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The validity of ux and source term formulae used in shallow water models with porosity for urban ood simulations is assessed by solving the two-dimensional shallow water equations over computational domains representing periodic building layouts. The models under assessment are the Single Porosity (SP), the Integral Porosity (IP) and the Dual Integral Porosity (DIP) models. 9 dierent geometries are considered. 18 two-dimensional initial value problems and 6 two-dimensional boundary value problems are dened. This results in a set of 96 ne grid simulations. Analysing the simulation results leads to the following conclusions: (i) the DIP ux and source term models outperform those of the SP and IP models when the Riemann problem is aligned with the main street directions, (ii) all models give erroneous ux closures when is the Riemann problem is not aligned with one of the main street directions or when the main street directions are not orthogonal, (iii) the solution of the Riemann problem is self-similar in space-time when the street directions are orthogonal and the Riemann problem is aligned with one of them, (iv) a momentum balance conrms the existence of the transient momentum dissipation model presented in the DIP model, (v) none of the source term models presented so far in the literature allows all ow congurations to be accounted for(vi) future laboratory experiments aiming at the validation of ux and source term closures should focus on the high-resolution, two-dimensional monitoring of both water depth and ow velocity elds.

Introduction

Shallow water models with porosity have appeared over the past two decades as an ecient way of upscaling free surface ow problems in the presence of complex geometries. The main two application elds of such models are the simulation of shallow ows over natural surfaces (coastal lagoons and runo over complex topography) and the fast simulation of urban oods. Four main types of twodimensional, porosity-based shallow water models are available from the literature.

The Single Porosity (SP) model was rst proposed to account for subgrid scale topography [START_REF] Bates | Development and testing of a sub-grid scale model for moving boundary hydrodynamic problems in shallow water[END_REF][START_REF] Dena | Two-dimensional shallow ow equations for partially dry areas[END_REF][START_REF] Dena | A new set of equations for very shallow water and partially dry areas suitable to 2D numerical models[END_REF], see e.g. [START_REF] Viero | Modeling anisotropy in free-surface overland and shallow inundation ows[END_REF] for a recent application to anisotropic topographical eects. Applications to urban ood modelling were proposed later [START_REF] Guinot | Flux and source term discretisation in twodimensional shallow water models with porosity on unstructured grids[END_REF][START_REF] Hervouët | Modelling urban areas in dam-break oodwave numerical simulations[END_REF][START_REF] Soaresfrazão | Twodimensional shallow water models with porosity for urban ood modelling[END_REF]. The porosity reects the fraction of the plan view area available to mass and momentum storage. For shallow ows over natural topographies, the porosity is depth-dependent [START_REF] Bates | Development and testing of a sub-grid scale model for moving boundary hydrodynamic problems in shallow water[END_REF][START_REF] Dena | Two-dimensional shallow ow equations for partially dry areas[END_REF][START_REF] Dena | A new set of equations for very shallow water and partially dry areas suitable to 2D numerical models[END_REF][START_REF] Viero | Modeling anisotropy in free-surface overland and shallow inundation ows[END_REF], while urban ood applications consider a depth-independent porosity [START_REF] Guinot | Flux and source term discretisation in twodimensional shallow water models with porosity on unstructured grids[END_REF][START_REF] Hervouët | Modelling urban areas in dam-break oodwave numerical simulations[END_REF][START_REF] Soaresfrazão | Twodimensional shallow water models with porosity for urban ood modelling[END_REF][START_REF] Velickovic | Steady-ow experiments in urban areas and anisotropic porosity model[END_REF]. A number of numerical solution techniques have been developed for the depthindependent SP equations [START_REF] Benkhaldoun | A non-homogeneous Riemann solver for shallow water equations in porous media[END_REF][START_REF] Cea | Unstructured nite volume discretization of two-dimensional depth-averaged shallow water equations with porosity[END_REF][START_REF] Finaud-Guyot | An approximate-state Riemann solver for the two-dimensional shallow water equations with porosity[END_REF][START_REF] Guinot | Flux and source term discretisation in twodimensional shallow water models with porosity on unstructured grids[END_REF][START_REF] Mohamed | A nite volume method for numerical simulation of shallow water models with porosity[END_REF]. Recently, a generalized source term has been proposed for the specic purposes of urban ood modelling [START_REF] Velickovic | Steady-ow experiments in urban areas and anisotropic porosity model[END_REF].

The Integral Porosity (IP) model was introduced as a generalization of the SP model for the simulation of urban oods [START_REF] Sanders | Integral formulation of shallow water equations with anisotropic porosity for urban ood modelling[END_REF][START_REF] Schubert | Building treatments for urban ood inundation models and implications for predictive skill and modeling eciency[END_REF]. Distinguishing between a storage porosity (isotropic) and a conveyance porosity (anisotropic) allows for a better description of the ow eld than in the SP model [START_REF] Kim | Mesh type tradeos in 2D hydrodynamic modeling of ooding with a Godunov-based ow solver[END_REF][START_REF] Kim | Urban ood modeling with porous shallow-water equations: a case study of model errors in the presence of anisotropic porosity[END_REF]. A depth-dependent version has appeared recently [START_REF] Özgen | Shallow water equations with depthdependent anisotropic porosity for subgrid-scale topography[END_REF][START_REF] Özgen | Urban ood modeling using shallow water equations with depth-dependent anisotropic porosity[END_REF]. The connectivity porosity, that is supposed 1 to account for building obstruction to the ow, should be smaller than the storage porosity, otherwise yielding wave propagation speeds articially larger than those in free water [START_REF] Guinot | Macroscopic modelling of urban oods[END_REF], an unphysical behaviour.

The Multiple Porosity (MP) model [START_REF] Guinot | Multiple porosity shallow water models for macroscopic modelling of urban oods[END_REF] was also developed to account for anisotropic eects. While the IP model used two dierent porosities over a given domain, the MP model uses a decomposition of the ow domain into several regions with dierent hydraulic properties: an immobile region, a mobile, isotropic region and several anisotropic regions where the ow is one-directional. The transfer of mass and momentum between these regions is governed by free surface elevation gradients. Specic momentum source term models are introduced to enforce the immobile and/or one-dimensional character of the ow. As a result, the wave propagation properties of the model do not obey an equation of state: for a given depth and ow velocity, assuming a rising or a falling water level yields dierent wave propagation speeds.

The Dual Integral Porosity (DIP) model [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF] is a generalization of the IP model. In [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF], the concept of closure is introduced. It stems from the consideration that the dual nature of the porosity (storage vs. porosity) should result in a dual denition of the ow variables (domain-based vs. boundary-based).

The domain-and boundary-based ow variables must be related via a closure model. The IP model can be obtained as a particular case of the DIP formalism, by assuming a very specic closure. The IP closure yields inaccurate mass and momentum uxes [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF]. Correcting this with the DIP closure and introducing a transient momentum dissipation model derived from [START_REF] Guinot | Multiple porosity shallow water models for macroscopic modelling of urban oods[END_REF] results in substantially improved model performance. A salient feature of the DIP model is that solution well-posedness requires that the connectivity porosity should be smaller than or equal to the storage porosity.

While the DIP model outperforms the SP and IP models when applied to one-dimensional problems, a two-dimensional application to a eld scale test case (a 600m×900m neighbourhood near Sacramento)

shows that both the IP and DIP model fail to reproduce the statistical distribution of the ow eld exactly [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF]. In particular, the ne grid simulation presented in [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF] shows a strong polarization of the ow eld along the main street axes. This is observed even though the buildings are not aligned exactly and their spacing is not regular. In contrast, the IP and DIP models are shown to produce more isotropic unit discharge and velocity elds under both transient and steady state. Moreover, a consistency and wave propagation analysis of the IP and DIP models [START_REF] Guinot | Consistency and bicharacteristic analysis of integral porosity shallow water models. Explaining model oversensitivity to mesh design[END_REF] indicates that these models are sensitive to the design of the mesh in the presence of anisotropic connectivity porosity elds. The DIP model, however, is less sensitive than the IP model. Whether the problems identied in [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF] stem from the consistency issues found in [START_REF] Guinot | Consistency and bicharacteristic analysis of integral porosity shallow water models. Explaining model oversensitivity to mesh design[END_REF] is not clear at this stage.

The purpose of the present paper is to assess critically the ux closure and the source term models for the SP, IP and DIP models. The MP model cannot be assessed in the same way because it does not allow a unique ux function to be inferred from the domain-averaged variables. Therefore, it is excluded from the analysis. The performance of a model is usually assessed by comparing the simulation results to reference data, obtained from experimental sets or from simulations on rened grids. The model error, a measure of the dierence between the simulation results and the reference data, may be appreciated using various indicators. Examples are the L-norms of the water depth, free surface elevations or velocity norm errors, or the Flood Extent Agreement (FEA) index [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF][START_REF] Schubert | Building treatments for urban ood inundation models and implications for predictive skill and modeling eciency[END_REF]. However, due to the competing inuence of uxes and source terms in the governing equations, model validation based on the sole simulation results is often indirect and incomplete. A model using erroneous uxes and/or source terms may appear satisfactory provided that the calibration process allows an optimal balance between the various errors to be achieved. In the case of a poorly performing model, it is not possible to identify the reason for model failure (for instance, does model failure result from an erroneous ux model, or an erroneous source term model, or the combined inuence of both?)

The validation procedure used in the present paper aims to address these shortcomings. Validation does not focus on the model results but on its governing assumptions. Flow simulations are carried out over rened grids using a wide variety of building layouts and initial/boundary conditions. Since the purpose is to assess the ability of the models to account for urban anisotropy, the geometries are made intentionally strongly anisotropic, with strongly marked preferential directions. The rened simulation results, considered as an experimental reference, are used to compute domain-and boundary-based averages on the pore scale of the porosity model. The accuracy of the model is assessed by comparing the theoretical relationships between the domain-and boundary-based averages to the experimental ones. This approach has the advantage that (i) the errors in the uxes and source terms are assessed separately, (ii) the reference data can be used to propose improved closure models, (iii) the analysis allows guidelines to be derived for the experimental, laboratory scale validation of uxes and source term models. While experimental data sets would have been preferable, only rened ow simulations can be used used as reference solutions because the various laboratory experiments reported in the literature do not allow for the direct, systematic type of validation presented here.

The ow congurations explored in the present analysis are highly idealised. In particular, the building geometries are made strictly periodic so as to yield uniform porosity parameters and welldened ux and source term closure relationships. For the same reason, the eects of bottom friction, turbulence and bottom slope are disregarded. As a result, only at topographies are considered. This obviously is a limitation of the present work in that real-world urban geometries are non-periodic, the buildings are not exactly aligned, and the subgrid-scale topography may exert a very strong inuence on the ow dynamics, especially when small depths are involved. All these factors may result in extra uxes and source terms that are not accounted for in the present study. The interactions with urban drainage networks, that often occur during urban ods, are also neglected. However, analyzing idealised situations is deemed an indispensable prerequisite to applying porosity models to more complex ow congurations.

The present paper aims to answer the following questions: Q1.

How do the SP, IP and DIP models compare in terms of closure and source term model accuracy?

Q2. Does the connectivity porosity alone provide sucient information to compute accurate uxes and source terms, or are additional geometric descriptors needed?

Q3.

How can the mass and/or momentum uxes and source term closures in porosity models be further improved?

Q4.

How can the results of the present analysis be used to design laboratory experiments (e.g. scale models of urban environments) for the experimental validation o porosity-based shallow water models?

The paper is structured as follows. Section 2 recalls the underlying assumptions and governing equations for the SP, IP and DIP models. The equations are presented in a uniform fashion for the sake of model comparison. Section 3 presents the simulation base. A simulation is dened as the combination of an urban geometry and an initial-or boundary-value problem. In this work, 96 simulations have been carried out on rened grids. Section 4 is devoted to the analysis of the ux closure formulae in the SP, IP and DIP models. Section 5 deals with the assessment of the source term models, including the transient momentum dissipation model [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF] and the generalised tensor model [START_REF] Velickovic | Steady-ow experiments in urban areas and anisotropic porosity model[END_REF]. Section 6 is devoted to a summary of results and a discussion. Conclusions are provided in Section 7.

Models

Overview of porosity models

The Single Porosity (SP), Integral Porosity (IP) and Dual Integral Porosity (DIP) models are obtained by averaging the two-dimensional shallow water equations over a domain Ω with boundary Γ. The main dierence with the two-dimensional shallow water equations is that the domain Ω is only partially occupied by water, part of it being occupied by a solid phase (the buildings in the case of an urban area). Two types of porosity are dened: a domain-based (also called storage, or areal) porosity φ Ω , that is the fraction of plan view area available to water storage, and a boundary (or conveyance, or connectivity) porosity φ Γ , that is the frontal area available for mass and momentum transfer. Both porosities are dened using a phase indicator (x, y), equal to unity if the point (x, y) is in the liquid phase and that takes the value zero if (x, y) belongs to the solid phase

φ Ω = 1 Ω ¢ Ω (x, y) dΩ, φ Γ = 1 Γ ¢ Γ (x, y) dΓ (1) 
The governing equations for the three models can be written in the general integral form

∂ t ¢ Ω udΩ + ¢ Γ FndΓ = ¢ Ω s Ω dΩ + ¢ Γ s Γ dΓ (2a) u = φ Ω [h, q, r] T = φ Ω [h, hu, hv] T (2b) s Ω = φ Ω [0, (S 0,x -S f,x ) gh, (S 0,y -S f,y ) gh] ( 2c 
)
where u is the conserved variable vector, F is the ux tensor, n is the normal outward unit vector to the boundary Γ, s Ω and s Γ are respectively the domain-and boundary-based source terms, h is the water depth, q and r are respectively the xand y-unit discharges, u and v are respectively the xand y-components of the ow velocity. The domain-based source term s Ω accounts for the horizontal forces arising from the bottom slope, the resistance exerted onto the ow by the solid phase (i.e. the buildings) and bottom friction. The boundary-based source term s Γ accounts for the pressure force exerted by the solid-liquid interface. It includes for instance the eects of porosity gradients.

The dual nature of the porosity is extended to the ow variables. A boundary-based conserved variable u Γ = [h Γ , q Γ , r Γ ] is dened in addition to the domain-based variable u. The dierences between the SP, IP and DIP models essentially result from dierent closure models between u and u Γ .

2.2 Flux closure models SP model. In the SP model [START_REF] Guinot | Flux and source term discretisation in twodimensional shallow water models with porosity on unstructured grids[END_REF][START_REF] Hervouët | Modelling urban areas in dam-break oodwave numerical simulations[END_REF][START_REF] Soaresfrazão | Twodimensional shallow water models with porosity for urban ood modelling[END_REF], the storage and connectivity porosities are assumed identical

φ Γ = φ Ω = φ, (h, q, r) T Γ = (h, q, r) T (3a) F = φ    q r q 2 h + g 2 h 2 qr h qr h r 2 h + g 2 h 2    (3b) 
Integral Porosity (IP) model. The IP model [START_REF] Sanders | Integral formulation of shallow water equations with anisotropic porosity for urban ood modelling[END_REF] is derived considering that the storage and connectivity porosities are dierent in the general case. The domain and boundary variables are assumed identical (h, q, r)

T Γ = (h, q, r) T (4a) F = φ Γ    q r q 2 h + g 2 h 2 qr h qr h r 2 h + g 2 h 2    (4b) 
Dual Integral Porosity (DIP) model. As the IP model, the DIP model [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF] uses φ Ω = φ Γ , but the closure model is dierent. The boundary unit discharge is dened so as to preserve continuity across Γ h Γ = h, (q, r)

T Γ = φ Ω φ Γ (q, r) T (5a) F = φ Γ    q Γ r Γ q 2 Γ hΓ + g 2 h 2 Γ qΓrΓ hΓ qΓrΓ hΓ r 2 Γ hΓ + g 2 h 2 Γ    =    φ Ω q φ Ω r φ 2 Ω φΓ q 2 h + φ Γ g 2 h 2 φ 2 Ω φΓ qr h φ 2 Ω φΓ qr h φ 2 Ω φΓ r 2 h + φ Γ g 2 h 2    (5b)

Source term models

The purpose is to test expressions for the vector

s f = [S f,x , S f,y ] T (6)
Early versions of the SP model [START_REF] Guinot | Flux and source term discretisation in twodimensional shallow water models with porosity on unstructured grids[END_REF][START_REF] Hervouët | Modelling urban areas in dam-break oodwave numerical simulations[END_REF][START_REF] Soaresfrazão | Twodimensional shallow water models with porosity for urban ood modelling[END_REF] and the IP model [START_REF] Sanders | Integral formulation of shallow water equations with anisotropic porosity for urban ood modelling[END_REF] use an isotropic energy loss formula in the form

s f = k I |v| v (7)
where k I is a coecient that incorporates the lumped eects of bottom friction and building resistance.

In [START_REF] Guinot | Flux and source term discretisation in twodimensional shallow water models with porosity on unstructured grids[END_REF], a Borda-type head loss model was proposed. It was later invalidated by detailed inspection of ow simulation results over rened grids [START_REF] Guinot | Multiple porosity shallow water models for macroscopic modelling of urban oods[END_REF]. In [START_REF] Sanders | Integral formulation of shallow water equations with anisotropic porosity for urban ood modelling[END_REF], building and bottom drag coecients were proposed as an alternative to more widespread Chezy-Manning-Strickler friction laws.

In [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF], test simulations involving the propagation of positive and negative waves in idealized networks of orthogonal streets are reported. The simulations indicate that, in the absence of bottom friction, the momentum source term should be split into two parts as

s f = s T + s D (8)
where s T and s D are respectively a transient and a drag source term. The models for these two source terms are examined in the following two paragraphs.

Transient momentum dissipation model. The source term s T accounts for a momentum dissipation mechanism that cannot be accounted for by usual, friction-based head loss models [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF]. It is active only under transient conditions involving positive waves (rising water levels). It stems from the dissipation of moving bores due to the reection against building walls. When steady state is reached, or when the water level decreases, no momentum dissipation occurs due to shock reection and s T is zero. This dissipation mechanism is essential to an accurate reconstruction of water level and unit discharge elds across shocks. The following form is shown to preserve the observed self-similarity properties of the ow solution [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF]:

s T =    µ xx µ xy µ yx µ yy ∇.F m if ∂ t h > 0 0 if ∂ t h ≤ 0 , F m = φ Γ q 2 h + g 2 h 2 qr h qr h r 2 h + g 2 h 2 (9) 
where ∇.F m denotes the divergence of the momentum ux tensor F m . So far, no satisfactory model has been proposed for the dissipation terms. Consequently, the tensor coecients µ ij must be calibrated.

Building drag dissipation model. The source term s D accounts for building drag forces. The dynamics of free surface ow in three and four branch crossroads has been studied extensively over the past years, from both an experimental and numerical point of view [START_REF] El Kadi Abderrazak | Divison of critical ow at three-branch open-channel intersection[END_REF][START_REF] Ghostine | Simulation of supercritical ow in crossroads: Confrontation of a 2D and 3D numerical approaches to experimental results[END_REF][START_REF] Ghostine | Discontinuous Galerkin nite-element method for simulation of ood in crossroads[END_REF][START_REF] Kesserwani | New approach for predicting ow bifurcation at right-angled open-channel junction[END_REF][START_REF] Lipeme-Kouyi | Urban ooding: 1D modelling of the distribution of the discharges through cross-road intersections accounting for energy losses[END_REF][START_REF] Mignot | Experimental and numerical modeling of symmetrical four-branch supercritical cross junction ow[END_REF][START_REF] Mignot | Flow patterns in a four branches junction with supercritical ow[END_REF][START_REF] Mignot | Hydraulic models of the ow distribution in a four branch open channel junction with supercritical ow[END_REF][START_REF] Momplot | Typology of the ow structures in dividing open channel ows[END_REF][START_REF] Nania | Experimental study of the dividing ow in steep street crossings[END_REF][START_REF] Rivière | Flooding ows in city crossroads: 1D modelling and prediction[END_REF][START_REF] Rivière | Subcritical open channel ows in four branch intersections[END_REF][START_REF] Rivière | Transcritical ows in three and four branch openchannel intersections[END_REF]. These studies have mainly focused on the ow distribution between the outowing branches of the crossroads (see e.g. [START_REF] Mignot | Hydraulic models of the ow distribution in a four branch open channel junction with supercritical ow[END_REF] for the subcritical case, [START_REF] Rivière | Transcritical ows in three and four branch openchannel intersections[END_REF] for transcritical regimes, [START_REF] Rivière | Subcritical open channel ows in four branch intersections[END_REF] for the subcritical case, [START_REF] Kesserwani | New approach for predicting ow bifurcation at right-angled open-channel junction[END_REF] for a numerical study). The empirical relationships derived in these studies cannot be used as such to infer source term formulae in two-dimensional porosity models, for the following reasons. Firstly, the studies focus on the ow distribution between the branches. Additional measurements (such as the distribution of the velocity eld and free surface elevation across each of the four branches) would be needed to infer the drag coecient from a two-dimensional momentum balance. Secondly, the downstream boundary conditions are reported to have a strong inuence on the ow patterns [START_REF] Rivière | Transcritical ows in three and four branch openchannel intersections[END_REF]. The boundary conditions used in many experiments (e.g. presence of downstream weirs for ow measurements) are not compatible with the ow conditions met with series of connected crossroads as considered in the present study. Thirdly, the purpose of the present study is to assess upscaled model of the two-dimensional shallow water equations. Neither viscous nor turbulent head losses are accounted for in the rened ow simulations reported here, while they probably play an important role in the reported experiments. For all these reasons, the abovementioned studies are not used in the present work.

Energy loss models specic to the shallow water models with porosity have been proposed in the literature. In [START_REF] Guinot | Flux and source term discretisation in twodimensional shallow water models with porosity on unstructured grids[END_REF][START_REF] Sanders | Integral formulation of shallow water equations with anisotropic porosity for urban ood modelling[END_REF][START_REF] Soaresfrazão | Twodimensional shallow water models with porosity for urban ood modelling[END_REF] an isotropic head loss model is used. Clearly, such a model is not adapted to the strongly anisotropic ow patterns occurring in urban areas. Two anisotropic models have been proposed recently. A tensor formulation is proposed in [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF]:

s D = -C D |v| v ( 10 
)
where C D and v are respectively a drag tensor and the velocity vector. A more general model is proposed in [START_REF] Velickovic | Steady-ow experiments in urban areas and anisotropic porosity model[END_REF] for orthogonal street networks:

s D = -(1 + a |sin 2θ|) C D |v| v ( 11 
)
where a is a positive, dimensionless coecient and θ is the angle between the velocity vector and the main street axis. The rst model requires that the drag tensor C D be calibrated, while the second provides one more degree of freedom with the calibration of a. It is worth noting that all previously published drag models can be rewritten as particular cases of the model [START_REF] Guinot | Multiple porosity shallow water models for macroscopic modelling of urban oods[END_REF].

All three models [START_REF] El Kadi Abderrazak | Divison of critical ow at three-branch open-channel intersection[END_REF][START_REF] Ghostine | Discontinuous Galerkin nite-element method for simulation of ood in crossroads[END_REF][START_REF] Guinot | Multiple porosity shallow water models for macroscopic modelling of urban oods[END_REF] are deemed incomplete in that they fail to represent an essential ow feature. Consider a periodic layout formed by square building blocks with equal spacing in the E-W and N-S streets. Under the assumption of a frictionless, horizontal bottom, a uniform ow velocity eld aligned with any of the two orthogonal main street directions (θ = 0 or π

2 ) yields a horizontal free surface and a zero drag force. This yields a zero k f for the model ( 7) and a zero drag tensor for the two models [START_REF] Ghostine | Discontinuous Galerkin nite-element method for simulation of ood in crossroads[END_REF][START_REF] Guinot | Multiple porosity shallow water models for macroscopic modelling of urban oods[END_REF]. Consequently, s D is zero regardless of the magnitude and direction of the velocity eld v, including in the conguration θ = π 4 , where it is known from experiments to be maximum [38] To overcome this problem, it is proposed that the formula (11) be revised as follows

s D = -|sin 2θ| C D |v| v (12) 
This model yields a zero drag force for θ = 0 and θ = π 2 , while θ = ± π 4 yields a maximum drag, as expected from [START_REF] Velickovic | Steady-ow experiments in urban areas and anisotropic porosity model[END_REF]. The proposed model can be viewed as a limit case of Velickovic et al's model as a tends to innity in equation [START_REF] Guinot | Multiple porosity shallow water models for macroscopic modelling of urban oods[END_REF]. The tensor C D in equation ( 12) is then equal to the product aC D in equation [START_REF] Guinot | Multiple porosity shallow water models for macroscopic modelling of urban oods[END_REF].

It must be noted that the building drag models [START_REF] Guinot | Multiple porosity shallow water models for macroscopic modelling of urban oods[END_REF][START_REF] Guinot | Consistency and bicharacteristic analysis of integral porosity shallow water models. Explaining model oversensitivity to mesh design[END_REF] are valid only for square building layouts,

that is L 1 = L 2 and W 1 = W 2 .
As a matter of fact, a key assumption to these two models is that the the maximum drag occurs for θ = ± π 4 . This is obviously not the case when the building geometry is not the same in the xand y-directions. In such a case, it would be necessary to introduce additional parameters in the model to indicate the directions of maximum drag. Besides, it is not certain that such directions would be orthogonal and that the tensor descriptions [START_REF] Guinot | Multiple porosity shallow water models for macroscopic modelling of urban oods[END_REF][START_REF] Guinot | Consistency and bicharacteristic analysis of integral porosity shallow water models. Explaining model oversensitivity to mesh design[END_REF] would remain meaningful.

For this reason, only square layouts are explored in the analysis of the building drag model.

3 Simulation base

Model geometries

Model geometry is based on a periodic building layout. In order to allow for accurate statistics and to assess the self-similarity properties of the solutions, the number of periods involved is very large (more than 100 in most simulations). The layout is generated by two series of regularly spaced, parallel streets. The angle between the two street directions is denoted by α (see Figure 1). By assumption, the rst street direction is aligned with the x-axis.

x W 1 L 1 L 2 W 2 x W 1 L 1 L 2 W 2 a Figure 1: Model geometry. Denition sketch. The pth street network (p = 1, 2) yields a frontal porosity φ p = W k L k
, where L k and W k are respectively the spacing and width of the streets. The domain porosity φ Ω , dened as the fraction of plan view area available for water storage, is thus φ Ω = φ 1 + φ 2 -φ 1 φ 2 . In this work, nine dierent geometries are considered (Table 1). Geometries M1a, b,c correspond to identical (α, φ 1 , φ 2 , φ Ω ) combinations, but these are obtained for dierent street widths and spacings. Model M1b is strictly isotropic, with (L 1 , W 1 ) = (L 2 , W 2 ), while Models M1a and M1c are based on

Model name

L 1 (m) W 1 (m) L 2 (m) W 2 (m) α(rad) φ Ω φ 1 φ 2 
(L 1 , W 1 ) = 1 2 (L 2 , W 2 ) and (L 1 , W 1 ) = 2 (L 2 , W 2 )
respectively. The purpose is to assess whether the frontal porosity alone is a sucient descriptor of the geometry. In Models M2 and M3, φ 1 = φ 2 but these values are respectively 5/3 and 10/3 times as small as those in M1b. Comparing M2 and M3 to M1b allows the inuence of the street width-to-spacing ratio to be assessed. Models M6 and M7 dier from the previous ve in that the street angle α is not π/2. While an intersection angle α = tan -1 2 (that is, approximately 63 degrees) may be found occasionally in real-world street networks (model M6), α = π/4 (model M7) is introduced with the purpose of testing extreme congurations. With Models M4 and M5, φ 1 = φ 2 , which is typical of a number of suburban layouts.

All models have a totally at bottom. This assumption clearly introduces limitations. However, the main purpose here is to assess the accuracy of the porosity-based description of connectivity and storage properties of the urban medium, all other factors being disregarded.

All models are meshed using 1m to 2.5 m wide cells. The objective is to discretize the geometry using 20 cells across the streets in as many cases as possible, so as to obtain a suciently accurate description of the hydraulic elds. To give but one example, with more than 100 street periods in the

x-direction, Model M1b counts 212,000 quadrangular cells and 222,621 nodes. The two-dimensional shallow water equations are solved using the MUSCL-EVR technique [START_REF] Soares-Frazão | An eigenvector-based linear reconstruction scheme for the shallow water equations on two-dimensional unstructured meshes[END_REF].

Initial Value Problems (IVPs)

The initial value problems are Riemann problems based on the so-called urban dambreak problem introduced in [START_REF] Guinot | Multiple porosity shallow water models for macroscopic modelling of urban oods[END_REF]. The water is initially at rest, with water depths h L and h R on the left-and righthand sides of a straight line passing at (0, 0). In a number of simulations, the interface between the left and right states is not perpendicular to the x-direction. Its normal unit vector makes an angle β with the x-axis (Figure 2, left). Table 2 gives the characteristics of the various Riemann problems used in the present work. When β = 0, the transient propagation is oblique. Computational time is saved to a large extent by meshing only one street period in the y-direction and prescribing periodic boundary conditions [START_REF] Boris | Flux-corrected transport. I. SHASTA, a uid transport algorithm that works[END_REF][START_REF] Leveque | Finite volume methods for hyperbolic problems[END_REF] on the Northern and Southern boundaries of the streets (Figure 2, right).

In the example of Figure 2, sketched for a square layout, connecting the Northern boundary of a street to the Southern boundary of the next one (A with A', B with B', etc.) allows a 45 degrees propagation pattern to be obtained with one period only. An angle β = tan -1 1 2 is obtained by meshing two

x-streets instead of a single one.

RP name 

h L (m) h R (m) β(rad) R01 1.01 1 0 R02 2 1 0 R03 5 1 0 R04 10 1 0 R05 20 1 0 R06 50 1 0 R07 1.01 1 π/4 R08 2 1 π/4 R09 5 1 π/4 R10 10 1 π/4 R11 20 1 π/4 R12 50 1 π/4 R13 1.01 1 tan -1 (1/2) R14 2 1 tan -1 (1/2) R15 5 1 tan -1 (1/2) R16 10 1 tan -1 (1/2) R17 20 1 tan -1 (1/2) R18 50 1 tan -1 (1/2)

Boundary Value Problems (BVPs)

The boundary value problems are used to assess the momentum source term models. The steady state solution of the following problem is sought. A square domain of size L × L corresponding to geometries M01-M7 is dened. The Western and Southern boundaries are split into two parts of equal length (Figure 3). The half-side extending from the South-Western corner is assigned a prescribed water level h 1 , while the remaining half of the Western and Southern edges are assigned an impervious condition. The Eastern and Northern boundaries are assigned a prescribed water level h 2 . Table 3 gives the combinations (h 1 , h 2 ) used for the various BVPs. The transient simulation is started from a uniform initial condition u (x, y, 0) = [h 0 , 0, 0] T ∀ (x, y) ∈ [0, L] × [0, L] until steady state is reached.

For L = 1800m, steady state is achieved at t = 10 4 s. IVP name

h = h 1 h = h 2 q.n = 0 L/2 L/2 L/2 L/2
h 1 (m) h 2 (m) B01 1.01 1 B02 2 1 B03 5 1 B04 10 1 B05 20 1 B06 50 1
Table 3: Boundary value problem (BVP) nomenclature. Notation: see Figure 3.

4 Flux model analysis

Method

The accuracy of the SP, IP and DIP ux closure models is assessed using the numerical results of IVPs R01-R18. A cross-section (called interface in what follows) Γ is dened between two adjacent buildings, as shown in Figure 4. The interface may be normal to the xor y-direction. An averaging volume Ω is centred around the interface. Ω extends over one spatial period on each side of the interface. The various ow variables and components of the ux tensor are averaged over Γ and Ω, in agreement with the approach developed in [START_REF] Kim | Urban ood modeling with porous shallow-water equations: a case study of model errors in the presence of anisotropic porosity[END_REF]. The analysis consists in plotting the interface-averaged variables and uxes versus the domainaveraged ones and comparing these averages to the theoretical closure relationships (3a-5b). Table 4 gives the relationships derived from the SP, IP and DIP closure models. For each simulation, two interfaces Γ with their surrounding domains Ω are chosen: one in the rarefaction wave of the Riemann problem, the other in the shock wave. The purpose is to check the validity of the closure relationships for both continuous and discontinuous ow patterns.

Model

h Γ q Γ r Γ q 2 h Γ qr h Γ r 2 h Γ h 2 Γ SP h Ω q Ω r Ω q 2 Ω hΩ qΩrΩ hΩ r 2 Ω hΩ (h Ω ) 2 IP h Ω q Ω r Ω q 2 Ω hΩ qΩrΩ hΩ r 2 Ω hΩ (h Ω ) 2 DIP h Ω φΩ φΓ q Ω φΩ φΓ r Ω φΩ φΓ 2 q 2 Ω hΩ φΩ φΓ 2 qΩrΩ hΩ φΩ φΓ 2 r 2 Ω hΩ (h Ω ) 2 
Table 4: Relationships between the interface-and domain-averaged variables and ux components for the SP, IP and DIP models. The subscript (Γ or Ω) indicates the averaging domain.

Mass ux closure

The mass ux is q Γ .n. It is equal to q Γ over x-facing interfaces and equal to r Γ over yfacing interfaces. For the sake of paper readability, the graphs illustrating the analysis are sent to Appendix A.1. Two types of behaviours are observed .

The rst type of behaviour is found for the combinations of Models M1-5 and IVPs R01-R06. The DIP closure is observed to be accurate for both q Γ and r Γ (Figures 12 and13), while the SP and IP closures yield underestimated q Γ values. Given the symmetry of the problem, r Γ is zero regardless of the closure used. It is also zero for y-facing interfaces (as predicted by all closure models), which is why no graph is displayed for these interfaces.

A second type of behaviour is encountered for Models M1 and M4 with IVPs R07-18, as well as models M6-M7 with IVPs R01-R06. A common feature to these simulations is that the direction of the Riemann problem is oblique to at least one of the principal directions of the street network.

Figures14 and 15 show respectively the scatter plots for (q Ω , q Γ ) and (r Ω , r Γ ) obtained from IVPs R07-R18 and Model M1b. Similar behaviours are observed for model M4 but are not shown here for the sake of paper conciseness. The normal component of the unit discharge (q Γ for x-facing interfaces on Figure 14, r Γ for y-facing interfaces on Figure 15) is predicted accurately by the DIP closure and underestimated by the SP-IP closures. All closures, however, fail dramatically in estimating the tangent component of the unit discharge (r Γ for x-facing interfaces on Figure 14, q Γ for y-facing interfaces on Figure 15). As a matter of fact, all tangent components over Γ are zero, while the closures predict non-zero values. Similar trends are observed for Models M6-7 with IVPs R01-06 (Figures 16 and17):

the normal components (q Γ along x-facing interfaces and r Γ along y-facing interfaces) are predicted rather accurately by the DIP closure, while the tangent components (r Γ along x-facing interfaces and q Γ along y-facing interfaces) are wrongly predicted by all closure models. Examining the unit discharge elds allows this failure to be explained. As an example, the unit discharge vector eld simulated at t = 1000s for Simulation M1b-R10 are displayed on Figure 5. The vector eld clearly exhibits three zones: the crossroads with vectors making roughly a 45 degree angle with the main street axes, the E-W street with vectors parallel to the x-axis and the N-S street with vectors parallel to the y-axis. Similar patterns are observed with non-orthogonal street networks (M6-7). The ow eld in the streets is strongly aligned with the street main axis. Building layout forcing the ow eld along preferential directions has been observed in simulations involving much sparser building layouts than those explored in the present study [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF].

To summarize, only the DIP closure yields a correct estimate for the normal component of the unit discharge. All closures give erroneous estimates for the transverse unit discharge when the ow is not aligned with the main street directions. This, however, impacts the mass ux in a very limited fashion because only the normal unit discharge is involved in the mass balance. 

m

Momentum ux closure

The momentum ux tensor involves the hydrostatic pressure term g 2 h 2 and the momentum discharges

q 2 h , qr h , r 2 h .
The SP, IP and DIP water depth closures are identical. This results in identical closure relationships for the pressure term in the three models. Figure 6 shows the scatter plots obtained for all simulations (models M1-7, IVPs R01-18). The SP, IP and DIP closures are observed to agree extremely well with the simulation results. the DIP closure gives very good estimates for the momentum discharge q 2 h (see Appendix A.2, Figure 18). The SP and IP closures yield strongly underestimated values for q 2 h . Only two types of (limited) inaccuracy are observed for the DIP closure. The rst is observed on Figure 18. In the rarefaction wave, the normal momentum ux q 2 /h is slightly larger than the value predicted by the DIP closure. This is because the unit discharge eld is not uniform across the longitudinal streets. This eect has been identied and explained in [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF] as follows. In the rarefaction wave, the dropping water level causes the water to ow from the lateral streets into the main street. This water has a zero x-velocity. The mixing with the water owing in the x-direction result in a low-velocity layer near the walls. Since q is not uniform over the cross-section, the average of q 2 is necessarily larger than the square of the average q. Note that this eect is not observed in the shock wave. The second type of inaccuracy is observed for the closures qr/h and r 2 /h (Figures 19 and20) across x-facing interfaces. While all closures would theoretically predict zero values owing to problem symmetry, a non-zero average qr/h is observed for Model M4 (Figure 19) and the average r 2 /h is consistently non-zero (Figure 20). It must be noted, however, that these non-zero values are several orders of magnitude smaller than those of q 2 /h. Moreover, erroneous r 2 /h values over x-facing interfaces have no consequence on momentum balance because r 2 /h contributes to the momentum balance only over y-facing interfaces.

When the Riemann problem is not aligned with the main street directions, all closures yield strongly inaccurate estimates. This is illustrated by Figure 21, where the average momentum ux q 2 /h is displayed for Model M1b with IVPs R07-18. As shown in Figure 5, the unit discharge eld is strongly non-uniform across both E-W and N-S streets. It is also collinear to the street axes. This results in (i) all closure models underestimating the average q 2 /2 over x-facing interfaces (Figure 21, left) and (ii) identically zero values across y-facing interfaces when all closure models predict non-zero values (Figure 21, right) . Similar errors are observed for Models M6-7 with IVPs R01-06 (Figure 22).

In all simulations, however, the DIP closure is consistently closer to the computed average values than are the SP and IP closures. An accurate momentum ux closure should incorporate two corrections. The rst is that the boundary unit discharge eld should be aligned with the street axis, the second is that the normal momentum ux q 2 /h be replaced with χq 2 /h, where χ ≥ 1 is a correction factor accounting for the non-uniform distribution of q across the interface. The non-uniform ow velocity eld across the street section was mentioned in [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF]. It is visible from Figure 21 (left) that χ is little sensitive to the magnitude of the velocity (R07-R12 yield very similar correction factors, just as R13-18 do) and that it is a function of the angle β between the main street axis and the direction of the Riemann problem. The average χ for IVPs R07-12 (β = π 4 , Figure 21 upper left) is slightly larger than 2, while it is only 1.1 for IVPs R13-18 (β = tan -1 1 2 , Figure 21 lower left). Proposing accurate χ (β) functions, however, is beyond the scope of the present paper.

5 Source term model analysis

Self-similarity of Riemann Problem solutions

Numerical experiments indicate that a positive wave propagating into a periodic, orthogonal street network along one of the main street directions generates momentum dissipation, while a negative wave does not [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF]. Moreover, the source term is known to be zero for steady state ow parallel to one of the the main street directions [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF][START_REF] Velickovic | Steady-ow experiments in urban areas and anisotropic porosity model[END_REF]. Consequently, the momentum dissipation mechanism does not obey an equation of state (it is not a function of the ow solution alone). A specic momentum dissipation model was proposed for the MP model [START_REF] Guinot | Multiple porosity shallow water models for macroscopic modelling of urban oods[END_REF] and the recently published DIP model [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF] to account for this. In this model, the momentum source term s T is a linear function of the divergence of the momentum ux. Incorporating this source term into the governing equations yields a homogeneous hyperbolic system of conservation laws. A salient feature of such a system is that the solutions of the Riemann problem are self-similar in (x, t) [START_REF] Lax | Hyperbolic systems of conservation laws II[END_REF]. The solution depends only on the ratio x/t, where x is the abscissa counted from the location of the initial discontinuity. If the hyperbolic system is non-homogeneous (which is the case when the source term obeys an equation of state), the solution is not self-similar. Testing the self-similarity of the Riemann problem solutions is an ecient way of discriminating between two source terms with dierent structures.

The self-similarity of the solutions is checked for all the IVPs (M1-7, R01-06). Four main ow congurations are observed. They are illustrated by Figure 7. On the gure, four typical normalized water depth maps in the(x, t) plane are displayed. The normalized water depth h * is dened as

h * = h -h R h L -h R (13) 
It is equal to zero and unity for h = h R and h = h L respectively. The maps displayed on Figure 7 are obtained by averaging the ow solution over a building period L 2 ×L 1 . The 42 normalized water depth maps are shown in the Appendix (Figure 23) and will not be detailed here for the sake of conciseness.

The rst type of behaviour is observed for simulations involving orthogonal street directions (α = π

2 )

and Riemann problems propagating along one of the two main street directions (β = 0). 42 such simulations have been carried out for the present work (the 7 Model geometries M1-M5 combined with the 6 IVPs R01-06). This behaviour is illustrated by Figure 7a. The contour lines for h * are straight lines in the (x, t) plane, indicating that the solution depends on the ratio x/t alone. A similar behaviour is observed for the unit discharge maps (not shown here for the sake of conciseness). It is observed for 37 simulations out of the total 42 .

A limited number of congurations (α, β) = π 2 , 0 lead to a somewhat dierent behaviour, as illustrated by Figure 7b. In Simulations M1b-R04, M3-R04, M4-R02, M4-R03 and M5-R04, early times show a self-similar behaviour. After a time ranging from 100s to 500s depending on the simulations, a perturbation develops downstream of the initial discontinuity location. After a time ranging from 500 s to 1000 s depending on the simulations, the contour lines delineating this perturbation tend to follow straight lines in the (x, t) plane. This seems to indicate the emergence of a new, self-similar solution at later times. The reason for this is unclear at the moment. Complementary simulations (not reported in the present paper) show that modifying the left and/or right states h L and h R by 10% prevents the perturbation from developing and the solution remains fully self-similar, as on Figure 7a. The appearance of the perturbation may be attributed to a very specic combination of model geometry, ow velocities and water depths that may induce e.g. resonance conditions. The reader's attention is drawn to the following points: (i) the developing perturbation seems to impact only the intermediate region of constant state and not to impact the rarefaction wave on the left-hand side of x = 0, (ii) the length of the perturbation (Figure 7b) at t = 1000 s is approximately 2000 metres (16 building blocks).

The emergence of the perturbation could not have been detected from simulations involving only a few building periods.

The third an fourth main conguration types are respectively α = π 2 , β = 0 (see Figure 7c) and α = π 2 (Figure 7d). In both congurations, the self-similar character of the ow solution is broken.

While the contour lines for h * seem to follow a linear trend away from the heads of the rarefaction and shock waves, the straight lines do not converge toward the point (0, 0) in the (x, t) plane. Therefore, the solution is not a function of the ratio x/t alone.

As a conclusion, while Riemann problems propagating along one of the main directions in orthogonal street networks yield self-similar solutions, other congurations do not. Checking the validity of the transient momentum dissipation model [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF] is thus meaningful only for simulations (α, β) = π 2 , 0 , that is, Models M1-5 with IVPs R01-06. This does not mean that this model is invalid in other ow congurations. However, for α = π 2 and/or β = 0, its eects are clearly overridden by those of larger momentum source terms with a dierent nature. This is conrmed by the analysis in the next subsection. 

Transient momentum dissipation model

Bearing in mind the analysis of Subsection 5.1, the validity of the model ( 9) is checked only for the simulations with a clearly identied self-similar behaviour. Models M1-M5 combined with IVPs R01-R06 are analysed. The principle of the analysis is the following. At a given time t, the x-momentum equation is integrated with respect to space over the length of the simulation domain. It is assumed that t is such that neither the rarefaction wave nor the shock wave have reached the boundaries of the computational domain. In this case, the ow velocity is zero at both ends of the domain (x = ±L) and the momentum ux at the boundary simplies to φ Γ g 2 h 2 . The momentum equation in the x-direction

is ∂ t (φ Ω q) + (1 -µ xx ) ∂ x φ Ω q 2 Γ h Γ + g 2 h 2 Γ = 0 (14) 
Integrating this equation over [-L, +L], using the closure h Γ = h yields

∂ t ¢ +L -L φ Ω q dx = (1 -µ xx ) q 2 Γ h + g 2 h 2 +L -L (15) 
Denoting by T the earliest time at which one of the two waves reaches the domain boundary, using the boundary conditions h (-L, t) = h L , h (+L, t) = h R , q Γ (-L, t) = q Γ (+L, t) = 0, 0 ≤ t ≤ T , bearing in mind that the storage porosity φ Ω is uniform over the domain, rearranging yields

∂ t ¢ +L -L q dx = φ Γ φ Ω (1 -µ xx ) g 2 h 2 L -h 2 R , 0 ≤ t ≤ T ( 16 
)
where . Integrating the above equation between 0 and t with the initial condition q (x, 0) = 0 ∀x leads to

¢ +L -L q dx = φ Γ φ Ω (1 -µ xx ) g 2 h 2 L -h 2 R t, 0 ≤ t ≤ T (17)
showing that the integral of the x-momentum increases linearly with time. In the absence of momentum dissipation, setting µ xx = 0 leads to a standard momentum balance:

¢ +L -L q dx = φ Γ φ Ω g 2 h 2 L -h 2 R t, 0 ≤ t ≤ T (18)
Figure 8 shows the variations of ¡ +L -L q dx with time. The solid line represents the result of the ux balance on the right-hand side of equation ( 18), the dotted lines represent the values obtained from the numerical simulations. Note that all dotted lines do not cover the same time span because, depending on model geometry and IVP left and right states, T is not identical for all simulations. Table 8 in 

Building drag models

The building drag models (equations [START_REF] Guinot | Multiple porosity shallow water models for macroscopic modelling of urban oods[END_REF][START_REF] Guinot | Consistency and bicharacteristic analysis of integral porosity shallow water models. Explaining model oversensitivity to mesh design[END_REF]) are analysed only for square building layouts. For Models M1b, M2 and M3, BVPs B01-06 (see Section 3 and Figure 3 for details) are run until steady state is achieved. For each simulation, the building drag term is computed using the steady state solution. Square domains are dened by connecting the centroids of neighbouring building blocks (Figure 10). There are N = 12 × 12 = 144 such domains in the models. Each domain in the model is assigned a unique number i = 1, . . . , N . Integrating the steady state momentum balance over the ith

domain Ω i gives ¢ Ωi s D dΩ = ¢ Γi F m ndΓ ( 19 
)
where n is the normal unit vector to the boundary Γ i of Ω i . The domain-averaged building drag vector over the ith domain is obtained from the above equation as

s D,i = 1 φ Ω L 1 L 2 ¢ Γi F m ndΓ (20)
The domain-averaged velocity vector is dened as: 

v i = ¡ Ωi qdΩ ¡ Ωi hdΩ
v M = 1 N N 1 v i , s D,M = 1 N N 1 s D,i (22) 
The model-averaged vectors ( 22) are used to calibrate the drag formulae [START_REF] Guinot | Multiple porosity shallow water models for macroscopic modelling of urban oods[END_REF][START_REF] Guinot | Consistency and bicharacteristic analysis of integral porosity shallow water models. Explaining model oversensitivity to mesh design[END_REF]. For each of the six BVPs, C D is calibrated by minimizing the distance

D = |s D,M -s D (v M )| (23) 
where s D (v M ) is the drag vector obtained by applying the drag formula (equation ( 11) or ( 12)) to the domain-averaged velocity obtained from eq. ( 21). Note that the drag tensor is necessarily isotropic because the geometry itself is isotropic. Consequently, only one tensor coecient needs to be calibrated.

Once calibrated for a given BVP, the two building drag formulae are used to predict an average drag vector s D (v i ) over every rectangular domain Ω i in the model. The validity of the model is checked by computing the RMSE between the predicted s D (v i ) vectors and the domain-averaged s D,i vectors:

E = 1 N N i=1 (s D,i -s D (v i )) 2 1/2 (24) 
Table 5 shows the calibrated parameters and the validation error for the model [START_REF] Velickovic | Steady-ow experiments in urban areas and anisotropic porosity model[END_REF] and the proposed model. The model ( 11) is extremely dicult to calibrate with the proposed approach. This could have been expected because calibrating this model involves the minimization of a single objective function with two degrees of freedom (the drag coecient and the parameter a). The optimal parameter set is observed to be non-unique in the limit of algorithmic precision. Dierent optimization methods are seen to yield very dierent parameter sets. For this reason, Velickovic et al.'s model [START_REF] Velickovic | Steady-ow experiments in urban areas and anisotropic porosity model[END_REF] was calibrated using the following, iterative procedure. In a rst step, a is xed arbitrarily and the drag coecient is calibrated using a genetic algorithm. In a second step, a is changed manually so as to minimize the distance D. These two steps are repeated sequentially until no noticeable change is observed in the objective function. In contrast, calibrating the second drag model ( 12) is straightforward. The parameter sets presented in Table 5 are calibrated with average errors D ≤ 10 -15 m 2 s -2 , which is at least 10 orders of magnitude smaller than s D,M . The following conclusions are drawn from Table 5.

Firstly, both models fail to provide an accurate description of the building drag. They both yield a posteriori errors E larger than the norm of s D,M . With very similar E values, none of the two models can be considered to behave signicantly better than the other.

Secondly, the calibrated drag coecients increase with the ow gradients (it is reminded that BVPs B01 to B06 involve increasing gradients between the upstream and downstream boundaries)

and decrease with the porosity. The dependence on the ow gradient may indicate that the structure of the model is erroneous, thereby failing to account for certain eects. To give but one example, in [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF] a drag coecient proportional to the water depth was proposed because energy dissipation is assumed to occur with the same intensity all over the depth. The two tested models [START_REF] Guinot | Multiple porosity shallow water models for macroscopic modelling of urban oods[END_REF][START_REF] Guinot | Consistency and bicharacteristic analysis of integral porosity shallow water models. Explaining model oversensitivity to mesh design[END_REF] do not include such an assumption and failing to account for proportionality eects could be expected to yield large errors. Additional simulations, not reported here, show that making the drag proportional to the water depth does not contribute to reduce the variability of the drag coecient and that E is not reduced signicantly. Other reasons must be sought to explain both models failing to predict the domain-averaged building drag.

Model BVP h(m) (s D,M ) x = (s D,M ) y Velickovic et al. (2017) Present model C D,11 = C D,22 a E C D,11 = C D,22 E M1b B01
1.00 -3.36 × 10 -5 1.58 × 10 -3 5.0 6.32 × 10 -5 1.36 × 10 -2 6.18 × 10 -5

M1b B02

1.17 The behaviour of Models M2 and M3 is essentially similar and is not plotted for the sake of paper conciseness. The upper row in Figures 11,[START_REF] Mignot | Flow patterns in a four branches junction with supercritical ow[END_REF][START_REF] Mignot | Hydraulic models of the ow distribution in a four branch open channel junction with supercritical ow[END_REF][START_REF] Mohamed | A nite volume method for numerical simulation of shallow water models with porosity[END_REF][START_REF] Momplot | Typology of the ow structures in dividing open channel ows[END_REF][START_REF] Nania | Experimental study of the dividing ow in steep street crossings[END_REF] shows the N domain-averages v i and s D,i computed using equations [START_REF] Lax | Hyperbolic systems of conservation laws II[END_REF][START_REF] Leveque | Finite volume methods for hyperbolic problems[END_REF]. The lower row shows the predicted drag vectors s D (v i ) computed using the drag models [START_REF] Guinot | Multiple porosity shallow water models for macroscopic modelling of urban oods[END_REF][START_REF] Guinot | Consistency and bicharacteristic analysis of integral porosity shallow water models. Explaining model oversensitivity to mesh design[END_REF].

Examining the ow velocity eld v i (upper left scatter plots) conrms the analysis of the ux closure models in Section 4. In most simulations, the ow velocity eld is strongly aligned with the main two street directions. Only a small number of domain averages are scattered along the diagonal.

The alignment is all the more pronounced as the ow gradients and velocities are smaller. Only for BVPs B05 and B06 is it possible to observe a deviation from the main directions. With upstream water depths of 20m and 50m respectively, these two BVPs, however, represent extreme ow congurations that are unlikely to occur in real-world situations.

The statistical distribution of the drag vector s D,i , in contrast, indicates a strongly polarized eld in the diagonal direction. The anisotropy of the drag eld increases with the ow intensity. Comparing the drag vector distributions to the ow velocity distributions does not allow any clear mapping from v i to s D,i to be identied. Another salient feature of the drag eld is the spatial distribution of the drag values. While the velocity eld is characterized by a large number of domains with extreme velocities, the drag eld counts a large number of small values (compared to the average) and a few extreme values.

The scatter plots for the building drags s D (v i ) predicted by the two models [START_REF] Guinot | Multiple porosity shallow water models for macroscopic modelling of urban oods[END_REF][START_REF] Guinot | Consistency and bicharacteristic analysis of integral porosity shallow water models. Explaining model oversensitivity to mesh design[END_REF] are shown on the lower row on Figures11, 24-28. The statistical distribution for the modelled drags are extremely dierent from those of the domain average s D,i . The structure of the predicted drag eld obviously follows that of the velocity eld. With Velickovic et al.'s model [START_REF] Velickovic | Steady-ow experiments in urban areas and anisotropic porosity model[END_REF], the predicted drag eld remains preferentially aligned along the main street directions. With the proposed model [START_REF] Guinot | Consistency and bicharacteristic analysis of integral porosity shallow water models. Explaining model oversensitivity to mesh design[END_REF], the predicted drag eld exhibits a weaker alignment with the main street directions. However, in both cases, the predicted drag vector scatter plots are very dierent from those computed from the ne grid simulations. 

Summary of results

Since the objective is to assess the accuracy of closure models for interfaces, the results are interpreted in the local coordinate system attached to a given interface. To this end, the normal and tangent unit discharges to Γ are dened respectively as follows q n = q Γ .n, q t = q Γ .t [START_REF] Mignot | Hydraulic models of the ow distribution in a four branch open channel junction with supercritical ow[END_REF] where n and t are respectively the normal and tangent unit vectors to Γ. Two types of interface Γ are used in the present study: x-facing interfaces, with n = (1, 0) T , and y-facing interfaces, with n = (0, 1) T . Table 6 gives the expressions for the various elements of the ux tensor in the local coordinate system attached to the interface for these two interface orientations.

Interface facing

F 11 = q n F 12 = q t F 21 = q 2 n h + g 2 h 2 F 22 = F 31 = qnqt h F 32 = q 2 t h + g 2 h 2 x q r q 2 h + g 2 h 2 qr h r 2 h + g 2 h 2 y r -q r 2 h + g 2 h 2 -qr h q 2 h + g 2 h 2
Table 6: Components of the ux tensor in the local coordinate system attached to the interface.

Table 7 summarizes the results obtained in Sections 4-5 for the various ux closures and momentum source term models. For the reader's convenience, the relevant subsections, gures and tables are also mentioned in Table 7. The main results are the following.

The closure model for the water depth is correct and the interface pressure term is computed correctly in all simulations for the SP, IP and DIP models.

The DIP model is the only model that yields a correct estimate for the normal mass ux q n . The SP and IP yield underestimated normal discharges compared to the reference data set.

All three models fail to reproduce the preferential directions for the interface ux q Γ when the ow is not aligned with the main directions of the street networks and/or if the street network is not orthogonal. This results in estimates for the momentum uxes q 2 n /h and q n q t /h.

The DIP model, however, yields a smaller error than the SP and IP models.

The transient momentum dissipation model active for positive waves is validated.

None of the building drag models proposed so far in the literature (including the model proposed in the present paper) succeeds to reproduce the reference drag term elds. A1.

Element

The DIP model is the more accurate of the three models. It yields accurate estimates for the normal mass ux and the pressure force, while the SP and IP do not. The normal momentum ux is correctly computed by the DIP closure provided that the street network is orthogonal and the ow propagates along one of the principal directions of the streets.

Other situations generate erroneous normal and transverse momentum uxes. The reason for this is found in the closures failing to account for the preferential alignment of the ow along the axes of the streets, a feature already observed in [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF] for the Sacramento application. The transient momentum dissipation model introduced in [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF] is also validated.

The latest building drag formula proposed so far in the literature [START_REF] Velickovic | Steady-ow experiments in urban areas and anisotropic porosity model[END_REF] is also invalidated, as well as a modied formula. Testing previously proposed building drag models [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF][START_REF] Sanders | Integral formulation of shallow water equations with anisotropic porosity for urban ood modelling[END_REF] would have been meaningless because these models fail to full basic requirements of the building drag.

A2.

The connectivity porosity is obviously not sucient to an accurate computation of the uxes and source terms. Simulations involving oblique waves the street network show that none of the SP, IP and DIP models accounts correctly for the alignment of the ow velocity eld with the main street axes. Consequently, the connectivity porosity should be supplemented with another indicator giving the direction of the ow. As far as the transient dissipation term is concerned, simulations involving identical porosities in both directions shows that the dissipation rate is also a function of the street width ratio.

A3.

As far as possible improvements of the DIP model are concerned, four main paths may be considered.

(

The non-uniform velocity eld across the street section mandates the introduction of a momentum distribution coecient χ ≥ 1 in the momentum uxes.

A model is still to be proposed for the law governing χ as a function of the angle between the velocity vector and the street axes. As far as real-world applications of porosity models are concerned, introducing a model for χ would have two positive consequences. First, the wave propagation properties of the porosity model would be improved. Second, χ is a measure of the variabiliity of the ow eld at the subgrid scale. It may thus bring added value in assessing the distribution of the the risk (that is a function of both the water depth and the ow velocity) on the subgrid scale.

(2) A law allowing for the preferential alignment of the velocity vectors with the street axes is needed. Together with the momentum distribution coecient, this would allow for a correct representation of the ow velocity elds and wave propagation properties along street networks. Such a closure should be free from the consistency issues identied in [START_REF] Guinot | Consistency and bicharacteristic analysis of integral porosity shallow water models. Explaining model oversensitivity to mesh design[END_REF].

(3) A model (empirical or theoretical) should also be proposed for the coecients µ ij of the momentum dissipation tensor as a function of the street width ratios and ow variables. In the current state of development of the DIP model, the coecients µ ij must be calibrated. While this increases the exibility of the model, adding parameters puts a heavier burden on the modeller, because their calibration requires additional runs and increases the needs for data collection.

In the eld of urban oods, however, data collection is not an easy task, especially in the case of the DIP momentum dissipation model, that is active only under transient conditions.

(4) Lastly, the building drag source term also requires improvements. None of the source terms explored so far in the literature of shallow water porosity models gives satisfactory results after calibration, a likely indication that the structure of the model should be revised. The possibility of adapting ow distribution models based on two-dimensional mass and momentum balance considerations such as [START_REF] Mignot | Hydraulic models of the ow distribution in a four branch open channel junction with supercritical ow[END_REF] should be considered. Improving the building drag model will yield improved ow velocity and discharge distributions within the streets, especially when the ow pattern is strongly two-dimensional (locally converging or diverging ows, as explored in Section 5).

A4.

The following recommendations can be made for the design of experiments for the validation of the ux and source term closures in shallow water porosity models.

( (2) Secondly, all three models identically fail to reproduce the alignment of the ow along the street axes when the average ow is oblique to the street directions.

Consequently, recording the longitudinal components of the ow velocity does not suce and a genuine two-dimensional ow eld exploration is needed.

( It is acknowledged that the simulations reported here are highly theoretical. The street networks are strictly rectilinear and periodic. All buildings are aligned exactly, the bottom is at and frictionless.

Non-ideal situations are likely to yield increased source terms in the momentum conservation equation.

Some of the conclusions drawn in the present study may may lose strength when additional topographic and frictional eects are included, and this issue should also be addressed in future experimental validation. Nevertheless, porosity models performing correctly against ideal situations is seen as an indispensable prerequisite to their application to real-world situations involving complex geometries.

Figure 12: Models M1-M5, IVPs R01-06. Scatter plot for (q Ω , q Γ ) over x-facing interfaces. Figure 14: Model M1b, IVPs R07-18. Scatter plot for (q Ω , q Γ ) over xand y-facing interfaces. Figure 16: Models M6-7, IVPs R01-06. Scatter plot for (q Ω , q Γ ) over xand y-facing interfaces. h momentum discharge closure over xand y-facing interfaces. xand y-facing interfaces. 

A.3 Transient momentum dissipation analysis

¡ +L -L q dx φ Γ φ Ω g 2 (h 2 L -h 2 R ) t .

A.4 Building drag model analysis

The following gures support and complement the analysis presented in Subsection 5.3. 

Figure 2 :

 2 Figure 2: Dening oblique Riemann problems using periodic boundary conditions. Top: IVPs R07-R12. Bottom: IVPs R13-R18.

Figure 3 :

 3 Figure 3: Boundary Value Problems. Boundary condition denition sketch.

Figure 4 :

 4 Figure 4: Flux closure model analysis. Denition sketch. Left: x-facing interface Γ. Right: y-facing interface Γ.

Figure 5 :

 5 Figure 5: Simulation M1b-R10. Unit discharge eld at t =1000 s for x ∈ [300m, 450 m].

Figure 6 :

 6 Figure 6: All simulations. Scatter plot for the hydrostatic pressure term.

Figure 7 :

 7 Figure 7: The four typical behaviours for the normalised water depth maps in the (x, t) plane for various simulations. (a) Simulation M5-R06, (b) Simulation M1b-R04, (c) Simulation M1b-R08, (d) Simulation M6-R02. The small triangular contour lines on the right-hand side of the shock wave are graphical interpolation artefacts.

Figure 8 :

 8 Figure 8: Transient momentum dissipation model. Total x-momentum as a function of time for Models M1-5 with IVPs R01-06. Flux balance is the solution obtained by setting µ xx = 0.

Figure 9 :

 9 Figure 9: Momentum balance for Models M1b and M4, IVPs R07-R18.

Figure 10 :

 10 Figure 10: Control volume denition for building drag analysis. Denition sketch.
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Figure 11

 11 Figure 11 illustrates the simulation results for Model M1b and BVP B03. The results for the remaining BVPs are plotted in Appendix A.4 for the sake of paper readbility (see Figures 24-28). .

Figure 11 :

 11 Figure 11: Simulation M1b-B03. Top: domain-averaged velocity vectors v i (left) and drag vectors s D,i (right). Bottom: predicted s D (v i ) using Velickovic et al.'s model (left) and the proposed formula (right).

  )Steady state experiments must be complemented with transient experiments.To start with, only transient experiments will allow the existence of transient momentum source terms to be conrmed experimentally. However, systematic urban dambreak problems with a detailed investigation of the water depth and ow elds are extremely time-consuming to realise experimentally. This is due to the long settling times needed to achieve well-controlled, still water initial conditions and the need to perform several replicates of the same experiment. Simpler wave propagation experiments could be used to validate the longitudinal mass and momentum ux closures. A possible setup is the following: starting from a steady initial state with water owing along the main street direction, measuring the propagation speeds of small perturbations in the upstream and downstream directions across several block periods would yield the eigenvalues of the wave propagation problem. Erroneous wave propagation speeds would indicate erroneous ux models. Such experiments would take only a few seconds and could be replicated a large number of times, thus allowing a wide range of ow congurations to be explored.

Figure 13 :

 13 Figure 13: Models M1-M5, IVPs R01-06. Scatter plot for (r Ω , r Γ ) over x-facing interfaces.

Figure 15 :

 15 Figure 15: Model M1b, IVPs R07-18. Scatter plot for (r Ω , r Γ ) over xand y-facing interfaces.

Figure 17 :

 17 Figure 17: Models M6-7, IVPs R01-06. Scatter plot for (r Ω , r Γ ) over xand y-facing interfaces.

Figure 18 : 29 Figure 19 :

 182919 Figure 18: Models M1-5, IVPs R01-06. Scatter plot for the q 2 h momentum discharge closure overx-facing interfaces.

Figure 20 :

 20 Figure 20: Models M1-5, IVPs R01-06. Scatter plot for the r 2 h momentum discharge closure over

Figure 21 :

 21 Figure 21: Model M1b, IVPs R07-18. Scatter plot for the q 2

Figure 22 :

 22 Figure 22: Models M6 and M7, IVPs R01-07. Scatter plot for the q 2 h momentum discharge closure over

Figure and Table 5 Figure 23 :

 523 Figure andTable 5 support the analysis presented in Subsections 5.1-2.

Figure 24 :

 24 Figure 24: Simulation M1b-B01. Top: domain-averaged velocity vectors v i (left) and drag vectors s D,i (right). Bottom: predicted s D (v i ) using Velickovic et al.'s model (left) and the proposed formula (right).

Figure 25 :

 25 Figure 25: Simulation M1b-B02. Top: domain-averaged velocity vectors v i (left) and drag vectors s D,i (right). Bottom: predicted s D (v i ) using Velickovic et al.'s model (left) and the proposed formula (right).

Figure 26 :

 26 Figure 26: Simulation M1b-B04. Top: domain-averaged velocity vectors v i (left) and drag vectors s D,i (right). Bottom: predicted s D (v i ) using Velickovic et al.'s model (left) and the proposed formula (right).

Figure 27 :

 27 Figure 27: Simulation M1b-B05. Top: domain-averaged velocity vectors v i (left) and drag vectors s D,i (right). Bottom: predicted s D (v i ) using Velickovic et al.'s model (left) and the proposed formula (right).

Figure 28 :

 28 Figure 28: Simulation M1b-B06. Top: domain-averaged velocity vectors v i (left) and drag vectors s D,i (right). Bottom: predicted s D (v i ) using Velickovic et al.'s model (left) and the proposed formula (right).

  

  

Table 1 :

 1 

	M1a	75	25	150	50	π/2	5/9	1/3	1/3
	M1b	150	50	150	50	π/2	5/9	1/3	1/3
	M1c	150	50	75	25	π/2	5/9	1/3	1/3
	M2	100	20	100	20	π/2	9/25	1/5	1/5
	M3	100	10	100	10	π/2	19/100	1/10	1/10
	M4	100	20	50	20	π/2	13/25	1/5	2/5
	M5	50	20	100	20	π/2	13/25	2/5	1/5
	M6	150	50	150	50	tan -1 (2)	5/9	1/3	1/3
	M7	150	50	150	50	π/4	5/9	1/3	1/3

Model nomenclature. Notation: see Figure

1

.

Table 2 :

 2 

Initial Value Problem (IVP) nomenclature. Notation: see Figure 2.

Table 7 :

 7 Closure accurate for all models when the street network is orthogonal and the ow is aligned with one of the street axes. In other situations, all models fail to account for the alignment of q Γ with the street axes. Summary of the analysis results for the ux and source term models. base of 96 rened shallow water simulations over periodic street networks is set up. 78 IVPs and 18 BVPs combined with 9 dierent geometries are analysed to assess the governing assumptions of the SP, IP and DIP models. The purpose is to answer Questions Q1-Q4 in the Introduction section. Validation is carried out by comparing the closure relationships of the SP/IP/DIP models to the rened simulation results on the scale of a building block. This contrasts with more usual, indirect validation techniques, that use global indicators operating on the ow solution over the complete domain. Questions Q1-4 are answered as follows.

		Section of paper	Result(s)
	Normal mass ux F 11	4.2, Figs. 12, 14-17	SP and IP closures inaccurate. DIP closure accurate.
	Transverse mass	4.2, Figs. 13,	
	ux F 12	14-17	
	Hydrostatic		
	pressure term g 2 h 2	4.3, Fig. 6	Closure accurate for all models
	in F 21 and F 32		
			SP and IP closures inaccurate. DIP closure accurate when the street
	Momentum ux q 2 n h in F 21 and F 32	4.3, Figs. 18, 21, 22	network is orthogonal and the ow is aligned with one of the street axes. In other situations, the ux is underestimated substantially. Correction factor
			χ ≥ 1 needeed.
	Momentum ux F 22 = F 31 = qnq t h	4.3, Fig. 19	All closures strongly inaccurate when the street network is not orthogonal and/or the ow is not aligned with one of the main street axes
	Momentum ux q 2 t h in F 32	4.3, Fig. 20	All closures inaccurate. Of secondary importance because this term is not involved in the momentum balance.
	Momentum dissipation term s T	5.1-2, Figs. 8, 9, Table 8	Model accurate. Dissipation coecient more sensitive to street width ratio than to porosity.
	Building drag term s D	5.3, Figs. 11, 24-28, Table 5.	Both models inaccurate
	7 Conclusions	

A

  ) Experimental validation should not focus only on the water depth eld, but also on the ow velocity (or unit discharge) elds. As shown by the present experiments, the SP, IP and DIP models yield identically accurate water depth closures. Only comparing the unit discharge/ow velocity closures to the rened ow simulations allows the three models to be discriminated. The numerical experiments reported here also indicate that the ow velocity proles cannot be assumed uniform across the streets in a number of situations. Consequently, measuring only discharges within the streets does not suce to achieve an accurate momentum balance. Exploring the detailed velocity proles across the streets is mandatory.

Table 8 :

 8 3 s -1 Transient momentum dissipation model. Momentum balance results. The dissipation ratio is computed as 1 -

	φΓ φΩ	g 2 h 2 L -h 2 R t m 3 s -1	Ratio

Appendix A. [START_REF] Boris | Flux-corrected transport. I. SHASTA, a uid transport algorithm that works[END_REF] gives the numerical values of the left-and right-hand side members of equation [START_REF] Kim | Mesh type tradeos in 2D hydrodynamic modeling of ooding with a Godunov-based ow solver[END_REF] and the ratio of the two for the 42 simulations.

In almost all cases, the integral of the x-momentum is observed to increase linearly with time.

Two slight deviations from the linear behaviour can be observed, for simulations M4-R02 and M4-R03. This deviation cannot be attributed with absolute certainty to the development of the perturbations mentioned in Subsection 5.1, because it is not observed for Simulations M1b-R04 and M5-R04, where a perturbation is also observed to develop. The remaining 40 simulations show a remarkable agreement with a linear trend. When the connectivity porosity φ Γ is isotropic (M1a-c, M2-M5), the amount of dissipation is almost independent of φ Γ . As a matter of fact, the dotted curves for M1b, M2-5 are very close to each other. The amount of dissipation larger than in the isotropic case when the porosity φ 2 of the lateral streets is larger than the porosity φ 1 of the longitudinal streets (Model M4). It is smaller than in the isotropic case when the porosity of the lateral streets is smaller than that of the longitudinal streets (Model M5). The amount of dissipation is inuenced by the amplitude of the Riemann problem: the larger h L , the larger the dissipation.

When the Riemann problem is not aligned with one of the main street directions, additional dissipation occurs. This is illustrated by Figure9. The momentum balance is carried out for Models M1b and M4 combined with IVPs R07-18. The solid line shows the ux balance on the right-hand side of equation ( 18), the dashed lines replicate the results of IVPs R01-06 shown on Figure 8, the dotted lines show the results for IVPs R07-18. Figure 9 shows that momentum dissipation is increased signicantly when the Riemann problem does not propagate along the main street directions. Besides, the dotted lines clearly have a non-zero curvature. This does not necessarily mean that the transient momentum dissipation model ( 9) is invalid in this case. However, it is clearly overridden by stronger terms. Since the integral of the x-momentum is not a linear function of time, these additional dissipation terms cannot be expected to take the form [START_REF] Ghostine | Simulation of supercritical ow in crossroads: Confrontation of a 2D and 3D numerical approaches to experimental results[END_REF]. The gures hereafter support the analysis of the mass ux closure model presented in Subsection 4.2.

Appendix -Additional gures and tables