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Alzheimer's disease is a neurodegenerative process leading to irreversible mental dysfunctions. The development of new biomarkers is crucial to perform an early detection of this disease. Among new biomarkers proposed during the last decades, patch-based grading framework demonstrated state-of-the-art results. In this paper, we study the potential using texture information based on Gabor lters to improve patch-based grading method performance, with a focus on the hippocampal structure. We also propose a novel fusion framework to eciently combine multiple grading maps derived from a Gabor lters bank. Finally, we compare our new texture-based grading biomarker with the state-of-the-art approaches to demonstrate the high potential of the proposed method.

Introduction

Alzheimer's disease (AD) is the most prevalent dementia. AD is characterized by an irreversible neurodegeneration leading to mental dysfunctions. Subjects with Mild Cognitive Impairment (MCI) present higher risk to develop AD. To date, diagnosis of AD is established after advanced brain structure alterations motivating the crucial need to develop new imaging biomarkers able to detect the early stages of the disease. Furthermore, the early detection of AD can accelerate the development of new therapies by making easier the design of clinical trials. During the last decades, new biomarkers with competitive performances were developed to detect AD by taking advantage of the improvement of medical imaging like magnetic resonance imaging (MRI) [START_REF] Bron | Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: The CADDementia challenge[END_REF].

Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

Most of the proposed methods have been based on specic regions of interest (ROI). Among structures impacted by AD, previous investigations mainly focused on medial temporal lobe and especially on hippocampus (HC). Alterations on this structure are usually estimated using volume, shape or cortical thickness measurements [START_REF] Wolz | Multi-method analysis of MRI images in early diagnostics of Alzheimer's disease[END_REF]. Besides ROI-based methods, whole brain analyses performed on structural MRI (s-MRI) have also been proposed to detect areas impacted by AD. These methods are usually based on voxel-based morphometry (VBM) or tensor based morphometry (TBM) frameworks. It is interesting to note that both VBM and ROI-based studies conrmed that medial temporal lobe is a key area to detect the rst signs of AD [START_REF] Wolz | Multi-method analysis of MRI images in early diagnostics of Alzheimer's disease[END_REF]. In the medial temporal lobe, the HC is one of the earliest region altered by AD. Recently, advanced methods were proposed to capture structural alterations of HC. Those techniques demonstrated their eciency to detect the dierent stages of AD [START_REF] Sørensen | Dierential diagnosis of mild cognitive impairment and Alzheimer's disease using structural MRI cortical thickness, hippocampal shape, hippocampal texture, and volumetry[END_REF]. Among them, patch-based methods obtained competitive results to detect the earliest stages of AD [START_REF] Liu | Ensemble sparse classication of Alzheimer's disease[END_REF][START_REF] Coupé | Scoring by nonlocal image patch estimator for early detection of Alzheimer's disease[END_REF][START_REF] Tong | Multiple instance learning for classication of dementia in brain MRI[END_REF]. Therefore, such advanced image analysis methods seem promising candidates to perform AD tracking. Recently, [START_REF]An optimized patchmatch for multi-scale and multi-feature label fusion[END_REF] demonstrated the eciency of using edge detection lters to improve of patch-based segmentation. This result highlights that patches comparison can be improved by estimating patterns similarity on derivative image features. Moreover, it has been recently showed that HC texture plays a crucial role for the detection of early stages of AD [START_REF] Sørensen | Dierential diagnosis of mild cognitive impairment and Alzheimer's disease using structural MRI cortical thickness, hippocampal shape, hippocampal texture, and volumetry[END_REF]. Therefore, we propose to perform patch-based grading on multiple texture maps obtained with Gabor lters. Gabor lters are designed to detect salient features at specic resolution and direction. These lters were widely used for texture classication [START_REF] Bangalore | Texture features for browsing and retrieval of image data[END_REF]. Consequently, the proposed strategy enables at the same time to improve patches comparison and to capture HC texture modications occurring at the rst stages of the pathology.

Contributions:

The rst contribution of this work is intended to develop a new texture-based grading framework to better capture structural alterations caused by AD. Secondly, in order to combine all the grading maps estimated on texture maps, we propose an innovate adaptive fusion strategy based on local condence criterion. This fusion framework can be applied to any patch-based processing to combine dierent features or modalities. Moreover, contrary to usual grading-based methods, we propose a classication step involving weak classiers distribution to better discriminate pathologies stages. Finally, to highlight the improvement of classication performances provided by our new framework, we compare our new biomarker with the state-of-the-art biomarkers and demonstrate its eciency.

Materials and Methods

Dataset

Data used in this work were obtained from Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset 1 . ADNI is a North American campaign launched in 2003 with aims to provide MRI, positron emission tomography scans, clinical neurological measures and other biomarkers. The data used in this study are all the baseline T1-weighted (T1-w) MRI of the ADNI1 phase. This dataset includes AD patients, MCI and cognitive normal (CN) subjects. The group of MCI is composed of subjects who have abnormal memory dysfunctions and embed two groups, the rst one is composed with patients having stable MCI (sMCI) and the second one is composed with patients with progressive MCI (pMCI). The information of the dataset used in our work is summarized in Table 1. 

Preprocessing

All the T1-w images were processed using the volBrain system [START_REF] Manjón | volbrain: An online MRI brain volumetry system[END_REF] 4 . This system is based on an advanced pipeline providing automatic segmentation of dierent brain structures from T1-w MRI. The preprocessing is based on: (a) a denoising step with an adaptive non-local means lter, (b) an ane registration in the MNI space, (c) a correction of the image inhomogeneities and (d) an intensity normalization.

Methods

Patch-based grading: Grading framework uses patch-based techniques to capture modications related to anatomical degradations caused by AD [START_REF] Coupé | Scoring by nonlocal image patch estimator for early detection of Alzheimer's disease[END_REF]. To date, patch-based grading methods demonstrate state-of-the-art performances to detect the earliest stages of AD [START_REF] Komlagan | Anatomically constrained weak classier fusion for early detection of Alzheimer's disease[END_REF][START_REF] Tong | A novel grading biomarker for the prediction of conversion from mild cognitive impairment to Alzheimer's disease[END_REF]. To determine the pathological status of a subject, grading-based methods estimate at each voxel the state of cerebral tissues using anatomical patterns extracted from a training library T composed of two datasets, one with images from CN subjects and one with AD patients. Then, for each voxel of the considered subject, the patch-based grading method produces a weak classier denoted g. This weak classier is based on the similarity between the patch surrounding the voxel under study x i and a set K i of similar patches extracted from T . In this work, we used an approximative nearest neighbor method to drastically reduce the required computational time [START_REF] Hett | Patch-based DTI grading: Application to Alzheimer's disease classication[END_REF]. The grading value g at x i is dened as:

g(x i ) = xj,t∈Ki w(x i , x j,t )p t xj,t∈Ki w(x i , x j,t ) (1) 
where x j,t is the voxel j belonging to the training template t ∈ T . w(x i , x j,t ) is the weight assigned to the pathological status p t of t. We estimate w such as:

w(x i , x j,t ) = e 1- (d(xi,xj,t)) 2 h 2 + (2) 
where h = min xj,t d(x i , x j,t ) with → 0, d is a distance between two patches surrounding the voxels x i and x j,t . p t is set to -1 for patches extracted from AD patient and to 1 for those extracted from CN subject. The L2-norm is used to estimate the similarly between patches. Thus, our patch-based grading method provides at each voxel a score representing an estimation of the alterations caused by AD.

Texture maps estimation: The estimation of patch similarities could be improved by using texture representation instead of using raw intensities. Indeed, it was demonstrated that the use of edge detectors improves patch-based segmentation accuracy [START_REF]An optimized patchmatch for multi-scale and multi-feature label fusion[END_REF]. Moreover, it was also demonstrated that HC textural information plays an important role in AD detection [START_REF] Sørensen | Dierential diagnosis of mild cognitive impairment and Alzheimer's disease using structural MRI cortical thickness, hippocampal shape, hippocampal texture, and volumetry[END_REF]. Hence, we propose a new texture-based grading framework that simultaneously captures HC texture alterations and improves patches similarity estimation. In this work, texture information is extracted from MRI using a bank of 3D Gabor lters. We used Gabor lters since they are designed to detect texture patterns at dierent scales and directions [START_REF] Bangalore | Texture features for browsing and retrieval of image data[END_REF]. In the proposed pipeline (see Fig. 1), the preprocessed MRI of the subject under study is ltered with a bank of Gabor lters to obtain multiple texture maps. It has to be noted that all the training library is also ltered with the same lters bank. Therefore, for each texture map, a texture-based grading map can be estimated.

Adaptive fusion: In this work, we propose an novel framework to fuse the multiple texture-based grading maps obtained from the estimated texture maps.

Our fusion strategy is based on the fact that all the estimated grading maps may not have the same relevance, but more importantly all local weak classiers in these maps do not have the same quality. Hence, at each location, we propose to combine weak classiers derived from multiple texture maps according to a condence criterion. Therefore, the grading value of a texture-based grading map m, denoted g m , at voxel x i , is weighted by α m (x i ) = xj,t∈Ki,m w m (x i , x j,t ) that reects the condence of g m . Thus, each texture-based grading map provides a weak classier at each voxel that is weighted with its degree of condence α m (x i ). At the end, the nal grading value, denoted g M , resulting from our adaptive fusion strategy is given by;

g M (x i ) = m∈M α m (x i )g m (x i ) m∈M α m (x i ) . (3) 
The proposed fusion framework is spatially adaptive and take advantage of having access to a local degree of condence α m (x i ) for each grading map m. Basically, the condence α m (x i ) gives more weight to a weak classier estimated with a well matched set of patches. Our adaptive fusion strategy can applied to any patch-based processing to combine multiple feature or modalities.

Weak classiers aggregation: First, to prevent bias introduced by structure alterations related to aging, all the grading values are age corrected with a linear regression based on the CN group [START_REF] Dukart | Age correction in dementiamatching to a healthy brain[END_REF]. In previous works on patch-based grading [START_REF] Coupé | Scoring by nonlocal image patch estimator for early detection of Alzheimer's disease[END_REF][START_REF] Hett | Patch-based DTI grading: Application to Alzheimer's disease classication[END_REF], the weak classier aggregation was performed using a simple averaging. While using a strategy based on averaging enables to be robust to noise, this may remove relevant information on weak classiers distribution. Therefore, in this paper we propose to approximate weak classiers distribution using histogram. Consequently, we classify histogram bins instead of classifying mean grading value over the segmentation mask. Here, histograms were separately estimated for right and left hippocampus.

Validation: During our experiments, texture maps were obtained using one scale and 3 orthogonal directions. The texture-based grading maps were estimated using patches of 5 × 5 × 5 voxels. The grading step based on an optimized PatchMatch [START_REF] Hett | Patch-based DTI grading: Application to Alzheimer's disease classication[END_REF] was performed using K = 50. The required computational time was 3s per texture maps, thus the global grading step required 10s with our setup. Our new texture-based grading framework was validated with a leaveone-out cross validation procedure. A support vector machine (SVM) was used to classify each test subject. The results of each experiment were compared in terms of accuracy (ACC) and area under the ROC curve (AUC). The AUC is estimated with the a posteriori probabilities provided by the SVM classier. We carried out several experiments: CN vs. AD, CN vs. pMCI, AD vs. sMCI and sMCI vs. pMCI.

3 Results Firstly, in order to validate the improvement provided by our method, we compare results obtained with our framework using raw intensities (T1-w grading) and texture maps. T1-w and texture-based grading were estimated using exactly the same pipeline involving adaptive fusion and histogram-based weak classiers aggregation. Table 2 summarizes the results of T1-w grading and our proposed method. Results are expressed with area under the curve (AUC) measure. As it is shown, texture-based grading improves classication performances The experiments carried out showed that the use of only one scale is enough. Moreover, using more than 3 directions did not improve the results while increasing computational time. Table 3 summarizes the comparison of our proposed method with other grading methods proposed in the literature. In addition, classication results obtained with Deep Learning (DL) [START_REF] Heung-Il | Deep ensemble learning of sparse regression models for brain disease diagnosis[END_REF] ensemble are provided for comparison with last advanced methods. The results on Table 3 are expressed in accuracy (ACC). First, to compare classication results using the same structure, the proposed framework is compared with grading methods based on HC (see the upper part of Table 3). This comparison shows that our method provides the best results among HC-based grading methods. It reaches 91.3% of ACC for CN vs. AD, and 71.1% of ACC for sMCI vs. pMCI comparisons. These results demonstrate that texture maps provide valuable information during the grading process. At the lower part of Table 3, we compare the performance of our HC-based grading method with those using the whole brain. First, for AD vs. CN, the proposed method obtained similar or better results than those using whole brain and requiring non linear registration [START_REF] Liu | Ensemble sparse classication of Alzheimer's disease[END_REF] while our method only requires ane registration and proposes a fast grading step (i.e., 10s). Second, for sMCI vs. pMCI, our method obtained better results than all the methods involving a simple ane registration [START_REF] Tong | A novel grading biomarker for the prediction of conversion from mild cognitive impairment to Alzheimer's disease[END_REF]. On the other hand, the best results for sMCI vs. pMCI are produced by whole brain grading [START_REF] Komlagan | Anatomically constrained weak classier fusion for early detection of Alzheimer's disease[END_REF][START_REF] Tong | A novel grading biomarker for the prediction of conversion from mild cognitive impairment to Alzheimer's disease[END_REF] using non linear registration. The improvement when using non linear registration is observed for HC-based and whole brain methods [START_REF] Tong | A novel grading biomarker for the prediction of conversion from mild cognitive impairment to Alzheimer's disease[END_REF]. However, this improvement is obtained at the expense of using non linear registration, which is subject to failure and requires high computational time.

Finally, our method also demonstrated competitive performances for AD vs. CN classication compared to the most advanced DL methods using whole brain and non linear registration. In addition, this comparison shows that patch-based grading methods [START_REF] Komlagan | Anatomically constrained weak classier fusion for early detection of Alzheimer's disease[END_REF][START_REF] Tong | A novel grading biomarker for the prediction of conversion from mild cognitive impairment to Alzheimer's disease[END_REF] obtain similar or better results than recent DL methods [START_REF] Heung-Il | Deep ensemble learning of sparse regression models for brain disease diagnosis[END_REF] when applied with similar settings.

To conclude, according to our comparison, whole brain methods enable a better classication of sMCI vs. pMCI. Hence, in further works, we will investigate the extension of our texture-based grading framework to whole brain analysis. 

Fig. 1 .

 1 Fig. 1. Proposed adaptive fusion of texture-based grading framework.: from left to right, the T1-w input data, the texture maps for dierent directions, the intermediate texture-based grading maps, the nal fused grading map and the histogram-based weak classiers aggregation.

Table 1 .

 1 Description of the dataset used in this work. Data are provided by ADNI.

	Characteristic / Group	CN	sMCI	pMCI	AD
	Number of subjects	226	223	165	186
	Ages (years)	76.0 ± 5.0	75.1 ± 7.5 74.5 ± 7.2 75.3 ± 7.4
	Sex (M/F)	117/109	150/73	101/64	98/88

MMSE 29.05 ± 0.9 27.1 ± 2.5 26.3 ± 2.0 22.8 ± 2.9

Table 2 .

 2 Comparison of dierent features HC-based, all results are expressed in AUC.

	Features	CN vs. AD CN vs. pMCI AD vs. sMCI sMCI vs. pMCI
		(AUC in %) (AUC in %) (AUC in %)	(AUC in %)
	T1-w grading	93.5	90.0	81.1	73.6
	Proposed method	94.2	90.9	81.3	75.4

Table 3 .

 3 Comparison with state-of-the-art methods, all the results are expressed in accuracy. this work we propose a new texture-based grading framework to better capture structural alterations caused by AD. Moreover, to combine grading maps estimated on texture maps, we present a new adaptive fusion scheme. We also propose an histogram-based weak classiers aggregation step to better discriminate early stages of AD. Finally, we demonstrate the competitive performances of our new texture-based grading framework compared to several state-of-the-art biomarkers. In future works, we will investigate the extension of our texturebased grading framework to whole brain analysis.5 AcknowledgementThis study has been carried out with nancial support from the French State, managed by the French National Research Agency (ANR) in the frame of the Investments for the future Program IdEx Bordeaux (ANR-10-IDEX-03-02), Cluster of excellence CPU and TRAIL (HL-MRI ANR-10-LABX-57).

	Methods	Registration Features CN vs. AD sMCI vs. pMCI
				(ACC in %) (ACC in %)
	Hippocampus				
	Original Grading [2]	Ane	Intensity	88.0	71.0
	Multiple Instance Grading [9]	Ane	Intensity	89.0	70.0
	Sparse-based Grading [10]	Ane	Intensity	-	66.0
	Sparse-based Grading [10]	Non Linear Intensity	-	69.0
	Proposed Method	Ane	Texture	91.3	71.1
	Whole Brain				
	Ensemble Grading [6]	Non Linear GM Map	-	75.6
	Sparse-based Grading [10]	Ane	Intensity	-	66.7
	Sparse-based Grading [10]	Non Linear Intensity	-	75.0
	Sparse Ensemble Grading [7] Non Linear GM Map	90.8	-
	Deep Ensemble Learning [14] Non Linear GM Map	91.0	74.8
	4 Conclusion				
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