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Abstract

This article addresses the asymptotic response of viscoelastic heterogeneous media in the fre-
quency domain, at high and low frequencies, for different types of elementary linear viscoelastic
constituents. By resorting to stationary principles for complex viscoelasticity and adopting a
classification of the viscoelastic behaviours based on the nature of their asymptotic regimes,
either elastic or viscous, four exact relations are obtained on the overall viscoelastic complex
moduli in each case. Two relations are related to the asymptotic uncoupled heterogeneous prob-
lems while the two remaining ones result from the viscoelastic coupling which manifests itself
in the transient regime. These results also provide exact conditions on certain integrals in time
of the effective relaxation spectrum. This general setting encompasses the results obtained in
preceding studies on mixtures of Maxwell constituents [1, 2].
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1. Introduction

Homogeneous viscoelastic materials are characterized by a time-dependent response which
can be expressed as a hereditary integral involving their relaxation or creep functions and a me-
chanical loading history. These constitutive functions describe asymptotically, at short and long
times, elastic or viscous behaviours while the intermediate time response (i.e. transient regime)
exhibits a viscoelastic character. The latter is contained in the relaxation and retardation spec-
tra of the material. The effective response of a viscoelastic heterogeneous medium also presents
these different regimes. For Kelvin-Voigt or Maxwell constituents, it has been demonstrated that
the asymptotic effective properties are the homogenized tensors of the corresponding uncoupled
elastic or viscous heterogeneous problem [3, 4]. Besides, it has been established that the overall
constitutive response is solution of an integro-differential equation whereas the local response
is described by a differential equation. This feature has been termed a “long memory” effect
[5, 6, 3, 4]. In the case of a mixture of Maxwell materials, this implies a non vanishing retar-
dation spectrum at the overall scale. Therefore, the effective creep response exhibits a transient
regime, with a continuous decrease of the creep strain rate, whereas the local constitutive law
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does not exhibit a transient creep response. Similar features hold for the relaxation response of
a mixture of Kelvin-Voigt materials.

In this context, exact relations have been more recently obtained on the overall relaxation
and retardation spectra of heterogeneous materials made of Maxwell constituents [1, 2]. They
supplement the classical ones previously derived on the asymptotic uncoupled regimes. These
exact relations on the overall transient response involve a coupling between the local viscoelastic
properties and the local fields which are solutions of the asymptotic heterogeneous problems.
The present study aims at deriving similar results for any type of elementary viscoelastic con-
stituents, assuming that the heterogeneous medium is made of elementary constituents of the
same type. As with Maxwell constituents, these results can be further used to derive approximate
homogenization models.

2. The different types of linear viscoelastic behaviours

According to the classical linear theory of viscoelasticity [7, 8, 9], the stress response σ(t) to
a given derivable strain loading path ε(u), u ∈ [0; t], with additional discontinuities (i.e. strain
jumps) [ε]i at times ti and initial conditions σ(t = 0) = 0, reads

σ(t) =

∫ t

0
L(t− u) : ε̇(u) du+

∑

i

L(t− ti) : [ε]i . (1)

L(t) is the viscoelastic stiffness tensor (i.e. relaxation function) whose general form is

L(t) = Ler + Lvgδ(t) +

∫ +∞

0
G(τ) e−t/τ dτ (2)

with G the relaxation spectrum. Besides, by reference to polymer materials, the viscous and
elastic properties at short and long times (high and low frequencies) are respectively termed
“glassy” (subindex g) and “relaxed” (subindex r). So, Ler is the relaxed elastic stiffness while Lvg
is the glassy viscous stiffness. Note also that δ(t) is the Dirac delta function. The stress response
is therefore given by the time derivative of the convolution product of the functions L and ε.
It is usually termed Stieltjes convolution product, by reference to the Stieltjes integral which
generalizes the classical Riemann integral [10], and is noted ~ in the sequel. The constitutive
relation (1) can thus be written in a concise manner as

σ(t) =
d
dt

(L ∗ ε) (t) = (L~ ε) (t). (3)

Similarly, the strain response ε(t) to a given derivable stress loading path σ(u), u ∈ [0; t], with
additional discontinuities (i.e. stress jumps) [σ]i at times ti and initial conditions ε(t = 0) = 0,
reads

ε(t) = (M~ σ) (t) =

∫ t

0
M(t− u) : σ̇(u) du+

∑

i

M(t− ti) : [σ]i . (4)

M(t) is the viscoelastic compliance tensor (i.e. creep function) whose general form is

M(t) = Meg + tMvr +

∫ +∞

0
J(τ)

(
1− e−t/τ

)
dτ (5)
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with Meg the glassy elastic compliance, Mvr the relaxed viscous compliance and J the retarda-
tion spectrum1. The relaxation and retardation spectra characterize the viscoelastic transient
response.

By considering the possible combinations of elastic or viscous asymptotic regimes, the linear
viscoelastic behaviours can be classified into four categories [12] which are summarized in Table
1. The subsequent analysis is closely related to this classification. For later use, it can be noted
that the Maxwell and Kelvin-Voigt models are described by two constitutive tensors, respectively
elastic and viscous, whereas the Zener and anti-Zener models are described by three constitutive
tensors (i.e. two elastic (resp. viscous) and one viscous (resp. elastic) tensors).

Type Meg Mvr Ler Lvg Elementary constituent Short time response Long time response
I > 0 0 > 0 0 Zener Elastic Elastic
II > 0 > 0 0 0 Maxwell Elastic Viscous
III 0 0 > 0 > 0 Kelvin-Voigt Viscous Elastic
IV 0 > 0 0 > 0 anti-Zener Viscous Viscous

Table 1: The four types of linear viscoelastic response [12, 13]

3. Overall viscoelastic functions of heterogeneous media

Exact relations on the asymptotic responses of viscoelastic heterogeneous media with elemen-
tary constituents of the same type (Table 1) are derived in the following. These results encompass
those obtained in [1, 2] for Maxwell constituents. By making use of stationary principles for com-
plex constitutive behaviours [14], these relations are derived for the real and imaginary parts of
the effective complex modulus, which are the quantities most commonly measured by dynamic
mechanical analysis. Implications on the relaxation spectrum are also given. For conciseness,
the corresponding relations for the overall complex compliance and the retardation spectrum are
not reported here. They can be obtained in a similar manner by a dual analysis.

3.1. Description of a heterogeneous viscoelastic medium
The heterogeneous medium occupies a volume element Ω and comprises N different homo-

geneous phases of volume Ω(s) with viscoelastic relaxation L(s)(t) and creep M(s)(t) functions,
s ∈ [1;N ]. Besides, it is assumed that Ω(s) � Ω and that the phases are perfectly bonded. The
pointwise viscoelastic stiffness and compliance tensors thus read

L(x, t) =
N∑

s=1

L(s)(t)χ(s)(x) and M(x, t) =
N∑

s=1

M(s)(t)χ(s)(x) (6)

with χ(s) the characteristic function of phase (s), that is

χ(s)(x) =





1 if x ∈ Ω(s),

0 otherwise.
(7)

1It is noted that the spectra G and J present several ranges of relaxation (resp. retardation) times which
depend on their symmetry class [11, Appendix A]
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L(s)(t) and M(s)(t) are inverse functions for the Stieltjes convolution product, that is L(s) ~
M(s) = I. The volume averages over Ω and Ω(s) are respectively denoted • = 〈•〉 and •(s) = 〈•〉(s).
By definition of the characteristic function, the volume fraction of phase (s) is cs = 〈χ(s)〉.

3.2. Local problems for general loading paths
The local problem to be solved in the volume element Ω subjected to a strain loading history

ε(t) from t = 0 to t = T and classical boundary conditions (i.e. uniform or periodic) reads




σ(x, t) = (L~ ε) (x, t), ∀(x, t) ∈ Ω× [0;T ],

divσ = 0, curl(tcurl ε) = 0, ∀(x, t) ∈ Ω× [0;T ],

〈ε(t)〉 = ε(t), ∀t ∈ [0;T ].

(8)

Similarly, the local problem corresponding to a stress loading history σ(t) reads




ε(x, t) = (M~ σ) (x, t), ∀(x, t) ∈ Ω× [0;T ],

divσ = 0, curl(tcurl ε) = 0, ∀(x, t) ∈ Ω× [0;T ],

〈σ(t)〉 = σ(t), ∀t ∈ [0;T ].

(9)

Depending on the applied loading history, the overall constitutive law is defined by

σ(t) =
(
L̃~ ε

)
(t) or ε(t) =

(
M̃~ σ

)
(t), ∀t ∈ [0;T ], with L̃~ M̃ = I. (10)

3.3. Local problem for harmonic strain loadings
The response of a heterogeneous media to a sinusoidal loading is classically studied by making

use of the Laplace-Carson (LC) transform of the constitutive equations for a purely imaginary
transform variable p [15]. For the particular case of an overall harmonic strain loading, that is
ε(t) = ε∗ eıωt (where ı =

√
−1), the local problem corresponding to the steady-state regime at

angular frequency ω reads




σ∗(x, ıω) = L∗(x, ıω) : ε∗(x, ıω), ∀x ∈ Ω,

L∗(x, ıω) = LC(L(x, t)), ∀x ∈ Ω,

divσ∗ = 0, curl(tcurl ε∗) = 0, ∀x ∈ Ω,

〈ε∗〉 = ε∗.

(11)

L∗(x, ıω) is the LC transform of the local relaxation function L(x, t) with transform variable
p = ıω. It can be decomposed into

L∗(x, ıω) = L′(x, ω) + ıL′′(x, ω) (12)

where L′ and L′′ are the storage and loss moduli which are respectively proportional to the stored
and dissipated energies. The problem to be solved, for a given angular frequency ω, therefore
corresponds to a symbolically heterogeneous elastic problem with pointwise complex fields ε∗,
σ∗ and L∗. The overall complex constitutive law can thus be expressed in the form

σ∗ = L̃∗(ıω) : ε∗ with L̃∗(ıω) = L̃′(ω) + ıL̃′′(ω). (13)
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Besides, it is worth noting that the asymptotic local fields (i.e. as ω → +∞ and ω → 0) are
solutions of the purely elastic or viscous heterogeneous problems corresponding to the glassy and
relaxed regimes. It is recalled that the nature of the asymptotic states depends on the type of
viscoelastic behaviour considered (Table 1). The local (complex) stress field satisfies

lim
ω→+∞

σ∗(x, ıω) = σg(x) and lim
ω→0

σ∗(x, ıω) = σr(x). (14)

with σg and σr the (real) stress fields solution of the heterogeneous glassy and relaxed problems.
The same asymptotic properties hold for the strain (rate) field ε∗(x, ıω) with asymptotic fields
εg(x) and εr(x) respectively.

3.4. Saddle-point variational principles for complex viscoelasticity
The complex constitutive relation (11)1 can be rewritten as a system of real equations

(
σ′

σ′′

)
= LI :

(
ε′′

ε′

)
with LI =

(
−L′′ L′

L′ L′′

)
(15)

where (σ′, ε′) and (σ′′, ε′′) are real fields. Observing that the quadratic form associated with
LI is a saddle-shaped function, Cherkaev and Gibiansky [14] derived the following stationary
principle for the real fields ε′(x, ω) and ε′′(x, ω)

(
ε′′

ε′

)
:

(
−L̃′′ L̃′

L̃′ L̃′′

)
:

(
ε′′

ε′

)
= min

ε′,〈ε′〉=ε′
max

ε′′,〈ε′′〉=ε′′

〈(
ε′′

ε′

)
:

(
−L′′ L′

L′ L′′

)
:

(
ε′′

ε′

)〉
. (16)

The left-hand side of (16) is the imaginary part of the overall “complex energy” φ∗ = σ∗ : ε∗,
that is

Im(φ∗) = Im (σ∗ : ε∗) =
〈
σ′′ : ε′ + σ′ : ε′′

〉
. (17)

By considering an alternative rewriting of the complex constitutive law (11)1
(
σ′

−σ′′
)

= LR :

(
ε′

ε′′

)
with LR =

(
L′ −L′′
−L′′ −L′

)
(18)

another saddle-point variational principle can be established
(
ε′

ε′′

)
:

(
L̃′ −L̃′′
−L̃′′ −L̃′

)
:

(
ε′

ε′′

)
= min

ε′,〈ε′〉=ε′
max

ε′′,〈ε′′〉=ε′′

〈(
ε′

ε′′

)
:

(
L′ −L′′
−L′′ −L′

)
:

(
ε′

ε′′

)〉
(19)

which is the real part of the overall “complex energy” φ∗, that is

Re(φ∗) = Re (σ∗ : ε∗) =
〈
σ′ : ε′ − σ′′ : ε′′

〉
. (20)

From the definition of φ∗ and a lemma on the derivative of the stationary value of an energy
[16], it follows that

∂

∂ω
(Re(φ∗)) =

〈(
ε′

ε′′

)
:
∂ LR

∂ω
:

(
ε′

ε′′

)〉
and

∂

∂ω
(Im(φ∗)) =

〈(
ε′′

ε′

)
:
∂ LI

∂ω
:

(
ε′′

ε′

)〉
.

(21)
We can build on the two stationary principles (16) and (19) and their derivatives with respect

to the angular frequency ω (21) to obtain exact asymptotic relations on the effective complex
modulus of heterogeneous viscoelastic media at low and high frequencies. These relations are
investigated in the sequel for the different cases of elementary viscoelastic constituents (Table
1).

5



3.5. Mixture of Zener constituents (Type I viscoelasticity)
3.5.1. Local and effective viscoelastic properties

The behaviour of a Zener constituent (a.k.a. standard linear solid model) is characterized by
elastic responses in the asymptotic regimes

(
Ler , Meg

)
and presents a unique “transient” viscous

stiffness tensor (Lv). Its constitutive relation is solution of a homogeneous differential equation
which reads

σ(t) + Lv :
(
Leg − Ler

)−1
: σ̇(t) = Ler : ε(t) + Leg : Lv :

(
Leg − Ler

)−1
: ε̇(t). (22)

The viscoelastic stiffness and compliance tensors of the Zener phase (s) are

L(s)(t) = L(s)
er + G(s) e−t/τ

(s)
and M(s)(t) = M(s)

eg + J(s)
(

1− e−t/τ
′(s)
)

(23)

with τ (s) and τ ′(s) the relaxation and retardation times. It can be noted that the eigenvalues of

L
(s)
v :

(
L
(s)
eg − L

(s)
er

)−1
corresponds to the relaxation times of the Zener constituent (s). Also, the

asymptotic elastic properties tensors obey the following relations

L(s)
er =

(
M(s)

eg + J(s)
)−1

and M(s)
eg =

(
L(s)
er + G(s)

)−1
. (24)

The general expressions of the effective relaxation and creep functions, consistent with the elastic
asymptotic regimes, are

L̃(t) = L̃er +

∫ +∞

0
G̃(τ) e−t/τ dτ and M̃(t) = M̃eg +

∫ +∞

0
J̃(τ)

(
1− e−t/τ

)
dτ (25)

and the effective response to strain harmonic loadings with angular frequency ω is described by
the complex viscoelastic stiffness tensor L̃∗(ıω) given by

L̃∗(ıω) = LC(L̃(t)) = L̃er +

∫ +∞

0

ıωτ

1 + ıωτ
G̃(τ) dτ. (26)

3.5.2. Exact relations on the overall complex modulus and relaxation spectrum
From the stationary principles on the complex energy φ∗ and the asymptotic properties of

the strain field ε∗, it follows that




lim
ω→+∞

ε : L̃′(ω) : ε = ε : L̃eg : ε =
∑

s

cs L
(s)
eg :: 〈εg ⊗ εg〉(s) ,

lim
ω→0

ε : L̃′(ω) : ε = ε : L̃er : ε =
∑

s

cs L
(s)
er :: 〈εr ⊗ εr〉(s) ,

lim
ω→0

ε :
∂L̃′′

∂ω
(ω) : ε =

∑

s

cs L
(s)
v :: 〈εr ⊗ εr〉(s) ,

lim
ω→+∞

−ω2ε :
∂L̃′′

∂ω
(ω) : ε =

∑

s

cs

(
G(s) : L(s)

v

−1
: G(s)

)
:: 〈εg ⊗ εg〉(s) .

(27)

The first two relations (27)1,2 classically express the effective elastic properties in the glassy
and relaxed asymptotic states at high and low frequencies respectively. The last two relations
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t

σ
(t

)

σ(0+)

σ(+∞)

0

∫ +∞

0

G̃(τ)dτ = L̃eg − L̃er

L̃er : ε

L̃eg : ε

(a)

t

σ̇
(t

)

−
∫ +∞

0

G̃(τ)

τ
dτ : ε

0

σ̇(0+)

(b)

t

σ
(t

)

L̃er : ε̇

∫ +∞

0

τG̃(τ)dτ : ε̇

(c)

Figure 1: Physical interpretation on the overall relaxation spectrum G̃ for Type I viscoelastic behaviour. (a) and
(b): Relaxation stress and stress rate for a constant macroscopic strain ε. (c): Stress response for a constant
macroscopic strain rate ε̇.

(27)3,4 result from the viscoelastic nature of the transient response. They combine the local
viscoelastic properties and the intraphase second moments of the strain fields which are solutions
of the asymptotic heterogeneous problems.

From the form of the complex moduli tensor (26), it is also noted that

lim
ω→0

L̃′′(ω) = lim
ω→+∞

L̃′′(ω) = lim
ω→+∞

ω2∂L̃
′

∂ω
(ω) = lim

ω→0

∂L̃′

∂ω
(ω) = 0. (28)

By using the expression (26), exact conditions are obtained as well from (27)1,3,4 on integrals in
time of the effective relaxation spectrum G̃, namely

∫ +∞

0
G̃(τ) dτ,

∫ +∞

0
τG̃(τ) dτ and

∫ +∞

0

G̃(τ)

τ
dτ. (29)

Their respective physical interpretations, in the time domain, are given in Figure 1.
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3.6. Mixture of Maxwell constituents (Type II viscoelasticity)
This case has been studied in details in [1, 2]. The main results are recalled here to make the

present article self-contained.

3.6.1. Local and effective viscoelastic properties
The response of a Maxwell constituent is characterized by an elastic regime (Meg) at short

times (t→ 0+) and a viscous regime (Mvr) at long times (t→ +∞). Its constitutive relation is
solution of the differential equation

Mvr : σ(t) + Meg : σ̇(t) = ε̇(t). (30)

Hence, the viscoelastic stiffness and compliance tensors of the Maxwell phase (s) are

L(s)(t) = L(s)
eg e−t/τ

(s)
and M(s)(t) = M(s)

eg + M(s)
vr t. (31)

The inverse of the relaxation times τ (s) are the eigenvalues of L(s)
eg : M

(s)
vr while the retardation

times are null.
The corresponding overall relaxation and creep functions have the following general expres-

sions

L̃(t) =

∫ +∞

0
G̃(τ) e−t/τ dτ and M̃(t) = M̃eg + M̃vr t+

∫ +∞

0
J̃(τ)

(
1− e−t/τ

)
dτ. (32)

The complex viscoelastic stiffness tensor L̃∗(ıω) reads

L̃∗(ıω) = LC(L̃(t)) =

∫ +∞

0

ıωτ

1 + ıωτ
G̃(τ) dτ. (33)

3.6.2. Exact relations on the overall complex modulus and relaxation spectrum
From the stationary principles on φ∗ and the asymptotic properties of the strain field ε∗, we

obtain




lim
ω→+∞

ε : L̃′(ω) : ε = ε : L̃eg : ε =
∑

s

cs L
(s)
eg :: 〈εg ⊗ εg〉(s)

lim
ω→0

ε̇ :
1

ω
L̃′′(ω) : ε̇ = ε̇ : L̃vr : ε̇ =

∑

s

cs L
(s)
vr :: 〈ε̇r ⊗ ε̇r〉(s) ,

lim
ω→+∞

−ω2ε :
∂L̃′′

∂ω
(ω) : ε =

∑

s

cs

(
L(s)
eg : M(s)

vr : L(s)
eg

)
:: 〈εg ⊗ εg〉(s) ,

lim
ω→0

ε̇ :
∂

∂ω

(
1

ω
L̃′(ω)

)
: ε̇ =

∑

s

cs

(
L(s)
vr : M(s)

eg : L(s)
vr

)
:: 〈ε̇r ⊗ ε̇r〉(s) .

(34)

Besides, the general expression of the complex moduli tensor (33) implies that

lim
ω→+∞

L̃′′(ω) = lim
ω→0

1

ω
L̃′(ω) = lim

ω→+∞
ω2∂L̃

′

∂ω
(ω) = lim

ω→0

∂

∂ω

(
1

ω
L̃′′(ω)

)
= 0. (35)
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t

σ
(t

)

σ(0+)

0

∫ +∞

0

G̃(τ)dτ : ε

(a)

t

σ̇
(t

)

−
∫ +∞

0

G̃(τ)

τ
dτ : ε

0

σ̇(0+)

(b)

t

σ
(t

)

∫ +∞

0

τ2 G̃(τ) dτ : ε̇

σ(+∞)

∫ +∞

0

τG̃(τ)dτ : ε̇

(c)

Figure 2: Physical interpretation on the overall relaxation spectrum G̃ for Type II viscoelastic behaviour. (a),
(b) Relaxation stress and stress-rate for a prescribed macroscopic strain ε and (c) stress response for a constant
applied macroscopic strain rate ε̇.

By introducing the expression (33), the relations (34) give as well conditions on integrals of the
overall relaxation spectrum G̃

∫ +∞

0
G̃(τ) dτ,

∫ +∞

0

G̃(τ)

τ
dτ,

∫ +∞

0
τG̃(τ) dτ and

∫ +∞

0
τ2G̃(τ) dτ (36)

whose physical meaning is shown in Figure 2 for constant macroscopic strain (rate) loadings.

3.7. Mixture of Kelvin-Voigt constituents (Type III viscoelasticity)
3.7.1. Local and effective viscoelastic properties

The response of a Kelvin-Voigt material is characterized by a viscous regime (Lvg) at short
times (t→ 0+) and an elastic regime (Ler) at long times (t→ +∞). Its constitutive relation is
solution of

σ(t) = Ler : ε(t) + Lvg : ε̇(t). (37)
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t

σ
(t

)

σ(0+)

L̃er : ε̇

∫ +∞

0

τG̃(τ)dτ : ε̇

L̃vg : ε̇

(a)

t

σ̇
(t

)

σ̇(+∞)

σ̇(0+)

∫ +∞

0

G̃(τ)dτ : ε̇

L̃er : ε̇

(b)

Figure 3: Physical interpretation on the overall relaxation spectrum G̃ for Type III viscoelastic behaviour. Stress
and stress rate for a constant macroscopic strain rate ε̇.

Hence, the viscoelastic stiffness and compliance tensors of the Kelvin-Voigt phase (s) are

L(s)(t) = L(s)
er + L(s)

vg δ(t) and M(s)(t) = M(s)
er

(
1− e−t/τ

′(s)
)
. (38)

The retardation times τ ′(s) are the eigenvalues of L(s)
vg : M

(s)
er while the relaxation times are null.

In agreement with the asymptotic regimes, the general expressions of the relaxation and creep
functions are

L̃(t) = L̃er + L̃vg δ(t) +

∫ +∞

0
G̃(τ) e−t/τ dτ and M̃(t) =

∫ +∞

0
J̃(τ)

(
1− e−t/τ

)
dτ (39)

and the complex viscoelastic stiffness tensor L̃∗(ıω) reads

L̃∗(ıω) = LC(L̃(t)) = L̃er + ıωL̃vg +

∫ +∞

0

ıωτ

1 + ıωτ
G̃(τ) dτ. (40)

3.7.2. Exact relations on the overall complex modulus and relaxation spectrum
From the stationary principles on φ∗ and the asymptotic properties of the strain field ε∗, we

get 



lim
ω→0

ε : L̃′(ω) : ε = ε : L̃er : ε =
∑

s

cs L
(s)
er :: 〈εr ⊗ εr〉(s) ,

lim
ω→+∞

ε̇ :
1

ω
L̃′′(ω) : ε̇ = ε̇ : L̃vg : ε̇ =

∑

s

cs L
(s)
vg :: 〈ε̇g ⊗ ε̇g〉(s) ,

lim
ω→0

ε :
∂L̃′′

∂ω
(ω) : ε =

∑

s

cs L
(s)
vg :: 〈εr ⊗ εr〉(s) ,

lim
ω→+∞

−ω2 ε̇ :
∂

∂ω

(
1

ω
L̃′(ω)

)
: ε̇ =

∑

s

cs L
(s)
er :: 〈ε̇g ⊗ ε̇g〉(s) .

(41)
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Besides, the general expression of the complex moduli tensor (40) implies that

lim
ω→0

L̃′′(ω) = lim
ω→+∞

1

ω
L̃′(ω) = lim

ω→0

∂L̃′

∂ω
(ω) = lim

ω→+∞
ω2 ∂

∂ω

(
1

ω
L̃′′(ω)

)
= 0. (42)

By incorporating the definition (40) into the relations (41)3,4, conditions on the following integrals
of the relaxation spectrum G̃ are obtained

∫ +∞

0
τG̃(τ) dτ and

∫ +∞

0
G̃(τ) dτ. (43)

Their physical interpretations, in the time domain, are given in Figure 3.

3.8. Mixture of anti-Zener constituents (Type IV viscoelasticity)
3.8.1. Local and effective viscoelastic properties

The behaviour of anti-Zener constituents is characterized by viscous responses in the asymp-
totic regimes

(
Lvg , Mvr

)
and shows a unique “transient” elastic compliance tensor (Me). Its

constitutive response is described by a homogeneous differential equation which may be written
as

σ(t) +
(
Lvr − Lvg

)
: Me : σ̇(t) = Lvr : ε̇(t) +

(
Lvr − Lvg

)
: Me : Lvg : ε̈(t). (44)

The viscoelastic stiffness and compliance tensors of the anti-Zener phase (s) are

L(s)(t) = L(s)
vg δ(t) + G(s) e−t/τ

(s)
and M(s)(t) = M(s)

vr t+ J(s)
(

1− e−t/τ
′(s)
)

(45)

with τ (s) and τ ′(s) the relaxation and retardation times. The relaxation times τ (s) are the
eigenvalues of

(
L
(s)
vr − L

(s)
vg

)
: M

(s)
e and the asymptotic viscous properties tensors satisfy

L(s)
vr = L(s)

vg + τ (s)G(s) and M(s)
vg = M(s)

vr +
1

τ ′(s)
J(s). (46)

It is noted that G(s) = M
(s)
e

−1
= L

(s)
e . In agreement with the viscous asymptotic regimes, the

overall relaxation and creep functions can be expressed as

L̃(t) = L̃vg δ(t) +

∫ +∞

0
G̃(τ) e−t/τ dτ and M̃(t) = M̃vr t+

∫ +∞

0
J̃(τ)

(
1− e−t/τ

)
dτ. (47)

The corresponding overall complex relaxation tensor L̃∗(ıω) reads

L̃∗(ıω) = LC(L̃(t)) = ıω L̃vg +

∫ +∞

0

ıωτ

1 + ıωτ
G̃(τ) dτ. (48)
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t

σ
(t

)

∫ +∞

0

τ2 G̃(τ) dτ : ε̇

σ(0+)

σ(+∞)

∫ +∞

0

τG̃(τ)dτ : ε̇

L̃vg : ε̇

(a)

t

σ
(t

)

σ(0+)

0

∫ +∞

0

G̃(τ)dτ : ε

(b)

Figure 4: Physical interpretation on the overall relaxation spectrum G̃ for Type IV viscoelastic behaviour. (a):
Stress response for a constant macroscopic strain rate ε̇. (b): Relaxation stress for a constant macroscopic strain
ε.

3.8.2. Exact relations on the overall complex modulus and relaxation spectrum
From the stationary principles on φ∗ and the asymptotic properties of the strain field ε∗, it

follows that




lim
ω→0

ε̇ :
1

ω
L̃′′(ω) : ε̇ = ε̇ : L̃vr : ε̇ =

∑

s

cs L
(s)
vr :: 〈ε̇r ⊗ ε̇r〉(s) ,

lim
ω→+∞

ε̇ :
1

ω
L̃′′(ω) : ε̇ = ε̇ : L̃vg : ε̇ =

∑

s

cs L
(s)
vg :: 〈ε̇g ⊗ ε̇g〉(s) ,

lim
ω→+∞

−ω2ε̇ :
∂

∂ω

(
1

ω
L̃′(ω)

)
: ε̇ =

∑

s

cs L
(s)
e :: 〈ε̇g ⊗ ε̇g〉(s) ,

lim
ω→0

ε̇ :
∂

∂ω

(
1

ω
L̃′(ω)

)
: ε̇ =

∑

s

cs

(
∆L(s)

v : M(s)
e : ∆L(s)

v

)
:: 〈ε̇r ⊗ ε̇r〉(s) .

(49)

with ∆L
(s)
v = L

(s)
vr − L

(s)
vg .

From the form of the complex moduli tensor (48), it is also noted that

lim
ω→0

1

ω
L̃′(ω) = lim

ω→+∞

1

ω
L̃′(ω) = lim

ω→+∞
ω2 ∂

∂ω

(
1

ω
L̃′′(ω)

)
= lim

ω→0

∂

∂ω

(
1

ω
L̃′′(ω)

)
= 0. (50)

By introducing the expression (48), relations (49)1,3,4 deliver conditions on integrals of the effec-
tive relaxation spectrum G̃

∫ +∞

0
τ G̃(τ) dτ ,

∫ +∞

0
τ2G̃(τ) dτ and

∫ +∞

0
G̃(τ) dτ (51)

whose physical meaning is shown in Figure 4.
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4. Concluding remarks

By making use of stationary principles for complex viscoelasticity and asymptotic properties
of the solution fields of viscoelastic heterogeneous problems, exact asymptotic relations in the
frequency domain have been derived on the effective storage and loss moduli tensors as well as
the overall relaxation spectrum which characterizes the transient viscoelastic response. These
results extend those previously obtained for Maxwell constituents [1, 2] to any kind of elementary
viscoelastic constituents (see Table 1). In particular, four independent exact relations have been
obtained whatever the kind of viscoelastic behaviour. This implies that the form of the overall
constitutive law does not follow, in general, the one of the elementary viscoelastic constituents
since the latter are described by two or three independent parameters, depending on the type
of viscoelastic behaviour. This remark is consistent with the previous studies on Kelvin-Voigt
[5, 6, 3] and Maxwell materials [4]. In the case of mixtures of Zener or anti-Zener constituents,
this simply means that the overall relaxation (retardation) spectrum does not reduce in general
to a single Dirac mass.
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