of the shock wave are graphical
interpolation artefacts.

5.2 Transient momentum dissipation model

Bearing in mind the analysis of Subsection 5.1, the validity of the model (9) is checked only for the
simulations with a clearly identi�ed self-similar behaviour. ModelsM1-M5 combined with IVPs R01-
R06 are analysed. The principle of the analysis is the following. At a given time t, the x−momentum
equation is integrated with respect to space over the length of the simulation domain. It is assumed
that t is such that neither the rarefaction wave nor the shock wave have reached the boundaries of the
computational domain. In this case, the �ow velocity is zero at both ends of the domain (x = ±L) and
the momentum �ux at the boundary simpli�es to φΓ

g
2h

2 . The momentum equation in the x−direction
is

∂t (φΩq) + (1− µxx) ∂xφΩ

(
q2
Γ

hΓ
+
g

2
h2

Γ

)
= 0 (14)

Integrating this equation over [−L,+L], using the closure hΓ = h yields

∂t

� +L

−L
φΩq dx = (1− µxx)

[
q2
Γ

h
+
g

2
h2

]+L

−L
(15)

Denoting by T the earliest time at which one of the two waves reaches the domain boundary, using the
boundary conditions h (−L, t) = hL, h (+L, t) = hR, qΓ (−L, t) = qΓ (+L, t) = 0, 0 ≤ t ≤ T , bearing
in mind that the storage porosity φΩ is uniform over the domain, rearranging yields

∂t

� +L

−L
q dx =

φΓ

φΩ
(1− µxx)

g

2

(
h2
L − h2

R

)
, 0 ≤ t ≤ T (16)

where . Integrating the above equation between 0 and t with the initial condition q (x, 0) = 0 ∀x leads
to � +L

−L
q dx =

φΓ

φΩ
(1− µxx)

g

2

(
h2
L − h2

R

)
t, 0 ≤ t ≤ T (17)
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showing that the integral of the x−momentum increases linearly with time. In the absence of mo-
mentum dissipation, setting µxx = 0 leads to a standard momentum balance:

� +L

−L
q dx =

φΓ

φΩ

g

2

(
h2
L − h2

R

)
t, 0 ≤ t ≤ T (18)

Figure 8 shows the variations of
� +L

−L q dx with time. The solid line represents the result of the �ux
balance on the right-hand side of equation (18), the dotted lines represent the values obtained from the
numerical simulations. Note that all dotted lines do not cover the same time span because, depending
on model geometry and IVP left and right states, T is not identical for all simulations. Table 8 in
Appendix A.3 gives the numerical values of the left- and right-hand side members of equation (18) and
the ratio of the two for the 42 simulations.

In almost all cases, the integral of the x−momentum is observed to increase linearly with time.
Two slight deviations from the linear behaviour can be observed, for simulations M4-R02 and M4-R03.
This deviation cannot be attributed with absolute certainty to the development of the perturbations
mentioned in Subsection 5.1, because it is not observed for Simulations M1b-R04 and M5-R04, where a
perturbation is also observed to develop. The remaining 40 simulations show a remarkable agreement
with a linear trend. When the connectivity porosity φΓ is isotropic (M1a-c, M2-M5), the amount of
dissipation is almost independent of φΓ. As a matter of fact, the dotted curves for M1b, M2-5 are
very close to each other. The amount of dissipation larger than in the isotropic case when the porosity
φ2 of the lateral streets is larger than the porosity φ1 of the longitudinal streets (Model M4). It is
smaller than in the isotropic case when the porosity of the lateral streets is smaller than that of the
longitudinal streets (Model M5). The amount of dissipation is in�uenced by the amplitude of the
Riemann problem: the larger hL, the larger the dissipation.

When the Riemann problem is not aligned with one of the main street directions, additional dis-
sipation occurs. This is illustrated by Figure9. The momentum balance is carried out for Models M1b
and M4 combined with IVPs R07-18. The solid line shows the �ux balance on the right-hand side of
equation (18), the dashed lines replicate the results of IVPs R01-06 shown on Figure 8, the dotted lines
show the results for IVPs R07-18. Figure 9 shows that momentum dissipation is increased signi�cantly
when the Riemann problem does not propagate along the main street directions. Besides, the dotted
lines clearly have a non-zero curvature. This does not necessarily mean that the transient momentum
dissipation model (9) is invalid in this case. However, it is clearly overridden by stronger terms. Since
the integral of the x−momentum is not a linear function of time, these additional dissipation terms
cannot be expected to take the form (9).
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Figure 8: Transient momentum dissipation model. Total x−momentum as a function of time for
Models M1-5 with IVPs R01-06. �Flux balance� is the solution obtained by setting µxx = 0.
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Figure 9: Momentum balance for Models M1b and M4, IVPs R07-R18.

5.3 Building drag models

The building drag models (equations (11, 12)) are analysed only for square building layouts. For
Models M1b, M2 and M3, BVPs B01-06 (see Section 3 and Figure 3 for details) are run until steady
state is achieved. For each simulation, the building drag term is computed using the steady state
solution. Square domains are de�ned by connecting the centroids of neighbouring building blocks
(Figure 10). There are N = 12× 12 = 144 such domains in the models. Each domain in the model is
assigned a unique number i = 1, . . . , N . Integrating the steady state momentum balance over the ith
domain Ωi gives �

Ωi

sDdΩ =

�
Γi

FmndΓ (19)

where n is the normal unit vector to the boundary Γi of Ωi. The domain-averaged building drag vector
over the ith domain is obtained from the above equation as

sD,i =
1

φΩL1L2

�
Γi

FmndΓ (20)

The domain-averaged velocity vector is de�ned as:

vi =

�
Ωi

qdΩ�
Ωi
hdΩ

(21)
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Figure 10: Control volume de�nition for building drag analysis. De�nition sketch.

Likewise, it is possible to de�ne a model-averaged velocity vM and drag vector sD,M . Bearing in
mind that all the rectangular domains in a given model have the same plan view area, one has

vM =
1

N

N∑
1

vi, sD,M =
1

N

N∑
1

sD,i (22)

The model-averaged vectors (22) are used to calibrate the drag formulae (11,12). For each of the six
BVPs, CD is calibrated by minimizing the distance

D = |sD,M − sD (vM )| (23)

where sD (vM ) is the drag vector obtained by applying the drag formula (equation (11) or (12)) to
the domain-averaged velocity obtained from eq. (21). Note that the drag tensor is necessarily isotropic
because the geometry itself is isotropic. Consequently, only one tensor coe�cient needs to be calibrated.
Once calibrated for a given BVP, the two building drag formulae are used to �predict� an average drag
vector sD (vi) over every rectangular domain Ωi in the model. The validity of the model is checked by
computing the RMSE between the �predicted� sD (vi) vectors and the domain-averaged sD,i vectors:

E =

[
1

N

N∑
i=1

(sD,i − sD (vi))
2

]1/2

(24)

Table 5 shows the calibrated parameters and the validation error for the model [38] and the proposed
model. The model (11) is extremely di�cult to calibrate with the proposed approach. This could have
been expected because calibrating this model involves the minimization of a single objective function
with two degrees of freedom (the drag coe�cient and the parameter a). The optimal parameter set
is observed to be non-unique in the limit of algorithmic precision. Di�erent optimization methods are
seen to yield very di�erent parameter sets. For this reason, Velickovic et al.'s model [38] was calibrated
using the following, iterative procedure. In a �rst step, a is �xed arbitrarily and the drag coe�cient
is calibrated using a genetic algorithm. In a second step, a is changed manually so as to minimize
the distance D. These two steps are repeated sequentially until no noticeable change is observed in
the objective function. In contrast, calibrating the second drag model (12) is straightforward. The
parameter sets presented in Table 5 are calibrated with average errors D ≤ 10−15 m2s−2, which is at
least 10 orders of magnitude smaller than sD,M . The following conclusions are drawn from Table 5.

Firstly, both models fail to provide an accurate description of the building drag. They both yield a
posteriori errors E larger than the norm of sD,M . With very similar E values, none of the two models
can be considered to behave signi�cantly better than the other.

Secondly, the calibrated drag coe�cients increase with the �ow gradients (it is reminded that
BVPs B01 to B06 involve increasing gradients between the upstream and downstream boundaries)
and decrease with the porosity. The dependence on the �ow gradient may indicate that the structure
of the model is erroneous, thereby failing to account for certain e�ects. To give but one example,
in [14] a drag coe�cient proportional to the water depth was proposed because energy dissipation
is assumed to occur with the same intensity all over the depth. The two tested models (11, 12) do
not include such an assumption and failing to account for proportionality e�ects could be expected to
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yield large errors. Additional simulations, not reported here, show that making the drag proportional
to the water depth does not contribute to reduce the variability of the drag coe�cient and that E is
not reduced signi�cantly. Other reasons must be sought to explain both models failing to predict the
domain-averaged building drag.

Model BVP h(m) (sD,M )x = (sD,M )y
Velickovic et al. (2017) Present model

CD,11 = CD,22 a E CD,11 = CD,22 E

M1b B01 1.00 −3.36× 10−5 1.58× 10−3 5.0 6.32× 10−5 1.36× 10−2 6.18× 10−5

M1b B02 1.17 −2.73× 10−3 1.28× 10−3 5.0 5.47× 10−3 1.65× 10−2 5.38× 10−3

M1b B03 2.38 −2.24× 10−2 3.08× 10−3 5.0 4.42× 10−2 3.78× 10−2 4.36× 10−2

M1b B04 4.63 −9.41× 10−2 5.96× 10−3 5.0 1.84× 10−1 7.04× 10−2 1.81× 10−1

M1b B05 9.25 −3.88× 10−1 1.19× 10−2 5.0 7.70× 10−1 1.38× 10−1 7.60× 10−1

M1b B06 23.1 -2.46 2.96× 10−2 5.0 4.86 3.44× 10−1 4.80
M2 B01 1.00 −3.80× 10−5 2.91× 10−3 5.0 6.65× 10−5 2.44× 10−2 6.37× 10−5

M2 B02 1.23 −4.21× 10−3 2.66× 10−3 5.0 8.19× 10−3 3.64× 10−2 7.90× 10−3

M2 B03 2.31 −3.05× 10−2 4.52× 10−3 5.0 5.89× 10−2 6.29× 10−2 5.60× 10−2

M2 B04 4.48 −1.29× 10−1 8.91× 10−3 5.0 2.48× 10−1 1.18× 10−1 2.35× 10−1

M2 B05 9.00 −5.47× 10−1 1.83× 10−2 5.0 9.65× 10−1 2.42× 10−1 8.86× 10−1

M2 B06 23.4 -3.64 4.78× 10−2 5.0 7.09 6.18× 10−1 6.60
M3 B01 1.00 −2.05× 10−4 1.33× 10−3 5.0 6.10× 10−4 3.66× 10−2 7.17× 10−4

M3 B02 1.17 −3.71× 10−3 2.25× 10−3 5.0 7.08× 10−3 3.11× 10−2 6.62× 10−3

M3 B03 2.34 −3.01× 10−2 5.04× 10−3 5.0 5.73× 10−2 6.55× 10−2 5.38× 10−2

M3 B04 4.59 −1.27× 10−1 1.00× 10−2 5.0 2.40× 10−1 1.25× 10−1 2.25× 10−1

M3 B05 9.35 −5.30× 10−1 2.06× 10−2 5.0 1.01 2.54× 10−1 9.51× 10−1

M3 B06 23.9 -3.46 5.36× 10−2 5.0 6.63× 10−4 0.66 6.26

Table 5: Building drag model analysis. (sD,M )x and (sD,M )y are respectively the x− and
y−components of sD,M , CD and a are calibrated values.

Figure 11 illustrates the simulation results for Model M1b and BVP B03. The results for the
remaining BVPs are plotted in Appendix A.4 for the sake of paper readbility (see Figures 24-28). .
The behaviour of ModelsM2 and M3 is essentially similar and is not plotted for the sake of paper
conciseness. The upper row in Figures 11, 24-28 shows the N domain-averages vi and sD,i computed
using equations (20, 21). The lower row shows the predicted drag vectors sD (vi) computed using the
drag models (11, 12).

Examining the �ow velocity �eld vi (upper left scatter plots) con�rms the analysis of the �ux
closure models in Section 4. In most simulations, the �ow velocity �eld is strongly aligned with the
main two street directions. Only a small number of domain averages are scattered along the diagonal.
The alignment is all the more pronounced as the �ow gradients and velocities are smaller. Only for
BVPs B05 and B06 is it possible to observe a deviation from the main directions. With upstream water
depths of 20m and 50m respectively, these two BVPs, however, represent extreme �ow con�gurations
that are unlikely to occur in real-world situations.

The statistical distribution of the drag vector sD,i, in contrast, indicates a strongly polarized �eld
in the diagonal direction. The anisotropy of the drag �eld increases with the �ow intensity. Comparing
the drag vector distributions to the �ow velocity distributions does not allow any clear mapping from
vi to sD,i to be identi�ed. Another salient feature of the drag �eld is the spatial distribution of the
drag values. While the velocity �eld is characterized by a large number of domains with extreme
velocities, the drag �eld counts a large number of small values (compared to the average) and a few
extreme values.

The scatter plots for the building drags sD (vi) predicted by the two models (11, 12) are shown
on the lower row on Figures11, 24-28. The statistical distribution for the modelled drags are ex-
tremely di�erent from those of the domain average sD,i. The structure of the predicted drag �eld
obviously follows that of the velocity �eld. With Velickovic et al.'s model [38], the predicted drag �eld
remains preferentially aligned along the main street directions. With the proposed model (12), the
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predicted drag �eld exhibits a weaker alignment with the main street directions. However, in both
cases, the predicted drag vector scatter plots are very di�erent from those computed from the �ne grid
simulations.

Figure 11: Simulation M1b-B03. Top: domain-averaged velocity vectors vi (left) and drag vectors
sD,i (right). Bottom: predicted sD (vi) using Velickovic et al.'s model (left) and the proposed formula
(right).

6 Summary of results

Since the objective is to assess the accuracy of closure models for interfaces, the results are interpreted
in the local coordinate system attached to a given interface. To this end, the normal and tangent unit
discharges to Γ are de�ned respectively as follows

qn = qΓ.n, qt = qΓ.t (25)

where n and t are respectively the normal and tangent unit vectors to Γ. Two types of interface Γ
are used in the present study: x−facing interfaces, with n = (1, 0)

T , and y−facing interfaces, with
n = (0, 1)

T . Table 6 gives the expressions for the various elements of the �ux tensor in the local
coordinate system attached to the interface for these two interface orientations.

Interface facing F11 = qn F12 = qt F21 =
q2
n

h + g
2h

2 F22 = F31 = qnqt
h F32 =

q2
t

h + g
2h

2

x q r q2

h + g
2h

2 qr
h

r2

h + g
2h

2

y r −q r2

h + g
2h

2 − qrh
q2

h + g
2h

2

Table 6: Components of the �ux tensor in the local coordinate system attached to the interface.

Table 7 summarizes the results obtained in Sections 4-5 for the various �ux closures and momentum
source term models. For the reader's convenience, the relevant subsections, �gures and tables are also
mentioned in Table 7. The main results are the following.
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� The closure model for the water depth is correct and the interface pressure term is computed
correctly in all simulations for the SP, IP and DIP models.

� The DIP model is the only model that yields a correct estimate for the normal mass �ux qn. The
SP and IP yield underestimated normal discharges compared to the reference data set.

� All three models fail to reproduce the preferential directions for the interface �ux qΓ when the
�ow is not aligned with the main directions of the street networks and/or if the street network
is not orthogonal. This results in wrong estimates for the momentum �uxes q2

n/h and qnqt/h.
The DIP model, however, yields a smaller error than the SP and IP models.

� The transient momentum dissipation model active for positive waves is validated.

� None of the building drag models proposed so far in the literature (including the model proposed
in the present paper) succeeds to reproduce the reference drag term �elds.

Element
Section of

paper
Result(s)

Normal mass �ux

F11

4.2, Figs. 12,

14-17
SP and IP closures inaccurate. DIP closure accurate.

Transverse mass

�ux F12

4.2, Figs. 13,

14-17

Closure accurate for all models when the street network is orthogonal and

the �ow is aligned with one of the street axes. In other situations, all models

fail to account for the alignment of qΓ with the street axes.

Hydrostatic

pressure term g
2
h2

in F21 and F32

4.3, Fig. 6 Closure accurate for all models

Momentum �ux
q2
n
h

in F21 and F32

4.3, Figs. 18,

21, 22

SP and IP closures inaccurate. DIP closure accurate when the street

network is orthogonal and the �ow is aligned with one of the street axes. In

other situations, the �ux is underestimated substantially. Correction factor

χ ≥ 1 needeed.

Momentum �ux

F22 = F31 = qnqt
h

4.3, Fig. 19
All closures strongly inaccurate when the street network is not orthogonal

and/or the �ow is not aligned with one of the main street axes

Momentum �ux
q2
t
h

in F32
4.3, Fig. 20

All closures inaccurate. Of secondary importance because this term is not

involved in the momentum balance.

Momentum

dissipation term

sT

5.1-2, Figs. 8,

9, Table 8

Model accurate. Dissipation coe�cient more sensitive to street width ratio

than to porosity.

Building drag term

sD

5.3, Figs. 11,

24-28, Table 5.
Both models inaccurate

Table 7: Summary of the analysis results for the �ux and source term models.

7 Conclusions

A base of 96 re�ned shallow water simulations over periodic street networks is set up. 78 IVPs and 18
BVPs combined with 9 di�erent geometries are analysed to assess the governing assumptions of the SP,
IP and DIP models. The purpose is to answer Questions Q1-Q4 in the Introduction section. Validation
is carried out by comparing the closure relationships of the SP/IP/DIP models to the re�ned simulation
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results on the scale of a building block. This contrasts with more usual, indirect validation techniques,
that use global indicators operating on the �ow solution over the complete domain. Questions Q1-4
are answered as follows.

A1. The DIP model is the more accurate of the three models. It yields accurate estimates for
the normal mass �ux and the pressure force, while the SP and IP do not. The normal
momentum �ux is correctly computed by the DIP closure provided that the street network
is orthogonal and the �ow propagates along one of the principal directions of the streets.
Other situations generate erroneous normal and transverse momentum �uxes. The reason
for this is found in the closures failing to account for the preferential alignment of the
�ow along the axes of the streets, a feature already observed in [14] for the Sacramento
application. The transient momentum dissipation model introduced in [14] is also validated.
The latest building drag formula proposed so far in the literature [38] is also invalidated,
as well as a modi�ed formula. Testing previously proposed building drag models [14, 34]
would have been meaningless because these models fail to ful�l basic requirements of the
building drag.

A2. The connectivity porosity is obviously not su�cient to an accurate computation of the
�uxes and source terms. Simulations involving oblique waves the street network show
that none of the SP, IP and DIP models accounts correctly for the alignment of the �ow
velocity �eld with the main street axes. Consequently, the connectivity porosity should
be supplemented with another indicator giving the direction of the �ow. As far as the
transient dissipation term is concerned, simulations involving identical porosities in both
directions shows that the dissipation rate is also a function of the street width ratio.

A3. As far as possible improvements of the DIP model are concerned, four main paths may be
considered.

(1) The non-uniform velocity �eld across the street section mandates the introduc-
tion of a momentum distribution coe�cient χ ≥ 1 in the momentum �uxes.
A model is still to be proposed for the law governing χ as a function of the
angle between the velocity vector and the street axes. As far as real-world ap-
plications of porosity models are concerned, introducing a model for χ would
have two positive consequences. First, the wave propagation properties of the
porosity model would be improved. Second, χ is a measure of the variabiliity
of the �ow �eld at the subgrid scale. It may thus bring added value in assessing
the distribution of the the risk (that is a function of both the water depth and
the �ow velocity) on the subgrid scale.

(2) A law allowing for the preferential alignment of the velocity vectors with the
street axes is needed. Together with the momentum distribution coe�cient,
this would allow for a correct representation of the �ow velocity �elds and wave
propagation properties along street networks. Such a closure should be free
from the consistency issues identi�ed in [12].

(3) A model (empirical or theoretical) should also be proposed for the coe�cients
µij of the momentum dissipation tensor as a function of the street width ratios
and �ow variables. In the current state of development of the DIP model, the
coe�cients µij must be calibrated. While this increases the �exibility of the
model, adding parameters puts a heavier burden on the modeller, because their
calibration requires additional runs and increases the needs for data collection.
In the �eld of urban �oods, however, data collection is not an easy task, espe-
cially in the case of the DIP momentum dissipation model, that is active only
under transient conditions.

(4) Lastly, the building drag source term also requires improvements. None of
the source terms explored so far in the literature of shallow water porosity
models gives satisfactory results after calibration, a likely indication that the
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structure of the model should be revised. The possibility of adapting �ow
distribution models based on two-dimensional mass and momentum balance
considerations such as [25] should be considered. Improving the building drag
model will yield improved �ow velocity and discharge distributions within the
streets, especially when the �ow pattern is strongly two-dimensional (locally
converging or diverging �ows, as explored in Section 5).

A4. The following recommendations can be made for the design of experiments for the validation
of the �ux and source term closures in shallow water porosity models.

(1) Experimental validation should not focus only on the water depth �eld, but
also on the �ow velocity (or unit discharge) �elds. As shown by the present
experiments, the SP, IP and DIP models yield identically accurate water depth
closures. Only comparing the unit discharge/�ow velocity closures to the re�ned
�ow simulations allows the three models to be discriminated. The numerical
experiments reported here also indicate that the �ow velocity pro�les cannot
be assumed uniform across the streets in a number of situations. Consequently,
measuring only discharges within the streets does not su�ce to achieve an
accurate momentum balance. Exploring the detailed velocity pro�les across
the streets is mandatory.

(2) Secondly, all three models identically fail to reproduce the alignment of the �ow
along the street axes when the average �ow is oblique to the street directions.
Consequently, recording the longitudinal components of the �ow velocity does
not su�ce and a genuine two-dimensional �ow �eld exploration is needed.

(3) Steady state experiments must be complemented with transient experiments.
To start with, only transient experiments will allow the existence of transient
momentum source terms to be con�rmed experimentally. However, system-
atic urban dambreak problems with a detailed investigation of the water depth
and �ow �elds are extremely time-consuming to realise experimentally. This
is due to the long settling times needed to achieve well-controlled, still water
initial conditions and the need to perform several replicates of the same exper-
iment. Simpler wave propagation experiments could be used to validate the
longitudinal mass and momentum �ux closures. A possible setup is the fol-
lowing: starting from a steady initial state with water �owing along the main
street direction, measuring the propagation speeds of small perturbations in the
upstream and downstream directions across several block periods would yield
the eigenvalues of the wave propagation problem. Erroneous wave propagation
speeds would indicate erroneous �ux models. Such experiments would take only
a few seconds and could be replicated a large number of times, thus allowing a
wide range of �ow con�gurations to be explored.

It is acknowledged that the simulations reported here are highly theoretical. The street networks are
strictly rectilinear and periodic. All buildings are aligned exactly, the bottom is �at and frictionless.
Non-ideal situations are likely to yield increased source terms in the momentum conservation equation.
Some of the conclusions drawn in the present study may may lose strength when additional topographic
and frictional e�ects are included, and this issue should also be addressed in future experimental
validation. Nevertheless, porosity models performing correctly against ideal situations is seen as an
indispensable prerequisite to their application to real-world situations involving complex geometries.

Appendix - Additional �gures and tables

A.1 Figures for Section 4.2

The �gures hereafter support the analysis of the mass �ux closure model presented in Subsection 4.2.
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Figure 12: Models M1-M5, IVPs R01-06. Scatter plot for (qΩ, qΓ) over x−facing interfaces.
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Figure 13: Models M1-M5, IVPs R01-06. Scatter plot for (rΩ, rΓ) over x−facing interfaces.

Figure 14: Model M1b, IVPs R07-18. Scatter plot for (qΩ, qΓ) over x− and y−facing interfaces.
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Figure 15: Model M1b, IVPs R07-18. Scatter plot for (rΩ, rΓ) over x− and y−facing interfaces.

Figure 16: Models M6-7, IVPs R01-06. Scatter plot for (qΩ, qΓ) over x− and y−facing interfaces.
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Figure 17: Models M6-7, IVPs R01-06. Scatter plot for (rΩ, rΓ) over x− and y−facing interfaces.

A.2 Figures for Subsection 4.3

The �gures hereafter support the analysis of the mass �ux closure model presented in Subsection 4.2.
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Figure 18: Models M1-5, IVPs R01-06. Scatter plot for the q
2

h momentum discharge closure over
x−facing interfaces.

29



Figure 19: Models M1-5, IVPs R01-06. Scatter plot for the qr
h momentum discharge closure over

x−facing interfaces.
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Figure 20: Models M1-5, IVPs R01-06. Scatter plot for the r2

h momentum discharge closure over
x−facing interfaces.
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Figure 21: Model M1b, IVPs R07-18. Scatter plot for the q
2

h momentum discharge closure over x− and
y−facing interfaces.

Figure 22: Models M6 and M7, IVPs R01-07. Scatter plot for the q
2

h momentum discharge closure over
x− and y−facing interfaces.

A.3 Transient momentum dissipation analysis

Figure and Table 5 support the analysis presented in Subsections 5.1-2.
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Figure 23: Normalized water depth maps for Models M1-5 and IVPs R01-06.
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IVP Model t (s)
� +L

−L q dx
(
m3s−1

)
φΓ

φΩ

g
2

(
h2
L − h2

R

)
t
(
m3s−1

)
Ratio

R01 M1a 1500 88.8 88.7 1.00
M1b 1500 88.8 88.7 1.00
M1c 1500 88.6 88.7 1.00
M2 1500 82.0 82.2 1.00
M3 1500 77.7 77.8 1.00
M4 1500 56.6 56.9 1.00
M5 1500 114. 1.14× 102 1.00

R02 M1a 1000 7.62× 103 8.83× 103 0.86
M1b 1000 7.76× 103 8.83× 103 0.88
M1c 1000 7.92× 103 8.83× 103 0.90
M2 1000 7.18× 103 8.18× 103 0.88
M3 1000 6.79× 103 7.74× 103 0.88
M4 1000 4.21× 103 5.66× 103 0.74
M5 1000 1.04× 104 1.13× 104 0.92

R03 M1a 500 2.83× 104 3.35× 104 0.80
M1b 500 2.80× 104 3.53× 104 0.79
M1c 500 2.95× 104 3.53× 104 0.84
M2 1000 5.23× 104 6.54× 104 0.80
M3 1000 4.88× 104 6.20× 104 0.79
M4 500 1.43× 104 2.26× 104 0.63
M5 500 3.89× 104 4.53× 104 0.88

R04 M1a 500 1.08× 105 1.46× 105 0.74
M1b 500 1.08× 105 1.46× 105 0.74
M1c 500 1.17× 105 1.46× 105 0.80
M2 500 1.02× 105 1.35× 105 0.76
M3 500 9.54× 104 1.28× 105 0.75
M4 250 2.91× 104 9.34× 104 0.62
M5 250 1.57× 105 1.87× 105 0.84

R05 M1a 500 4.18× 105 5.87× 105 0.71
M1b 500 4.36× 105 5.87× 105 0.74
M1c 500 4.59× 105 5.87× 105 0.78
M2 500 4.01× 105 5.44× 105 0.74
M3 500 3.71× 105 5.15× 105 0.72
M4 250 1.13× 105 3.76× 105 0.60
M5 250 3.27× 105 7.53× 105 0.87

R06 M1a 500 2.43× 106 3.68× 106 0.66
M1b 500 2.45× 106 3.68× 106 0.67
M1c 370 2.03× 106 3.68× 106 0.75
M2 400 1.90× 106 3.40× 106 0.70
M3 400 1.75× 106 3.23× 106 0.68
M4 250 6.45× 105 2.36× 106 0.56
M5 250 1.91× 106 4.71× 106 0.81

Table 8: Transient momentum dissipation model. Momentum balance results. The dissipation ratio is

computed as 1−
� +L
−L q dx

φΓ
φΩ

g
2 (h2

L−h2
R) t

.

A.4 Building drag model analysis

The following �gures support and complement the analysis presented in Subsection 5.3.
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Figure 24: Simulation M1b-B01. Top: domain-averaged velocity vectors vi (left) and drag vectors
sD,i (right). Bottom: predicted sD (vi) using Velickovic et al.'s model (left) and the proposed formula
(right).

Figure 25: Simulation M1b-B02. Top: domain-averaged velocity vectors vi (left) and drag vectors
sD,i (right). Bottom: predicted sD (vi) using Velickovic et al.'s model (left) and the proposed formula
(right).
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Figure 26: Simulation M1b-B04. Top: domain-averaged velocity vectors vi (left) and drag vectors
sD,i (right). Bottom: predicted sD (vi) using Velickovic et al.'s model (left) and the proposed formula
(right).

Figure 27: Simulation M1b-B05. Top: domain-averaged velocity vectors vi (left) and drag vectors
sD,i (right). Bottom: predicted sD (vi) using Velickovic et al.'s model (left) and the proposed formula
(right).
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Figure 28: Simulation M1b-B06. Top: domain-averaged velocity vectors vi (left) and drag vectors
sD,i (right). Bottom: predicted sD (vi) using Velickovic et al.'s model (left) and the proposed formula
(right).
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