
HAL Id: hal-01582009
https://hal.science/hal-01582009v1

Submitted on 5 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The convoy effect in atomic multicast
Tarek Amhed-Nacer, Pierre Sutra, Denis Conan

To cite this version:
Tarek Amhed-Nacer, Pierre Sutra, Denis Conan. The convoy effect in atomic multicast. SRDSW
2016 : 35th IEEE Symposium on Reliable Distributed Systems Workshops , Sep 2016, Budapest,
Hungary. pp.67 - 72, �10.1109/SRDSW.2016.22�. �hal-01582009�

https://hal.science/hal-01582009v1
https://hal.archives-ouvertes.fr

1

The Convoy Effect in Atomic Multicast
Tarek Ahmed-Nacer, Pierre Sutra, and Denis Conan

SAMOVAR, Télécom SudParis, CNRS, Université Paris-Saclay
Évry, France

e-mail: firstname.lastname@telecom-sudparis.eu

Abstract—Atomic multicast is a group communication primi-
tive that allows disseminating messages to multiple distributed
processes with strong ordering properties. As such, atomic
multicast is a widely-employed tool to build large-scale systems,
in particular when data is geo-distributed and/or replicated
across multiple locations. However, all the most efficient atomic
multicast algorithms suffer from a convoy effect that slows down
the delivery of messages. In this paper, we study the impact of this
phenomenon in detail. To this end, we first capture the convoy
effect in the critical section problem with a timed automaton.
We then extend this approach to the seminal atomic multicast
solution of Skeen. Our analytical model shows that the convoy
effect quickly degrades the latency of messages. We confirm this
claim by fitting our model with empirical data from literature.
To sidestep this performance degradation, we advocate the use of
message semantics in atomic multicast. In particular, we present
a simple protocol that reduces the convoy effect by a factor ρ,
where ρ is the probability that two messages commute.

I. INTRODUCTION

Cloud computing is a recent paradigm for the dynamic
provisioning of Internet-based services. Typically supported by
state-of-the-art data centers containing ensembles of networked
Virtual Machines (VMs), the Cloud delivers infrastructure as
a Service (IaaS), Platform as a Service (PaaS), Software as
a Service (SaaS), and Data as a Service (DaaS). Using such
services, enterprises may offload their computing infrastructure
to right-size their expenditure and reduce the time-to-market
of their products.

Typical cloud applications are distributed among several
(virtualized) machines. As a consequence, building such
applications require the ability to disseminate messages among
the infrastructure. To this end, Cloud developers usually rely
on an underlying group messaging system, such as Apache
Kafka1, RabbitMQ2, or JGroups3. Core properties of a group
messaging system includes performance (in message delay and
bandwidth usage), dependability (fault-tolerance), security, and
ordering.

Message ordering guarantees that the order in which mes-
sages are received among recipients satisfies some property. For
instance, this order can be first-in first-out, causally consistent or
total. In particular, to totally order messages processes have to
agree on a common gap-free delivery sequence. This agreement,
or consensus, is a well-studied problem in the case where
messages are always delivered to the same set of processes.

1http://kafka.apache.org
2http://jgroups.org
3http://www.rabbitmq.com

An efficient solution is the acclaimed Paxos protocol [1], a
core building block of many Cloud services such as Google
App Engine, or Amazon Web Services [2]. On the other hand,
when the set of recipients varies, processes have to implement
an atomic multicast abstraction [3]. Unfortunately, in the state
of our knowledge, existing atomic multicast solutions suffer
all from various drawbacks. In this paper, we focus on the
problem caused by the convoy effect [4]. When using group
communication in a distributed environment, the convoy effect
is the fact that one or more message deliveries are delayed by
other ones, e.g., the delivery of local messages is delayed by
as much as the latency of global messages [5].

The convoy effect is exacerbated in the Cloud landscape
of services that are increasingly becoming global. Indeed, the
Cloud is today migrating more and more to the edge of the
network, where routers themselves become the virtualization
infrastructure, in an evolution labelled as “Fog computing” [6].
Future Clouds are also expected to aggregate a high number of
diverse and geographically distributed data centers and future
data stores will consist of hundreds or even thousands of geo-
distributed sites [7]. In this context, the convoy effect may
reveal a burden when disseminating messages at the scale of
multiple geo-distributed sites.

This paper makes a first step in the direction of understanding
and circumventing the impact of the convoy effect in the atomic
multicast primitive. We articulate our approach as follows. First,
we identify the convoy effect in the critical section problem
with a simple timed automaton. We then extend this approach to
the seminal atomic multicast solution of Skeen. Our analytical
model shows that the convoy effect quickly degrades the latency
of messages. We confirm this claim by fitting our model with
empirical data from literature. To sidestep this performance
degradation, we propose to leverage the semantics of messages.
Our last contribution is a simple variation of Skeen’s protocol
that reduces the convoy effect by a factor ρ, where ρ is the
probability that two messages commute at the application level.

Outline. In Section II, we characterize analytically with a
timed automaton the convoy effect in the case of the shared
access to a critical section. Then, in Section III, we extend
our approach to a well-known atomic multicast solution, and
validate it using empirical data. In Section IV, we propose
to inject the message semantics known at the application
level inside the atomic multicast primitive in order to reduce
the convoy effect. We survey related work in Section V and
conclude in Section VI.

2

II. THE CASE OF SYSTEM R
Blasgen et al. [4] study the convoy effect in System R,

an early database management design that supports both the
relational model and transactions [8]. To the best of our
knowledge, this is the first systematic study of this phenomenon
in a concurrent system. In this section, we recall the notion
of convoy effect as proposed by Blasgen et al. [4], then we
present a timed automaton to capture analytically this effect.

A. First observations
System R employs locks to orchestrate transactions that

access the shared resources. To execute an operation on a
resource, a process executing a transaction locks the resource,
uses it, then unlocks the resource. As observed by the authors
of [4], processes applying this discipline tend to “bump into
one another” when contending for shared resources, forming
on each lock a “convoy of waiters”.

With more details, Blasgen et al. [4] model the convoy effect
as a queue attached to the resource and that represents the
waiting processes. Following the terminology in [4],

– The duration of a lock (d) is the average number of
instructions executed while the lock is held;

– The execution interval of a lock (i) is the average number
of instructions executed between two successive requests
to the lock by a process; and

– The collision cross section of a lock (CCS) is the fraction
of time during which the resource is granted. In a uni-
processor, the collision cross section equals d/(d + i),
ignoring the waiting time and the task switching time.

At the light of such definitions, the authors of [4] conclude that
the higher the CCS ratio is, the more likely a convoy appears
on the lock. Below, we refine these observations to obtain an
analytical value of the convoy effect.

B. Refinements
Our analysis builds upon the decomposition of [4]. Figure 1

presents a timed automaton that models the concurrent exe-
cution of a set Π of n processes accessing a lock. Nodes in
Figure 1 are tuples of the form (Q,D, I), where Q,D, I ∈ N
indicate the number of processes respectively in the queue,
holding the resource (critical section), and inside the execution
interval of the lock. In Figure 1, labels of the form “d/[i = d]”
means “after d units of time or instructions, if the condition
i = d holds, then the transition is triggered”.

Initially, all the processes await in the queue, modeled by
the state (n, 0, 0) at the top of Figure 1. Then, some process
p is granted the resource. The transition to the next state is
immediate and unrestricted. Since all the other processes are
stacked in the queue, the next state is (n− 1, 1, 0). Then, the
transition to the next state occurs when the lock is released
after d instructions. When p releases the resource, another
process q gains access to the resource and the system reaches
the state (n− 2, 1, 1).

For the sake of clarity, we assume that i and d are congruent
with i

d < n− 1 .4 Under this hypothesis, the transition to the

4In the general case, the timed automaton slightly differs from the one we
present in Figure 1. The system eventually oscillates between two states, and
our results would vary by an additive constant of 1.

n-1, 1, 0 n-2, 1, 1

n-3, 1, 2n-(i/d)-1 , 1, i/d

d / [i > d]

d / [i ≡ d]

d
d / [i = d]

d / [i = 2*d]

n, 0, 0

Fig. 1: Convoy effect in System R

next state occurs at the time process q releases the lock, i.e.,
after d units of time. We then have to consider two cases:

- (i = d) Process p leaves the execution interval of the lock
at the same time and it makes another request for the
resource. The system thus stays in (n− 2, 1, 1).

- (i > d) Process p is still in the execution interval of the
lock when process q releases the lock and another process
accesses the resource. The system moves to (n− 3, 1, 2).

By iterating the above reasoning, we deduce that the system
reaches a stable state verifying the condition n = min(n −
1, id) + 1 +Q. It follows from the definition of CCS , that the
convoy effect CE satisfies:

CE = d×Q = d× (n− 1

CCS
) (1)

Equation (1) confirms the informal arguments in [4]. Pre-
cisely, it tells us that the convoy effect is linearly proportional
to the inverse of the CCS ratio.

In the next section, we follow the same approach to deduce
the convoy effect in the case of atomic multicast.

III. TRANSPOSITION TO ATOMIC MULTICAST

Atomic multicast allows to propagate messages in an
ordered manner to any number of processes in the system.
In what follows, we first recall the definition of this group
communication primitive, then we study the convoy effect in
the algorithmic solution proposed by Skeen [9, 10]. As we
shall see, our reasoning also extends easily to other atomic
multicast protocols in literature.

A. Atomic Multicast

Let us note Msg some set of messages. Atomic multicast is
defined by the operations AM-Cast(m) and AM-Deliver(m),
where m ∈ Msg . Operation AM-Cast(m) allows a process
to multicast message m to some set dst(m) of processes. A
process delivers message m when it executes AM-Deliver(m).
During every run of atomic multicast, the following properties
are verified:
• Integrity. For any process p and any message m, p

delivers m at most once and only if p belongs to dst(m)
and m was previously multicast.

• Validity. If a process p multicasts a message m, eventually
every process in dst(m) delivers it.

• Ordering. Given two messages m and m′, we write m ≺
m′ when some process p delivers m before m′. The
transitive closure of relation ≺ is a strict partial order
over Msg .

The validity and integrity properties define reliable multicast,
and together with the ordering property, they define atomic

3

Algorithm 1 Skeen’s algorithm – code at process p
1: Variables:
2: clock // Initially, 0
3: Pending // Initially, ∅
4: Delivering // Initially, ∅
5: Delivered // Initially, ∅
6:
7: AM-Cast(m) :=
8: eff: forall q ∈ dst(m)
9: send 〈m〉 to q

10: assignTimestamp(m) :=
11: pre: received 〈m〉
12: eff: clock ← clock + 1
13: ts ← clock
14: Pending ← Pending ∪ {(m, ts)}
15: send 〈m, ts〉 to coord(m)

16: computeSeqNumber(m) :=
17: pre: ∀q ∈ dst(m) : received 〈m, _〉 from q
18: eff: sn = max({ts : received 〈m, ts〉})
19: forall q ∈ dst(m)
20: send 〈m, sn〉 to q

21: assignSeqNumber(m) :=
22: pre: (m, _) ∈ Pending
23: received 〈m, sn〉 from coord(m)
24: eff: clock ← max({clock , sn})
25: Pending ← Pending \ {(m, _)}
26: Delivering ← Delivering ∪ {(m, sn)}
27: doDeliver(m) :=
28: pre: (m,x) ∈ Delivering
29: ∀(m′, y) ∈ Pending ∪Delivering : (x,m) < (y,m′)
30: eff: Delivering ← Delivering \ {(m,x)}
31: Delivered ← Delivered ∪ {m}
32: AM-Deliver(m)

multicast. We note here that our definition is for failure-free
system. Other definitions appear in literature, in particular in
the case where processes may crash [11, 12].

B. A Classical Solution

Algorithm 1 depicts the pseudo-code of Skeen’s solution.
This algorithm requires some arbitrary global ordering < over
the set of messages. Given (x,m), (y,m′) ∈ N × Msg , we
define (x,m) < (y,m′) as x < y ∨ (x = y ∧ m < m′).
In addition, given a message m, Algorithm 1 assumes some
coordinator for m, denoted coord(m). This coordinator is
usually taken among the recipients of m.

Algorithm 1 consists of a set of actions, each having some
effects (eff), guarded by one or more preconditions (pre). When
all the preconditions in the pre block are true, the instructions
in the corresponding eff block are triggered.

The algorithm makes use of three variables: a local clock
(clock) and three buffers (Pending , Delivering and Delivered).
We detail their roles in what follows.

To atomic multicast a message m to dst(m), a process p
sends iteratively m to the recipients in dst(m). Every process
q ∈ dst(m) that receives such a message computes a timestamp
for m. To this end, q first increases its local clock and assigns
it to variable ts . Then, q sends the pair (m, ts) to coord(m),
the process in charge of coordinating the delivery of m. Once
process coord(m) knows all the timestamps attributed by the
processes in dst(m), it defines the sequence number for m
(variable sn) as the maximum of such timestamps, and sends
it to dst(m). Every process q ∈ dst(m) that receives sn ,
removes m from its Pending buffer and stores (sn,m) in the
Delivering buffer. Process q also updates its local clock with
the maximum of its current value and sn . At some later point

assignTimestamp(m) assignSeqNumber(m)

k=1

2δ

k=2

k=3

Fig. 2: Arrival of concurrent messages in Algorithm 1 (δ is
the average message delay)

in time, q delivers message m with sequence number x when
for every message m′ in either Pending or Delivering with
a timestamp or a sequence number y, (x,m) < (y,m′) holds.
Message m is then moved into the Delivered buffer.

The original solution of Skeen does not advance the local
clock with the sequence numbers attributed to messages
(line 24). Let us notice that, without this step, an arbitrary long
convoy effect may hinder the protocol. For instance, if process
p having clock = 1 receives a message m with sn = 100, then
up to 99 messages may delay the delivery of m. To the best
of our knowledge, line 24 appears first as a by-product of the
fault-tolerant variation proposed by Fritzke et al. [13]. This
step tempers the convoy effect in Algorithm 1 yet, as we shall
see next, does not completely remove it.

C. Convoy Effect

In Algorithm 1, for some message m having a sequence
number sn , action doDeliver(m) does not trigger as long as
there exists a message not yet delivered with a timestamp (or
a sequence number) lower than sn . This dependency among
messages creates a convoy effect. Similarly to Section II, we
can model this phenomenon with a timed automaton.

To this end, we first observe that a process p can tag a
message m′ with a lower timestamp only in the interval between
actions assignTimestamp(m) and assignSeqNumber(m). We
note k the number of messages received between these two
events, and for the sake of simplicity we assume that when
k messages are received, they split evenly the interval in k
parts. Figure 2 illustrates this situation for k = 1..3, where we
denote δ the average message delay between processes.

As in Section II, we employ a timed automaton to model the
convoy effect in Skeen’s solution. We depict the result in Fig-
ure 3. Each state of Figure 3 corresponds to a tuple (P,D,L),
where P , D, and L denote respectively the cardinals of
variables Pending , Delivering , and Delivered . In this figure, a
message m enters first the Pending buffer. Then, after 2δ units
of time, m is moved into the Delivering buffer. Message m
transits to Delivered after a certain amount of time depending
on the number of concurrent messages received between
actions assignTimestamp(m) and assignSeqNumber(m). In
Figure 3, this corresponds to the guards of the form “[k = X]”.

With more details, consider that k messages are received
in the interval, and note m′ the last such message. All the

4

1, 0, 0

 0, 1, 0

1, 1, 0

/ [k=2]

0, 1, 10, 0, 1
δ

0, 1, 1

2, 1, 0

/ [k=3]

1, 1, 1
2δ/3

/ [k=1]

Fig. 3: Convoy effect in Algorithm 1

messages received after assignSeqNumber(m) have a higher
timestamp than m. Therefore, since m′ is the last message in
the interval, when assignSeqNumber(m′) takes place either
(i) m′ has a higher sequence number than m, or (ii) m′ is
immediately delivered. In both cases, m waits at most k−1

k ×2δ
units of time.

Let us note Pc the probability of conflict between two
messages, i.e., the probability that two messages have some
recipient in common. In addition, let us consider that the arrival
of messages follows a Poisson distribution. From Figure 3, we
may evaluate the convoy effect in Algorithm 1 as follows:5

CE ≥
∞∑
k=1

λke−λ

k!
× k − 1

k
× 2δ × Pc

= 2δPce
−λ

[∞∑
k=1

λk

k!
− λk

k(k!)

]

= 2δPce
−λ

[
eλ − 1−

∞∑
k=1

λk

k(k!)

]
= 2δPc(1− e−λ(1 + Ei(λ)− log(n)− γ)) (2)

where Ei is the exponential integral and γ the Eu-
ler–Mascheroni constant [14].

To obtain the value of Pc, we compute instead 1−Pc, where
Pc is the probability that two messages do not conflict. Let
us note s the average size of dst(m). The computation of Pc
goes as follows:

Pc =

(
s
n

)
×
(
s

n−s
)(

s
n

)2 =

∏2s−1
i=s (n− i)∏s−1
i=0 (n− i)

(3)

D. Latency

From the fact that in Algorithm 1 a message freshly
multicast reaches a process in one message delay before action
assignTimestamp() triggers, the average latency of Skeen’s
algorithm is given by:

Latency([9]) = 3δ + CE (4)

When using this analytical model, we have to keep in
mind two considerations: First, parameter λ is obtained by

5Our result is a lower bound since if the two messages do not collide, we
do not consider the contribution of the remaining k − 2 messages.

200

250

300

350

400

450

500

550

600

650

0 100 200 300 400 500 600 700 800

β = 1.75 (0.1
6)

β = 5.06 (0.20)

L
at

en
cy

(m
s)

λT (msgs.s−1)

Fritzke et al. [13]
Schiper and Pedone [16]

Fig. 4: Fitting the model with experimental data from [5]
(n = 4, s = 2, δ = 100)

dividing the total message rate in the system, say λT , with the
size of the interval between actions assignTimestamp() and
assignSeqNumber(), i.e., 2δ. Second, most atomic multicast
protocols employ batching, that is they group under the
same timestamp multiple messages sent to the same location.
Batching tends to synchronize (closed loop) clients as they
receive at the same time the notification that their previous
messages were delivered. If we note β the average batching
size, we define parameter λ in Equation (2) as:

λ =
λT
2δβ

(5)

Equation (4) easily extends to variations of Algorithm 1. For
instance, the optimization in [3] sends the timestamp to all the
processes in dst(m), and each such process computes locally
the sequence number. This skips the need for a coordinator,
thus improving latency at the cost of message complexity. In
such a case the algorithm exhibits the following latency:

Latency([3]) = 2δ + CE (6)

Our model also easily extends to algorithms that add a fault-
tolerant mechanism based on groups (e.g., [5, 13, 15, 16]). At
core, such algorithms emulate a process in Algorithm 1 by
running consensus between processes in the same group ([15]).
In particular, our approach directly applies to a geo-distributed
system where the intra-group latency (at a site) is negligible
over the inter-group latency (between sites).

E. Validation and Impact

This section validates our model of the convoy effect in
atomic multicast, and studies its impact both using experimental
data and analytically.

In Figure 4, we fit our model with the experimental results
reported in [5, Figure 3(b)]. These experiments take place in
an emulated geo-distributed system of four sites. The average
message delay (δ) across sites equals 100ms; at a site it equals
0.1ms. A client sends either global messages to two random
sites (75%), or local messages to its local site (25%).

Figure 4 depicts the latency of global messages when
considering the algorithms of Schiper and Pedone [16] and
Fritzke et al. [13]. For each algorithm, the plain curve indicates

5

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14

P c
=

1
P c

=
0.

7

Pc
=

0.5

Pc = 0.3

Pc = 0.1

L
at

en
cy

(n
or

m
al

iz
ed

fo
r

2δ
)

λ (msgs.s−1)

(a) Convoy effect when varying Pc

0 5 10 15 20 25 30

s

0

20

40

60

80

100

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Pc when varying n and s

Fig. 5: Simulation results

the results obtained with Equation (6). In both cases, we used
a least square regression method to fit the average batching
rate (β) before the saturation point. We report β for each curve,
together with the standard deviation error between the model
and the data (in brackets).

Figure 4 tells us that our model matches precisely the
behavior of the algorithm of [13] before it saturates. Regarding
the algorithm of [16], the results reported in [5] are more noisy
and as a consequence our model fitting is less precise.

In Figure 4, we observe a large difference between the two
algorithms regarding β (precisely, a factor 2.84). This comes
from the fact that the two algorithms do not handle similarly
messages addressed to the local site. The algorithm of Fritzke
et al. [13] delivers such messages after consensus. In [16],
they follow the same path as global messages, i.e., they are
timestamped and go through two consensus instances. As a
consequence, local messages are delayed by global ones and
delivered at the same time. This improves the positive effect
of batching.

To further understand how the convoy effect impacts atomic
multicast, we conduct two simulations with the help of
our analytical model. The results are presented in Figure 5.
Figure 5a plots how the convoy effect evolves according to the
message arrival rate for various values of Pc. This figure tells
us that the convergence toward 2δPc is fast.

In Figure 4, concurrent messages collide with a probability
Pc = 5/6 (see Equation (3)). Figure 5b simulates how this
probability evolves when varying parameters n and s. To this
end, we consider n < 100, a number that makes sense in
a geo-distributed setting for a system that consists of a few
dozens of sites. At the light of the results reported in Figure 5b,
we can observe that the probability of conflict is non-negligible,
even if each message is addressed to a few processes.

Overall, our evaluation shows that the convoy effect in atomic
multicast has a significant impact on the latency of messages,
even if they are targeting a small number of recipients. In the
next section, we propose to leverage the semantics of messages
in order to partly avoid this undesirable phenomenon.

IV. PRIMER OF A SOLUTION

Atomic multicast assumes that all the pairs of messages
conflict and should be ordered as soon as they have a common

destination. On the contrary, in reliable multicast this conflict
relation is empty. Similarly to the work of Pedone and Schiper
[17], we propose to consider the generic multicast problem,
where we would have some binary relation � defining that
two messages conflict, i.e., do not commute at the application
level. In what follow, we specify this distributed task then we
propose a variation of Algorithm 1 as a solution.

We state the generic multicast problem as follows:
• Integrity and Validity. Identical to the definitions given

in Section III-A.
• Ordering. The transitive closure of relation ≺ reduced

to � is a strict partial order.
Any algorithm that solves atomic multicast trivially solves

any instance of generic multicast, but it orders more mes-
sages than necessary. To solve efficiently generic multicast,
we observe that we may adapt the precondition of action
doDeliver(m) in Algorithm 1, line 29, as follows:

∀(m′, y) ∈ Pending ∪Delivering :

(x,m) < (y,m′) ∨ (m 6� m′)

Let us note ρ the proportion of messages that commute at
the application level. With the above modification, the convoy
effect of Skeen’s algorithm now equals ρ× CE , where CE is
given by Equation (2).

V. RELATED WORK

The use of application semantics in group communication
was originally introduced for consensus [17, 18], It allows
to solve this distributed task optimally in two messages
delays [19]. Guerraoui and Schiper [20] propose a tunable
multicast primitive to either take a distributed lock, or commit
a global transaction.

Several works [21, 22] observe the impact of the convoy
effect on transactional systems. They try to reduce it, notably
between global and local transactions. One solution consists
in reordering transactions that commute after their deliveries
by the group communication primitive.

We may classify atomic multicast algorithms proposed in
literature into three categories: non-genuine, quasi-genuine and
genuine algorithms. In the case of non-genuine algorithms, the

6

base idea is to execute an atomic broadcast protocol, pruning
upon reception the messages that are not addressed to the local
process. Due to its large overhead, the scalability of this type
of algorithm is inherently limited [5].

A genuine algorithm solely allows a process in dst(m)
to execute steps when delivering message m. Almost all
algorithms in this category are variations of Skeen’s solution.
One notable exception is the work of Delporte-Gallet and
Fauconnier [15]. This algorithm assumes some ordering <Π

over the processes. Upon AM-Cast(m), the first process in
dst(m) receives message m and forwards it to the next process
in the order <Π, then blocks. The last process in the chain
sends an acknowledgment to dst(m), allowing the delivery of
m. At the light of this mechanism, the algorithm suffers from
a large convoy effect, that we believe can also be characterized
with our model.

Quasi-genuine algorithms offer a middle ground solution
between the two previous categories. Multi-Ring Paxos [23]
is a fault-tolerant atomic multicast algorithm that organizes
processes in groups, each group executing a Paxos consensus
algorithm. A client interested in some set of groups, e.g.,
dst(m) = {g1, g2, . . .}, installs a Paxos learner to receive the
messages from each of the group. This learner is in charge of
delivering the messages in some arbitrary order once it receives
some fixed value M of consensus instances from each group.
To cope with varying message rates, Multi-Ring Paxos can
skip several consensus instances at a time. This algorithm can
be viewed as an extension of the deterministic merge broadcast
algorithm of Aguilera and Strom [24]. To keep a low overhead,
a Multi-Ring Paxos client has to install a learner for each new
value of dst(m). Hence, the number of consensus learners
quickly grows with the number of groups. This limits the
scalability of the deterministic merge approach.

VI. CONCLUSION

This paper studies the convoy effect, a perturbation that
occurs in parallel systems when concurrency on shared re-
sources increases. We first study this phenomenon in the critical
section problem, from which we derive a simple model based
on a timed automaton and a general formula, in line with
the conclusions of Blasgen et al. [4]. Then, we transpose our
approach to the case of atomic multicast, and the seminal
algorithm of Skeen. We observe that the convoy effect quickly
degrades the latency of messages, a claim that we assess by
fitting our model with empirical data from literature. To sidestep
the loss of performance due to the convoy effect, we propose
to leverage the semantics of messages in atomic multicast.
To this end, we specify the generic multicast problem and
propose a simple variation of Skeen’s solution that reduces the
convoy effect by a factor ρ, where ρ is the probability that two
messages commute at the application level.

As a future work, we plan to refine our model, in particular
by including multiple classes of messages, with various arrival
rates and probabilities of collision. This should allow us to fit
more empirical data from literature. We are also interested in
designing a solution to generic multicast that boils down to
reliable multicast when all the messages commute.

ACKNOWLEDGMENT

The authors thank Pascal Hennequin for his fruitful discus-
sion on Section III.

REFERENCES
[1] L. Lamport, “The Part Time Parliament,” ACM Transactions on Computer

Systems, vol. 16, no. 2, pp. 133–169, May 1998.
[2] T. D. Chandra, R. Griesemer, and J. Redstone, “Paxos Made Live: An

Engineering Perspective,” in PODC’07, August 2007, pp. 398–407.
[3] R. Guerraoui and A. Schiper, “Genuine atomic multicast in asynchronous

distributed systems,” Theoretical Computer Science, vol. 254, no. 1, pp.
297–316, March 2001.

[4] M. Blasgen, J. Gray, M. Mitoma, and T. Price, “The convoy phenomenon,”
ACM SIGOPS Operating Systems Review, vol. 13, no. 2, pp. 20–25, April
1979.

[5] N. Schiper, P. Sutra, and F. Pedone, “Genuine versus Non-Genuine
Atomic Multicast Protocols for Wide Area Networks: An Empirical
Study,” in SRDS’09, September 2009, pp. 166–175.

[6] L. M. Vaquero and L. Rodero-Merino, “Finding your Way in the
Fog: Towards a Comprehensive Definition of Fog Computing,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 5, pp. 27–32,
October 2014.

[7] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and Its
Role in the Internet of Things,” in Proceedings of the first workshop on
Mobile Cloud Computing. ACM, August 2012, pp. 13–15.

[8] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P. Eswaran,
J. N. Gray, P. P. Griffiths, W. F. King, R. A. Lorie, P. R. McJones, J. W.
Mehl, G. R. Putzolu, I. L. Traiger, B. W. Wade, and V. Watson, “System
R: Relational Approach to Database Management,” ACM Transactions
Database Systems, vol. 1, no. 2, pp. 97–137, June 1976.

[9] K. P. Birman and T. A. Joseph, “Reliable Communication in the
Presence of Failures,” ACM Transactions on Computers Systems, vol. 5,
no. 1, pp. 47–76, January 1987.

[10] R. Guerraoui and A. Schiper, “Total order multicast to multiple groups,”
in ICDCS’97, May 1997, pp. 578–585.

[11] V. Hadzilacos and S. Toueg, in Distributed Systems (2nd Ed.),
S. Mullender, Ed. ACM Press/Addison-Wesley Publishing Co., 1993,
ch. Fault-tolerant Broadcasts and Related Problems, pp. 97–145.

[12] X. Défago, A. Schiper, and P. Urbán, “Total Order Broadcast and
Multicast Algorithms: Taxonomy and Survey,” ACM Computing Survey,
vol. 36, no. 4, pp. 372–421, December 2004.

[13] U. Fritzke, P. Ingels, A. Mostefaoui, and M. Raynal, “Fault-tolerant
Total Order Multicast to asynchronous groups,” in SRDS’98, October
1998, pp. 228–234.

[14] C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for
Scientists and Engineers, ser. International series in pure and applied
mathematics. McGraw-Hill, 1978.

[15] C. Delporte-Gallet and H. Fauconnier, “Fault-Tolerant Genuine Atomic
Multicast to Multiple Groups,” in OPODIS’00, December 2000, pp.
107–122.

[16] N. Schiper and F. Pedone, “On the Inherent Cost of Atomic Broadcast
and Multicast in Wide Area Networks,” in ICDCN’08, 2008, pp.
147–157.

[17] F. Pedone and A. Schiper, “Generic broadcast,” in DISC’99, 1999, pp.
94–106.

[18] L. Lamport, “Generalized Consensus and Paxos,” Microsoft, Tech. Rep.
MSR-TR-2005-33, March 2005.

[19] L. Lamport, “Future Directions in Distributed Computing,” A. Schiper,
A. A. Shvartsman, H. Weatherspoon, and B. Y. Zhao, Eds. Springer-
Verlag, 2003, ch. Lower Bounds for Asynchronous Consensus, pp.
22–23.

[20] G. Guerraoui and A. Schiper, “A generic multicast primitive to support
transactions on replicated objects in distributed systems,” in FTDCS’95,
August 1995, pp. 334–342.

[21] N. Schiper, P. Sutra, and F. Pedone, “P-store: Genuine partial replication
in wide area networks,” in SRDS’10, September 2010.

[22] D. Sciascia and F. Pedone, “Geo-replicated storage with scalable
deferred update replication,” in DSN’13, June 2013, pp. 1–12.

[23] P. J. Marandi, M. Primi, and F. Pedone, “Multi-Ring Paxos,” in DSN’12,
June 2012, pp. 1–12.

[24] M. K. Aguilera and R. E. Strom, “Efficient Atomic Broadcast Using
Deterministic Merge,” in PODC ’00, July 2000, pp. 209–218.

