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APPROXIMATION IN FRACTIONAL SOBOLEV SPACES AND HODGE SYSTEMS

Let d ≥ 2 be an integer, 1 ≤ l ≤ d -1 and ϕ be a differential l-form on R d with Ẇ 1,d coefficients. It was proved by Bourgain and Brezis ([5, Theorem 5]) that there exists a differential l-form ψ on R d with coefficients in L ∞ ∩ Ẇ 1,d such that dϕ = dψ. Bourgain and Brezis also asked whether this result can be extended to differential forms with coefficients in the fractional Sobolev space Ẇ s,p with sp = d. We give a positive answer to this question, in the more general context of Triebel-Lizorkin spaces, provided that d -κ ≤ l ≤ d -1, where κ is the largest positive integer such that κ < min(p, d). The proof relies on an approximation result for functions in Ẇ s,p by functions in Ẇ s,p ∩ L ∞ , even though Ẇ s,p does not embed into L ∞ in this critical case.

Introduction

For k ∈ N and 1 < p < ∞, let Ẇ k,p (R d ) be the homogeneous Sobolev space on R d , that is the completion of C ∞ c (R d ) under the norm ∂ k f L p (R d ) . It is well-known that while Ẇ k,p (R d ) embeds continuously into L kp/(d-kp) (R d ) when kp < d, the embedding fails when kp = d. In a groundbreaking paper [START_REF] Bourgain | New estimates for elliptic equations and Hodge type systems[END_REF] (see also [START_REF] Bourgain | On the equation div Y = f and application to control of phases[END_REF]), Bourgain and Brezis found a remedy for this failure when k = 1 and p = d. They showed that for any f ∈ Ẇ 1,d (R d ) and any δ > 0, there exists F ∈ Ẇ 1,d ∩ L ∞ (R d ) and a constant C δ > 0 independent of f , such that (1.1)

d-1 i=1 ∂ i (f -F ) L d ≤ δ f Ẇ 1,d ,

and

(1.2)

F L ∞ + F Ẇ 1,d ≤ C δ f Ẇ 1,d .
The failure of the embedding of Ẇ 1,d (R d ) into L ∞ (R d ) makes this result rather non-trivial. They also derived many important consequences of this approximation theorem. Among them, they proved that if l ∈ 1, d -1 and ϕ is a differential l-form on R d with Ẇ 1,d coefficients, then there exists a differential l-form ψ on R d with Ẇ 1,d ∩ L ∞ coefficients such that dψ = dϕ.

In this paper, we give an extension of these results to a range of critical Triebel-Lizorkin spaces Ḟ α,p q (R d ) that barely fail to embed into L ∞ . In particular, our results cover the higher order Sobolev spaces Ẇ k,d/k (R d ) where k is an integer with 1 < k < d, and the Sobolev spaces Ẇ α,d/α (R d ) of fractional order α ∈ (0, [START_REF] Amrouche | New estimates for the div-curl-grad operators and elliptic problems with L 1 -data in the whole space and in the half-space[END_REF], giving an answer to the Open Problem 2 in [START_REF] Bourgain | New estimates for elliptic equations and Hodge type systems[END_REF].

Our main result can be stated as follows:

Theorem 1.1. Let α > 0 and p, q ∈ (1, ∞) such that αp = d. Let κ be the largest positive integer that satisfies κ < min{p, d}. Then, for every δ > 0, there exists a constant C δ > 0 such that, for every f ∈ Ḟ α,p q (R d ), there exist

F ∈ Ḟ α,p q ∩ L ∞ (R d ) such that κ i=1 ∂ i (f -F ) Ḟ α-1,p q ≤ δ f Ḟ α,p q , and 
F L ∞ + F Ḟ α,p q ≤ C δ f Ḟ α,p q .
From Theorem 1.1, we derive:

Theorem 1.2. Let α > 0, p, q ∈ (1, ∞) such that αp = d and l ∈ d -κ, d -1 , where κ is the largest positive integer such that κ < min(p, d). Let ϕ ∈ Ḟ α,p q (Λ l R d ). There exists

ψ ∈ Ḟ α,p q (Λ l R d ) ∩ L ∞ (Λ l R d ) such that dψ = dϕ and ψ L ∞ (Λ l R d ) + ψ Ḟ α,p q (Λ l R d ) dϕ Ḟ α-1,p q (Λ l R d ) .
By Ḟ α,p q (Λ l R d ), we mean the space of differential l-forms on R d , the coefficients of which belong to Ḟ α,p q (R d ) (see Definition 2.1 below). The above statement extends the main result in [START_REF] Bousquet | A limiting case for the divergence equation[END_REF] which was restricted to the conditions κ = 1 (which amounts to solving the equation div X = f with f ∈ Ḟ α,p q ), α > 1/2 and p ≥ q ≥ 2; see also the earlier papers by Maz'ya [START_REF] Maz | Bourgain-Brezis type inequality with explicit constants[END_REF] and also Mironescu [START_REF] Mironescu | On some inequalities of Bourgain, Brezis, Maz'ya, and Shaposhnikova related to L 1 vector fields[END_REF] when κ = 1, and p = q = 2.

If we do not require the solution ψ in Theorem 1.2 to be in Ḟ α,p q , then the theorem can be deduced from Proposition 2.1 of Van Schaftingen [START_REF] Van Schaftingen | Limiting fractional and Lorentz space estimates of differential forms[END_REF], which has a very elegant and simple proof. This elementary approach introduced in [START_REF] Van Schaftingen | A simple proof of an inequality of Bourgain, Brezis and Mironescu[END_REF][START_REF] Van Schaftingen | Estimates for L 1 -vector fields[END_REF] has been exploited in various settings, see in particular Lanzani and Stein [START_REF] Lanzani | A note on div curl inequalities[END_REF] and Mitrea and Mitrea [START_REF] Mitrea | A remark on the regularity of the div-curl system[END_REF]. Up to our knowledge however, even in the framework of Sobolev spaces Ẇ 1,d , there is no simple argument to prove the existence of a solution ψ which is both in L ∞ and in Ẇ 1,d . In the case of the equation divX = f with f ∈ L d , an algorithmic construction of a solution X ∈ L ∞ was proposed in [START_REF] Tadmor | Hierarchical construction of bounded solutions in critical regularity spaces[END_REF].

Many extensions, applications and recent developments of the original results established by Bourgain and Brezis in [START_REF] Bourgain | New estimates for elliptic equations and Hodge type systems[END_REF][START_REF] Bourgain | On the equation div Y = f and application to control of phases[END_REF] are presented in the excellent overview by Van Schaftingen [START_REF] Van Schaftingen | Limiting Bourgain-Brezis estimates for systems of linear differential equations: theme and variations[END_REF]. We only quote some of them here:

(1) more general (higher order) operators than the exterior derivative have been studied in Van Schaftingen [START_REF] Van Schaftingen | Function spaces between BMO and critical Sobolev spaces[END_REF][START_REF] Van Schaftingen | Estimates for L 1 vector fields under higher-order differential conditions[END_REF][START_REF] Van Schaftingen | Limiting Sobolev inequalities for vector fields and canceling linear differential operators[END_REF], (2) similar problems have been considered when the space R d is replaced by more general domains: half-spaces in Amrouche and Nguyen [START_REF] Amrouche | New estimates for the div-curl-grad operators and elliptic problems with L 1 -data in the whole space and in the half-space[END_REF], smooth domains with specific boundary conditions in Brezis and Van Schaftingen [START_REF] Brezis | Boundary estimates for elliptic systems with L 1 -data[END_REF], homogeneous groups in Chanillo and Van Schaftingen [START_REF] Chanillo | Subelliptic Bourgain-Brezis estimates on groups[END_REF], Wang and Yung [START_REF] Wang | A subelliptic Bourgain-Brezis inequality[END_REF], symmetric spaces in Chanillo, Van Schaftingen and Yung [START_REF] Chanillo | Variations on a proof of a borderline Bourgain-Brezis Sobolev embedding theorem[END_REF][START_REF] Chanillo | Bourgain-Brezis inequalities on symmetric spaces of non-compact type[END_REF], and CR manifolds in Yung [START_REF] Yung | Sobolev inequalities for (0, q) forms on CR manifolds of finite type[END_REF]. (3) related Hardy inequalities were established by Maz'ya [START_REF] Maz | Estimates for differential operators of vector analysis involving L 1 -norm[END_REF] (see also [START_REF] Bousquet | Hardy-Sobolev inequalities for vector fields and canceling linear differential operators[END_REF]), [START_REF] Bourgain | On the equation div Y = f and application to control of phases[END_REF] further applications of this theory can be found in Chanillo and Yung [START_REF] Chanillo | An improved Strichartz estimate for systems with divergence free data[END_REF] and in Chanillo, Van Schaftingen and Yung [START_REF] Chanillo | Applications of Bourgain-Brézis inequalities to fluid mechanics and magnetism[END_REF].

Let us first briefly recall the strategy of Bourgain and Brezis in their proof of the approximation theorem of Ẇ 1,d (R d ) (that is, (1.1) and (1.2) above), before we turn to the difficulties we must face in proving Theorem 1.1. First they observe that for f ∈ Ẇ 1,d (R d ), the Littlewood-Paley projections ∆ j f are uniformly bounded in R d for all j, by Bernstein's inequality:

∆ j f L ∞ (R d ) ≤ C ∇f L d (R d ) .
By normalizing f , one may thus assume that ∆ j f L ∞ (R d ) ≤ 1 for all j ∈ Z. As a result, to approximate f = j∈Z ∆ j f = j∈Z ∆ j f • 1 by a bounded function F , one is tempted to set

F (x) = j∈Z ∆ j f (x) j >j (1 -|∆ j f (x)|),
which would be automatically bounded by a partition of unity identity (see Lemma 3.2 below). Of course this cannot work, for this construction does not distinguish between the "good" directions ∂ 1 , . . . , ∂ d-1 from the "bad" direction ∂ d (whereas (1.1) distinguishes those). Thus Bourgain and Brezis introduce an auxiliary function ω j (x), which controls ∆ j f (x) in the sense that

|∆ j f | ≤ ω j ≤ ∆ j f L ∞ (R d ) ,
while satisfying good derivative bounds such as |∂ i ω j | ≤ C2 j-σ ω j for i = 1, . . . , d -1, and |∂ d ω j | ≤ C2 j ω j ; here σ > 0 is a large parameter only depending on δ. These ω j 's are constructed in [START_REF] Bourgain | New estimates for elliptic equations and Hodge type systems[END_REF] by using a supconvolution (where one takes a supremum instead of an integral in the definition of a convolution), namely:

ω j (x) = sup y∈R d |∆ j f (y)|e -2 j |x d -y d |-2 j-σ |x -y | , where x -y = (x 1 -y 1 , ..., x d-1 -y d-1
). With this in hand, one may be tempted to define the approximating function F by setting

F (x) = j∈Z ∆ j f (x) j >j (1 -ω j (x)),
which again would be automatically bounded by a partition of unity identity, and which has a better chance of obeying estimate (1.1). It turns out that this is still not sufficient; indeed, if F were such defined, then

f -F = j ω j µ j
for some functions µ j given by

µ j (x) = j <j ∆ j f (x) j <j <j (1 -ω j (x)).
These µ j 's are pointwisely bounded by 1 under our normalization of f . Thus to give an upper bound for

∂ i (f -F ) L d , one term to be controlled is the L d -norm of j µ j ∂ i ω j . But (1.3) j |∂ i ω j ||µ j | L d ≤ C j 2 j ω j L d ;
it is therefore hopeless to conclude this way, since the right-hand side of (1.3) is even bigger than

2 j |∆ j f | 1 L d ,
while one can only afford a bound by 2 j ∆ j f 2 L d ∇f L d . Bourgain and Brezis have a clever way out: if instead of j 2 j ω j L d we only needed to estimate

j 2 j ω j χ A j L d
where A j is the set defined by A j := {x ∈ R d : ω j (x) > t>0 2 -t ω j-t (x)} and χ A j is the characteristic function of the set A j , then we would be in good shape because we have a pointwise bound

(1.4) j 2 j ω j χ A j ≤ 2 sup j 2 j ω j ,
and the crucial estimate:

(1.5) sup j∈Z (2 j ω j ) L p (R d ) ≤ C2 σ(d-1) p ∇f L p (R d )
for any 1 < p < ∞. Thus they decompose

∆ j f (x) = ∆ j f (x)χ A c j (x) + ∆ j f (x)χ A j (x) := g j (x) + h j (x)
so that f = j∈Z g j + j∈Z h j . They then proceed to approximate g := j∈Z g j and h := j∈Z h j by g := j∈Z g j j >j

(1 -G j ) and h :=

j∈Z h j j >j (1 -U j )
respectively, where G j and U j are some suitable controlling functions that satisfy pointwisely g j ≤ G j ≤ 1 and h j ≤ U j ≤ 1 (so that g and h are automatically bounded), whereas G j and U j are constructed from the ω j 's, so that the L d -norms of ∂ i (g -g) and ∂ i (h -h) satisfy good estimates for i = 1, . . . , d -1. Indeed, in [START_REF] Bourgain | New estimates for elliptic equations and Hodge type systems[END_REF], h -h is written as a sum of products, which in turn allows a direct estimate of ∂ i (h -h) by the Leibniz rule; the heuristics centered around equations (1.4) and (1.5) suggest that ∂ i (h -h) L d may be small. On the other hand, ∂ i (g -g) is estimated using Littlewood-Paley inequalities, since it is a sum of pieces that are well-localized in frequency: indeed, note that

(1.6) |∆ j f (x)|χ A c j (x) ≤ t>0 2 -t ω j-t (x),
and while a derivative on the left hand side of (1.6) heuristically gains only 2 j , a derivative on each term on the right hand side of (1.6) gains 2 j-t , which is better when t is large. It is this interplay that allows them to conclude with the estimate for ∂ i (g -g), and hence the proof of their theorem. Now that we have recalled this basic strategy, we can address the difficulties we faced in extending the result of Bourgain and Brezis for Ẇ 1,d (R d ), to the full Theorem 1.1 for Ḟ α,p q (R d ). The first difficulty arises when α > 1: if we define the controlling functions ω j as in [START_REF] Bourgain | New estimates for elliptic equations and Hodge type systems[END_REF] by using a supconvolution, then the ω j are at best Lipschitz, and in general may not be differentiated more than once. But an approximation theorem for Ḟ α,p q (R d ) naturally involves taking α derivatives, so a sup-convolution construction for the ω j 's cannot be expected to work when α > 1. Following [START_REF] Wang | A subelliptic Bourgain-Brezis inequality[END_REF], where Bourgain and Brezis' result was extended to subelliptic settings, we overcome this by taking a discrete p convolution instead; morally speaking, this means that we take (1.7)

ω j (x) =   r∈2 -j Z d |∆ j f |(r)e -2 j |x -r |-2 j-σ |x -r | p   1/p
(here r and r are the first κ and the last d -κ variables of r respectively, where κ is defined as in Theorem 1.1; similarly for x and x ). For some technical reasons, this is not the precise definition of ω j we will use; see (3.3) in Section 3 below for the precise construction of ω j . Once the correct definition of ω j is in place, roughly speaking we would consider the sets

A j := {x ∈ R d : ω j (x) > t>0 2 -αt ω j-t (x)}
(note the dependence of this set on α), and split

∆ j f (x) = ∆ j f (x)χ A c j (x) + ∆ j f (x)χ A j (x) := g j (x) + h j (x)
as above (actually we would use a smooth version of χ A j instead of the sharp cut-off given by the characteristic function of A j ). We would then proceed as in [START_REF] Bourgain | New estimates for elliptic equations and Hodge type systems[END_REF] to approximate j∈Z h j and j∈Z g j , except that several further difficulties must be overcome. One of them is the proof of the analog of (1.5) in the case q > p. This arises, for instance, when we prove an approximation theorem for Ẇ

k,d/k (R d ) with d/2 < k < d (in which case q = 2 > d/k = p).
In general, to prove Theorem 1.1 for Ḟ α,p q (R d ), we would like to prove an inequality of the form

(1.8) sup j∈Z (2 αj ω j ) L p (R d ) 2 σκ p f Ḟ α,p q (R d ) .
If ω j was defined as in the putative definition (1.7), then morally speaking, the above inequality would admit an easy proof when q ≤ p: indeed, heuristically we have

ω j (x)   r∈Z d |∆ j f |(x -2 -j r)e -|r |-2 -σ |r | p   1/p , so sup j∈Z (2 αj ω j ) p L p (R d ) = R d sup j∈Z (2 αj ω j (x)) p dx ≤ j∈Z R d (2 αj ω j (x)) p dx = j∈Z r∈Z d (e -|r |-2 -σ |r | ) p (2 αj ) p R d |∆ j f (x -2 -j r)| p dx.
The last integral is equal to

R d |∆ j f |(x) p dx, and r∈Z d (e -|r |-2 -σ |r | ) p 2 σκ . Thus sup j∈Z (2 αj ω j ) p L p (R d ) 2 σκ R d j∈Z (2 αj |∆ j f (x)|) p dx 2 σκ R d   j∈Z (2 αj |∆ j f (x)|) q   p/q dx
where in the last line we have used the embedding q → p if q ≤ p. This would prove (1.8) when q ≤ p, under the putative definition (1.7) of ω j . Unfortunately this simple argument is insufficient in handling the case when q > p. We found a way out using a logarithmic bound for some vector-valued 'shifted' maximal functions (see Corollary 10.3), which we prove using an old argument going back to Zó ([35]). We then get a slightly weaker bound than (1.8), one that is off by a logarithmic factor (see Proposition 4.7), but that is still sufficient for our purpose.

A second difficulty arises when α is not an integer or when q = 2. Recall that in one step, Bourgain and Brezis estimated ∂ i (h -h) in L d (R d ) by writing it as a sum of products, and then using the ordinary Leibniz rule. In our case, we need to estimate ∂ i (h -h) in Ḟ α-1,p q (R d ), which is defined only via Littlewood-Paley projections when α is not an integer, or when q = 2. Thus we must know how to estimate the derivative of a sum of products within the realm of Littlewood-Paley theory. If it were not for the sum involved, we could just apply the fractional Leibniz rule for the space Ḟ α-1,p q (R d ). But since the sum is present, we found it easier to proceed directly, without resorting to the fractional Leibniz rule. It may also be worth noting here that we run into an additional difficulty, in the case 0 < α < 1: we find it necessary then to exploit some additional cancellations offered by the Littlewood-Paley projections ∆ j 's, when we deal with certain high frequency components of h -h (see the introduction of the parameter T in Section 5 when 0 < α < 1).

A final difficulty arises when α ∈ (0, 1/2]. In this case, α is rather small, so the set A c j , given by A c j = {x ∈ R d : ω j (x) ≤ t>0 2 -αt ω j-t (x)}, is relatively large. As a result, g j := ∆ j f • χ A c j is relatively large, and one expects it to be relatively harder to estimate ∂ i (g -g) in Ḟ α-1,p q (R d ). This is manifested in our need to introduce a parameter a α in Section 6 (see Proposition 6.1), which is smaller than 1 when α ∈ (0, 1/2]. Let us end up this introduction with three open problems:

Open problem 1.3. The condition κ < min(p, d) in the statements of Theorems 1.1 and 1.2 may not be necessary in general. In [START_REF] Maz | Estimates for differential operators of vector analysis involving L 1 -norm[END_REF], Maz'ya proves that for every vector function

X ∈ Ḟ d/2,2 2 (R d ; R d ), there exists Y ∈ ( Ḟ d/2,2 2 ∩ L ∞ )(R d ; R d ) and a scalar function u ∈ Ḟ 1+d/2,2 2 (R d ) such that X = Y + ∇u.
This coincides with the statement of Theorem 1.2 when p = q = 2, α = d/2 and l = 1, except that this set of parameters is not covered by our assumptions when d ≥ 3. Indeed, the condition l ∈ d -κ, d -1 cannot be satisfied in that case: this would require κ = d -1, which is impossible in view of the conditions κ < p = 2 and d ≥ 3. Is it true that Theorems 1.1 and 1.2 remain true when the condition κ < min{p, d} is replaced by κ < d ?

Open problem 1.4. In [START_REF] Wang | A subelliptic Bourgain-Brezis inequality[END_REF], the conclusion of [START_REF] Bourgain | New estimates for elliptic equations and Hodge type systems[END_REF] is extended to a subelliptic context, namely the case of the Heisenberg groups endowed with a subelliptic Laplacian. The extension of Theorems 1.1 and 1.2 to the case of the Heisenberg group is an open problem.

Open problem 1.5. It is likely that Theorem 1.2 can be extended to the case of smooth bounded domains in R d , in the spirit of [START_REF] Bousquet | A limiting case for the divergence equation[END_REF].

The paper is organized as follows. After gathering instrumental facts about Triebel-Lizorkin spaces and maximal functions in Section 2, we describe the approximating function F in Theorem 1.1 in Section 3. Section 4 is devoted to proving key estimates for the ω j 's, which are then used to derive bounds for h -h (resp. g -g) in Section 5 (resp. Section 6). The proof of Theorem 1.1 is completed in Section 7, while Theorem 1.2 is established in Section 8.

Throughout the paper, if two quantities A(f ) and B(f ) depend on a function f ranging over some space L, the notation A(f ) B(f ) means that there exists C > 0 such that A(f ) ≤ CB(f ) for all f ∈ L, while A(f ) B(f ) means that A(f ) B(f ) A(f ). The Euclidean ball centered at 0 with radius r will be denoted B r . Acknowledgment. Wang was partially supported by NSF Grant No. DMS-1612015. Yung was partially supported by the Early Career Grant CUHK24300915 from the Hong Kong Research Grant Council.

Preliminaries

For a brief overview on homogeneous Triebel-Lizorkin spaces, we refer to [START_REF] Triebel | Theory of function spaces[END_REF]Chapter 5], [START_REF] Bourdaud | Composition operators on Lizorkin-Triebel spaces[END_REF] and also [START_REF] Runst | Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations[END_REF]Chapter 2].

2.1. The Triebel-Lizorkin spaces. We fix a function ∆ ∈ S(R d ) such that 1

(2.1) ∆ ∈ C ∞ c (B 2 \ B 1 2
), and

(2.2) j∈Z ∆(2 j x) = 1, ∀x ∈ R d \ {0}.
Notice that assumption (2.1) yields that, for every polynomial P , (2.3)

R d P (x)∆(x) dx = 0.
For all j ∈ Z and all x ∈ R d , define ∆ j (x) := 2 jd ∆(2 j x).

Let Z(R d ) = {f ∈ S(R d ) : ∂ γ f (0) = 0, ∀γ ∈ N d }.
The dual space Z (R d ) of this closed subspace of S(R d ) can be identified as the set {f | Z , f ∈ S (R d )}, or equivalently as the factor space S (R d )/P(R d ), where

P(R d ) is the collection of all polynomials on R d . For all f ∈ Z (R d ), let ∆ j f := f * ∆ j ; this is well-defined for f ∈ Z (R d ) = S (R d )/P(R d ) since the Fourier transform of a polynomial is supported in {0}. Moreover, it is a straightforward consequence of the Paley-Wiener theorem that ∆ j f belongs to L p (R d ) for all p ∈ [1, ∞]. Definition 2.1. Let α ∈ R and p, q ∈ (1, ∞). Let f ∈ Z (R d ). Say that f ∈ Ḟ α,p q (R d ) (or Ḟ α,p q ) if and only if f Ḟ α,p q (R d ) := 2 αj ∆ j f q (Z) L p (R d ) < ∞.
In view of (2.1) and (2.2), we have

(2.4) ∀k ∈ Z, ∀f ∈ Z , ∆ k f = j∈Z ∆ k ∆ j f = |j-k|≤1 ∆ k ∆ j f.

This implies

Proposition 2.2. Let α > 0 and 1 < p, q < ∞. Then for all f ∈ Ḟ α,p q (R d ),

(2.5) f = ∞ j=-∞ ∆ j f
where the series converges in Ḟ α,p q . Another useful property is given by the following proposition:

Proposition 2.3. [3, Proposition 5] For every α, p, q ∈ R, for every f ∈ Z (R d ), f Ḟ α,p q d i=1 ∂ i f Ḟ α-1,p q .
Remark 2.4. We only need to prove Theorem 1.1 under the additional assumption that f ∈ Ḟ α,p q has only finitely many ∆ j f different from 0.

1 The function ∆ can be obtained as follows

. Let ρ ∈ C ∞ c (B2 \ B 1 2 ) such that ρ ≡ 1 on C ∞ c (B 3 2 \ B 3 4 ) and 0 ≤ ρ ≤ 1 on R d . Then 1 ≤ j∈Z ρ(2 j x) ≤ 2 on R d \ {0}. We then define ∆(x) = ρ(x) j∈Z ρ(2 j x) on R d \ {0} and ∆(0) = 0.
Indeed, assume that the theorem is true for such distributions f . Then for an arbitrary f ∈ Ḟ α,p q , we consider for every J ∈ N the distribution

f J := J j=-J ∆ j f.
For every δ > 0, we thus get a function

F J ∈ Ḟ α,p q ∩ L ∞ which satisfies (2.6) κ i=1 ∂ i (f J -F J ) Ḟ α-1,p q ≤ δ f J Ḟ α,p q ,

and

(2.7)

F J L ∞ + F J Ḟ α,p q ≤ C δ f J Ḟ α,p q .
Proposition 2.2 implies that the sequence (f J ) J∈N strongly converges to f in Ḟ α,p q . Hence, the sequence (F J ) J∈N is bounded in Ḟ α,p q ∩ L ∞ . We can extract a subsequence (still denoted by F j ) which converges to some F weakly* in L ∞ , and thus also in Z . By the Fatou property [3, Proposition 7], F ∈ L ∞ ∩ Ḟ α,p q and (2.7) remains true with F and f instead of F J and f J . Since ∂ i (f J -F J ) also converges weakly* in Z , the Fatou property again implies that (2.6) remains true for f and F .

We assume henceforth in all the sequel of the paper that f is such that only finitely many ∆ j f are different from 0.

Inequalities involving the Hardy-Littlewood maximal function. For all functions g ∈ L 1

loc (R d ) and all x ∈ R d , define the Hardy-Littlewood functional by

Mg(x) := sup B x 1 |B| B |g(y)| dy,
where the supremum is taken over all Euclidean balls of R d containing x. Let us summarize the properties of M which will be used in the sequel:

Proposition 2.5. The Hardy-Littlewood functional satisfies the following properties:

(1) M is of weak type (1, 1) and L p -bounded for all p ∈ (1, ∞], 2

(2) one also has the vector-valued version of the previous assertion: for all p, q ∈ (1, ∞), for all (g j ) j∈Z ∈ L p (R d ; q (Z)),

(2.8) 3 and all measurable functions φ such that |φ(y)| ≤ ϕ ( y ) for all y ∈ R d , the convolution g * φ is defined almost everywhere and one has 2 Note that M is a sublinear operator. That M is L p -bounded (resp. is of weak type (1, 1)) means that Mg p g p (resp. that, for all λ > 0, |{Mg > λ}| 1 λ g 1 ). 3 Here and after, • stands for the Euclidean norm.

Mg j q (j) L p g j q (j) L p , (3) for all p ∈ [1, ∞], all functions g ∈ L p (R d ), all decreasing functions ϕ : [0, ∞) → [0, ∞) such that A := R d ϕ( y )dy < ∞,
Remark 2.6. Note that (2.9) applies in particular when φ ∈ S(R d ), since every Schwartz function on R d can be dominated by a radially decreasing integrable function.

Proposition 2.7. For all γ ∈ N d , j ∈ Z and x ∈ R d , (2.10) |∂ γ ∆ j f (x)| 2 |γ|j M∆ j f (x).
Moreover, for all α > 0 and 1 < p, q < ∞ such that αp = d,

(2.11) |∂ γ ∆ j f (x)| 2 |γ|j f Ḟ α,p q .
The implicit constants in both inequalities do not depend on x, γ, j nor on f .

As a particular case of (2.11) where we take γ = 0, we obtain the following Bernstein inequality when αp = d:

(2.12) ∆ j f L ∞ f Ḟ α,p q .
The implicit constant in (2.12) only depends on α and p (but neither on j nor on f ).

Proof of Proposition 2.7. In view of (2.4), we have

|∂ γ ∆ j f (x)| |j-k|≤1 2 |γ|k |(∂ γ ∆) k ∆ j f | 2 |γ|j |j-k|≤1 |(∂ γ ∆) k ∆ j f | , where (∂ γ ∆) k (x) = 2 kd (∂ γ ∆)(2 k x).
Taking (2.9) into account and applying Remark 2.6 to φ = (∂ γ ∆) k , this yields

|∂ γ ∆ j f (x)| 2 |γ|j M∆ j f (x).
This proves the first assertion. It follows therefrom that

(2.13) |∂ γ ∆ j f (x)| 2 |γ|j ∆ j f L ∞ .
Using (2.4) again, we have

∆ j f L ∞ ≤ |j-k|≤1 ∆ k ∆ j f L ∞ .
Hölder's inequality then implies

∆ j f L ∞ ≤ |k-j|≤1 ∆ k L p ∆ j f L p .
Using a change of variables and the expression of ∆ k , we thus get

(2.14) ∆ j f L ∞ 2 jd p ∆ j f L p = 2 αj ∆ j f L p ≤ f Ḟ α,p q ,
where we have used that αp = d and the definition of Ḟ α,p q . Inequality (2.11) is now a consequence of (2.13) and (2.14).

The approximations of f

The present section is devoted to the definition of the function F in Theorem 1.1. Let α > 0 and p > 1 such that αp = d. Let f ∈ Ḟ α,p q (R d ), δ > 0 and σ be a large positive integer to be chosen (only depending on δ). For x = (x 1 , . . . , x d ), we define x σ := (2 -σ x 1 , . . . , 2 -σ x κ , x κ+1 , . . . , x d ). The parameter σ discriminates the good directions x 1 , . . . , x κ from the other ones. In particular, when one differentiates a function of the form x → u(x σ ) along a good direction, an additional factor 2 -σ arises. Let E be the Schwartz function defined by

(3.1) E(x) := e -(1+ xσ 2 ) 1 2 .
For all j ∈ Z and all x ∈ R d , let E j (x) := 2 jd E(2 j x). Define also

(3.2) T (x) := min 1, x -(d+1)
and

T j (x) := 2 jd T (2 j x)
for all j ∈ Z and all x ∈ R d . We introduce an auxiliary function which can be seen as a substitute of |∆ j f |, j ∈ Z:

(3.3) ω j (x) :=   r∈Z d T j |∆ j f |(2 -j r)E(2 j x -r) p   1 p , x ∈ R d .
Here and in the sequel, we use the notation

T j |∆ j f | for the convolution T j * |∆ j f |. We will prove that ω j inherits the L ∞ bounds of |∆ j f |. More precisely, ∆ j f L ∞ ω j L ∞ 2 κσ ∆ j f L ∞ .
In contrast to |∆ j f |, ω j is smooth, as a discrete p convolution. Moreover, it behaves differently with respect to good and bad coordinates. This allows to obtain improved estimates on its derivatives along good directions.

Remark 3.1. Notice that, if, for some x ∈ R d and some j ∈ Z, ω j (x) = 0, then the definition of ω j yields that T j |∆ j f | (2 -j r) = 0 for all r ∈ Z. Since T j is positive everywhere, it follows that ∆ j f has to vanish on all R d , which entails that ω j (y) = 0 for all y ∈ R d .

Let R >> σ be another positive integer to be chosen. Let us consider a smooth function ζ j approximating the characteristic function of the set

   x ∈ R d ; 2 αj ω j (x) ≤ 1 2 k<j,k≡j(mod R) 2 αk ω k (x)    .
More specifically, notice first that, if the function k<j,k≡j(mod R) 2 αk ω k vanishes at some point x ∈ R d , then it identically vanishes (see Remark 3.1). In order to define ζ j , we thus fix a smooth function 1 2 ] and ζ ≡ 0 on [1, ∞) and we define, for all j ∈ Z,

ζ : [0, ∞) → [0, 1] such that ζ ≡ 1 on [0,
ζ j :=      ζ 2 αj ω j k<j,k≡j(mod R) 2 αk ω k if k<j,k≡j(mod R) 2 αk ω k ≡ 0, 0 otherwise . We split f = j ∆ j f into the sum of two functions: f = g + h, given by (3.4) h := ∞ j=-∞ h j , g := ∞ j=-∞ g j , with h j (x) := (1 -ζ j (x))∆ j f (x), g j (x) := ζ j (x)∆ j f (x).
The approximating function F in Theorem 1.1 is also defined as the sum of two functions: F = g+ h, where

(3.5) h := ∞ j=-∞ h j j >j (1 -U j ) with U j = (1 -ζ j )ω j and (3.6) g = R-1 c=0 j≡c(mod R) g j j >j j ≡c(mod R) (1 -G j ) with G j := t>0 t≡0(mod R) 2 -αt ω j-t .
The definition of g involves some infinite products, the convergence of which will be discussed at the end of Section 4, while, as we shall see, the products involved in the definition of h are actually finite. We will show that F satisfies all the conclusions of Theorem 1.1, provided that f Ḟ α,p q is sufficiently small. The latter can be assumed without loss of generality, as explained at the end of this section, see Proposition 3.3 below.

The definitions of h and g are inspired by [START_REF] Bourgain | New estimates for elliptic equations and Hodge type systems[END_REF] and [START_REF] Wang | A subelliptic Bourgain-Brezis inequality[END_REF]. They are motivated by two crucial facts: the Bernstein inequality (2.12) and the following algebraic identity, see e.g. [33, Proposition 6.1]: Lemma 3.2. Let (a k ) k≥Z be a sequence of complex numbers. Assume that, for some integer k 0 ∈ Z, a k = 0 whenever |k| > k 0 . Then, for all j ∈ Z,

1 = j >j a j j<j <j 1 -a j + j >j (1 -a j ).
In particular, the above identity implies that if 0 ≤ a j ≤ 1 for every j ∈ Z, then (3.7)

j >j a j j<j <j 1 -a j ≤ 1.
The functions U j in the definition of h are constructed in order to satisfy

h j L ∞ U j L ∞ ω j L ∞ 2 κσ ∆ j f L ∞ .
Taking a j = U j in (3.7) and using Bernstein inequality, one can see that when f Ḟ α,p q is sufficiently small, 0 ≤ U j ≤ 1 and thus h L ∞ 1. A similar computation can be made with g. This will imply the desired L ∞ estimate on F .

Regarding the Ḟ α,p q estimates, the strategies for h and g follow two different paths. For every x ∈ R d , h(x) is the sum of the largest Littlewood-Paley projections |∆ j f (x)|. Roughly speaking, this is exploited to reduce the sum of these projections to only one term. More specifically, we will use the following fact:

(3.8) m∈Z 2 αm ω m χ 2 αm ωm> 1 2 k<m,k≡m(mod R) 2 αk ω k ≤ 3R sup m∈Z 2 αm ω m . Indeed, writing m∈Z 2 αm ω m χ 2 αm ωm> 1 2 k<m,k≡m(mod R) 2 αk ω k = R-1 j=0 m≡j(mod R) 2 αm ω m χ 2 αm ωm> 1 2 k<m,k≡j(mod R) 2 αk ω k ,
we consider for every j = 0, . . . , R -1 the largest index m j in the sum m≡j( mod R) • • • above such that the corresponding term 2 αm ω m χ 2 αm ωm> 1 2 k<m,k≡j(mod R) 2 αk ω k is > 0 (such an index m j exists since we have assumed that only finitely many ∆ k f are different from 0). Then

m≡j(mod R) 2 αm ω m χ 2 αm ωm> 1 2 k<m,k≡m(mod R) 2 αk ω k ≤ 2 αm j ω m j + k<m j ,k≡j(mod R) 2 αk ω k ≤ 3 • 2 αm j ω m j ≤ 3 sup m∈Z 2 αm ω m
from which (3.8) follows. The estimate of the Ḟ α,p q norm of the right hand side of (3.8) is the most delicate part in the Ḟ α,p q approximation of h by h. This is the object of Proposition 4.7 below. Let us also mention that the good derivatives play a central role in this first part of the approximation.

The Ḟ α,p q estimate of g -g is less elaborate. As explained in the introduction, it is obtained using Littlewood-Paley inequalities. Here, the role of R becomes crucial.

In order to carry out the above arguments rigorously, we need to assume that f Ḟ α,p q is sufficiently small. This is not a restriction since Theorem 1.1 is a consequence of the following (apparently weaker) statement: Proposition 3.3. Let α > 0 and p, q ∈ (1, ∞) such that αp = d. Let κ be the largest positive integer that satisfies κ < min{p, d}. Then for every δ > 0, there exists η δ > 0 such that for every

f ∈ Ḟ α,p q (R d ) with f Ḟ α,p q ≤ η δ , there exist F ∈ Ḟ α,p q ∩ L ∞ (R d ) and a constant D δ > 0 with D δ independent of f , such that (3.9) κ i=1 ∂ i (f -F ) Ḟ α-1,p q ≤ δ f Ḟ α,p q + D δ f 2 Ḟ α,p q , and 
(3.10) F L ∞ + F Ḟ α,p q ≤ D δ .
We proceed to explain how Proposition 3.3 implies Theorem 1.1. Let δ > 0. By Proposition 3.3, there exist η δ > 0 and D δ > 0 satisfying the above properties.

Let f ∈ Ḟ α,p q , f ≡ 0. We then apply Proposition 3.3 to the function

f := min η δ , δ D δ f Ḟ α,p q f.
We thus obtain a function F which satisfies (3.9) and (3.10), with f instead of f . Finally, we set

F := f Ḟ α,p q min η δ , δ D δ F .
Then multiplying the estimates by f Ḟ α,p q / min η δ , δ D δ and using that f

Ḟ α,p q = min η δ , δ D δ yields κ i=1 ∂ i (f -F ) Ḟ α-1,p q ≤ δ f Ḟ α,p q + D δ min η δ , δ D δ f Ḟ α,p q ≤ 2δ f Ḟ α,p q , and 
F L ∞ + F Ḟ α,p q ≤ D δ min η δ , δ D δ f Ḟ α,p q .
This proves Theorem 1.1 with

C δ = D δ/2 / min η δ/2 , δ 2D δ/2
. A word about notations is in order. In the above, we have defined the functions E j , T j , ∆ j , ω j , ζ j , h j , g j , U j and G j . Morally speaking, all these are localized in frequency to |ξ| 2 j . Some like E j , T j and ∆ j are L 1 -renormalized dilations of a fixed function (in particular, we note in passing that they satisfy

E j L p = 2
jd p E L p for all p; similarly for T j and ∆ j ). The others are not dilations of a fixed function, but if we take k derivatives of ω j , ζ j , h j , g j , U j or G j , we can obtain an upper bound that involves a factor 2 jk . This will be made explicit in the next three sections, which are devoted to the proof of Proposition 3.3.

Properties of ω j

In this section, we collect all the estimates of ω j needed in the sequel. 

ω j (x)   r∈Z d T j |∆ j f |(x + 2 -j r)E(r) p   1/p (4.2) |∆ j f |(x) ω j (x).
The proof of Proposition 4.1 relies on the following estimate for the function T defined in (3.2):

Lemma 4.2. For every x, y ∈ R d , if y ≤ √ d, then T (x + y) T (x). Proof of Lemma 4.2: Note that T (x) ≥ (2 √ d) -(d+1) for all x ∈ R d with x ≤ 2 √ d. Thus T (x + y) ≤ 1 ≤ (2 √ d) d+1 T (x) whenever x ≤ 2 √ d. On the other hand, if x > 2 √ d and y ≤ √ d, then x + y ≥ x /2, so T (x + y) = x + y -(d+1) ≤ 2 d+1 x -(d+1) = 2 d+1 T (x). This shows T (x + y) ≤ CT (x) with C = (2 √ d) d+1 .
Proof of Proposition 4.1: The proof of (4.1) is analogous to the one of [START_REF] Wang | A subelliptic Bourgain-Brezis inequality[END_REF]Proposition 9.2]. The only difference is that the function S j+N introduced in [START_REF] Wang | A subelliptic Bourgain-Brezis inequality[END_REF] is now replaced by the function T j which satisfies the same (crucial) property as S j+N , namely: for every

x, y ∈ R d , if y ≤ 2 -j √ d, (4.3) 
T j (x + y) T j (x).

In turn, this follows from the definition of T j and Lemma 4.2. From (4.3) one deduces that (4.4)

T j |∆ j f |(x -2 -j (y + r)) T j |∆ j f |(x -2 -j r) whenever x ∈ R d , r ∈ Z d and y ≤ √ d.
Arguing as in the proof of [START_REF] Wang | A subelliptic Bourgain-Brezis inequality[END_REF]Proposition 9.2], we rewrite ω j as

ω j (x) =   r∈Z d (T j |∆ j f |(x -2 -j (y + r))E(y + r)) p   1/p
where y ∈ [0, 1) d is the 'fractional part' of 2 j x. In particular, y ≤ √ d. The estimate (4.1) then follows from (4.4) and the fact that whenever r ∈ Z d , (4.5) E(y + r) E(r).

Let now K be a Schwartz function on R d , whose Fourier transform K is identically 1 on B 2 , and vanishes outside B 3 . Then by (2.1), for every

ξ ∈ R d , ∆(ξ) K(ξ) = ∆(ξ).
Hence, ∆ j f = ∆ j f * K j where K j (x) = 2 jd K(2 j x) for all x ∈ R d . Moreover, since K ∈ S, there exists C > 0 such that, for all x ∈ R d , |K(x)| ≤ CT (x). We deduce therefrom |K j | ≤ CT j and thus

|∆ j f (x)| ≤ |∆ j f | * |K j |(x) ≤ C|∆ j f | * T j (x).
In view of (4.1), this gives the desired conclusion |∆ j f (x)| ω j (x).

We also have:

Proposition 4.3.
(1) For all j ∈ Z, (4.6) ω j 2 κσ MM∆ j f.

(2) For all j ∈ Z,

(4.7) ω j L ∞ 2 κσ ∆ j f L ∞ 2 κσ f Ḟ α,p q .
Proof. From (4.1), we deduce

ω j (x) r∈Z d T j |∆ j f |(x + 2 -j r)E(r).
Using (4.4) and (4.5), we get

ω j (x) r∈Z d (0,1) d T j |∆ j f |(x + 2 -j (r + y))E(r + y) dy = E j T j |∆ j f |(x).
We then observe that

T j |∆ j f |(x) M|∆ j f |(x) and thus E j T j |∆ j f |(x) 2 κσ M (T j |∆ j f |).
Both are consequences of (2.9). This proves the first item. The second item is now an easy consequence of (4.6) and the Bernstein inequality (2.12).

The derivative estimates for ω j can be obtained in a similar manner to the proofs of [33, Proposition 9.6] and [START_REF] Wang | A subelliptic Bourgain-Brezis inequality[END_REF]Proposition 9.7] and they depend on how many derivatives are computed in the good directions x := (x 1 , . . . , x κ ). Proof. We can assume that ω j ≡ 0, and thus ω j (x) > 0 for all x ∈ R d , see Remark 3.1. The function u : x → 1 + x 2 1/2 is the Euclidean norm of the vector (1, x) in R d+1 . By homogeneity, it follows that |∂ γ u(x)| 1 for all γ ∈ N d \ {0}. By the Faà di Bruno formula (i.e. the expression of the iterated derivatives of the composition of two functions), we obtain the pointwise estimate

|∂ γ (exp •(pu))(x)| exp •(pu)(x). By definition of E, see (3.1), it follows that for every γ ∈ N d , γ ∈ N κ , (4.9) ∂ γ ∂ γ x E p (2 j x -r) 2 j(|γ|+|γ |) 2 -|γ |σ E p (2 j x -r).
By definition of ω j , see (3.3), it follows that

∂ γ ∂ γ x ω p j 2 j(|γ|+|γ |) 2 -|γ |σ ω p j .
Writing

ω j = ω p j 1/p
, the Faà di Bruno formula applied to the functions ω p j and t → t 1/p gives

∂ γ ∂ γ x ω j 2 j(|γ|+|γ |) 2 -|γ |σ ω j .
This proves the proposition.

From Proposition 4.4, we deduce: Proposition 4.5. For every γ ∈ N κ and γ ∈ N d ,

|∂ γ ∂ γ x ζ j | 2 (|γ |+|γ|)j 2 -|γ |σ . Proof.
Since the result is obvious when ζ j = 0, we assume that ζ j = 0. We write

ζ j (x) = ζ 2 αj ω j v j
where v j (x) = k<j,k≡j(mod R) 2 αk ω k . By Proposition 4.4, (4.10)

|∂ γ ∂ γ x v j | k<j k≡j(mod R) 2 αk 2 (|γ|+|γ |)k 2 -|γ |σ ω k 2 (|γ|+|γ |)j 2 -|γ |σ v j .

We now prove by induction on |γ|

+ |γ | that (4.11) ∂ γ ∂ γ x 1 v j 2 (|γ|+|γ |)j 2 -|γ |σ 1 v j . Since 0 = ∂ γ ∂ γ x (v j • (1/v j )), the Leibniz formula implies v j ∂ γ ∂ γ x 1 v j = - β≤γ,β ≤γ |β|+|β |<|γ|+|γ | γ β γ β ∂ γ-β ∂ γ -β x v j ∂ β ∂ β x 1 v j .
Using (4.10) and (4.11) for every |β|

+ |β | < |γ| + |γ |, it then follows that ∂ γ ∂ γ x 1 v j 1 v j β≤γ,β ≤γ |β|+|β |<|γ|+|γ | 2 (|γ-β|+|γ -β |)j 2 -|γ -β |σ v j • 2 (|β|+|β |)j 2 -|β |σ 1 v j 2 (|γ|+|γ |)j 2 -|γ |σ 1 v j .
By Leibniz formula and Proposition 4.4, this gives

∂ γ ∂ γ x 2 αj ω j v j 2 (|γ|+|γ |)j 2 -|γ |σ 2 αj ω j v j
and the desired estimate now follows from the Faà di Bruno formula applied to the functions ζ and 2 αj ω j v j , and also the fact that ζ j (x) = 0 when 2 αj ω j (x) > v j (x).

4.2. Integral estimates. We first establish:

Proposition 4.6. For 1 < p, q < ∞, α > 0, (4.12) 
(2 αj ω j ) q (j) L p 2 κσ f Ḟ α,p q Proof. This follows from item 1 in Proposition 4.3 and (2.8).

The key result of this section is an integral estimate on sup j (2 αj ω j ), which will be used crucially to bound ∂ 1 (h -h) Ḟ α,p q in section 5.

Proposition 4.7. One has

(4.13) sup j∈Z (2 αj ω j ) L p σ2 κσ p f Ḟ α,p q .
The proof of Proposition 4.7 is more involved than the previous ones. It relies on the following estimate:

Proposition 4.8. Let p ∈ (1, ∞) and q ∈ [1, ∞]. Then there exists C = C(p, q, d) > 0 such that for every f = (f j ) j∈Z ∈ L p (R d ; q (Z)), for every r ∈ R d , (4.14) (T j |f j |(• + 2 -j r)) j∈Z q (Z) L p (R d ) ≤ C ln(2 + r ) (f j ) j∈Z q (Z) L p (R d ) .
The proof of Proposition 4.8 will be given in Appendix 10 below. Let us now derive Proposition 4.7 from Proposition 4.8.

Proof. By Proposition 4.1, for every

x ∈ R d , sup j∈Z (2 αj ω j (x)) p sup j∈Z r∈Z d (2 αj T j |∆ j f |(x + 2 -j r)E(r)) p r∈Z d E(r) p sup j∈Z (2 αj T j |∆ j f |(x + 2 -j r)) p = r∈Z d E(r) p sup j∈Z (2 αj T j |∆ j f |(x + 2 -j r)) p r∈Z d E(r) p (2 αj T j |∆ j f |(x + 2 -j r)) j∈Z p q . Integrating over x ∈ R d , we get sup j∈Z 2 αj ω j p L p r∈Z d E(r) p (2 αj T j |∆ j f |(• + 2 -j r)) j∈Z q p L p .
By Proposition 4.8, this gives

sup j∈Z 2 αj ω j p L p r∈Z d E(r) p [ln(2 + r )] p f p Ḟ α,p q .
In order to estimate r∈Z d E(r) p [ln(2 + r )] p , we first observe that for every r ∈ Z d , for every

x ∈ r + [0, 1] d , E(r) ≤ e -rσ ≤ e -rσ 1 / √ d ≤ e (2 -σ κ+(d-κ))/ √ d e -xσ 1 / √ d .
Here x 1 is the 1 -norm given by

|x 1 | + • • • + |x d |. Moreover, ln(2 + r ) ≤ ln(3 + x 1 ). It follows that r∈Z d E(r) p (ln(2 + r )) p R d e -p xσ 1 / √ d (ln(3 + x 1 )) p dx ≤ R d e -p xσ 1 / √ d (ln(3 + 2 σ x σ 1 )) p dx = 2 σκ R d e -p x 1 / √ d [ln(3 + 2 σ x 1 )] p dx σ p 2 σκ .
This completes the proof of Proposition 4.7.

What will be important for us above is that the power of 2 σ in (4.13), namely κ p , is strictly less than 1.

We will use Proposition 4.7 in the following form: Lemma 4.9.

(4.15) 2 αm ω m χ 2 αm ωm> 1 2 k<m,k≡m(mod R) 2 αk ω k q (m) L p Rσ2 κσ p f Ḟ α,p q .
Proof. Since 1 (Z) continuously embeds in q (Z), one gets

2 αm ω m χ 2 αm ωm> 1 2 k<m,k≡m(mod R) 2 αk ω k q (m) L p m∈Z 2 αm ω m χ 2 αm ωm> 1 2 k<m,k≡m(mod R) 2 αk ω k L p .
It is enough to combine (3.8) with Proposition 4.7 to conclude the proof of the lemma.

We end up this section by establishing the expected L ∞ bounds on F under a smallness condition on f Ḟ α,p q . More precisely, in view of (4.2) and (4.7), there exists η > 0 such that if 2 κσ f Ḟ α,p q ≤ η, then for every j ∈ Z

ω j L ∞ , ∆ j f L ∞ < 1.
By definition of U j , h j and g j , see (3.4) and (3.5), this implies (4.16)

U j L ∞ , h j L ∞ , g j L ∞ < 1.
We can also obtain L ∞ bounds on G j , h and g: Lemma 4.10. Assume that 2 κσ f Ḟ α,p q ≤ η with η as above. Then

(1) h

L ∞ 1,
(2) there exists j 0 ∈ N such that for every x ∈ R d , and every j ∈ Z,

|G j (x)| ≤ min 2 -αR , 2 -α(j-j 0 ) 1 -2 -αR .
In particular, G j L ∞ ≤ 1 2 αR -1 .

(3) The infinite products involved in the definition (3.6) of g are uniformly convergent on R d .

If we further assume that αR > 1, then G j L ∞ < 1 and g L ∞ R.

Proof. Using that

|h j (x)| = (1 -ζ j (x)) |∆ j f (x)| (1 -ζ j (x))ω j (x) = U j (x),
and that 0 ≤ U j ≤ 1 by the choice of η, we have h

L ∞ ∞ j=-∞ U j j >j (1 -U j )
which implies the first item by (3.7). We now estimate G j . Let j 0 ∈ N be an index for which ∆ j f ≡ 0 for all j > j 0 . Then ω j ≡ 0 for all j > j 0 . By the choice of η, ω j L ∞ < 1 for every j ∈ Z.

It follows that for every

x ∈ R d , 0 ≤ G j (x) < t>0,j-t≤j 0 t≡0(mod R) 2 -αt ≤ k≥k 0 2 -αRk
where k 0 is the lowest positive integer such k 0 R ≥ j -j 0 . This implies

G j (x) ≤ 2 -αRk 0 1 -2 -αR ≤ min 2 -αR , 2 -α(j-j 0 )
1 -2 -αR and the second item follows.

Moreover, whenever j > j 0 , G j L ∞ (R d ) 2 -α(j-j 0 ) (with an implicit constant depending on R) from which we obtain the uniform convergence of j >j j ≡c(mod R)

(1 -G j ) on R d for all j. This implies the first part of the third item. Finally, in order to obtain the estimate for g, we assume that αR > 1. By the second item, this implies G j L ∞ < 1. We next observe that when ζ j (x) > 0,

2 αj ω j (x) ≤ k<j k≡j(mod R)
2 αk ω k and thus (4.17)

|g j (x)| ζ j (x)ω j (x) k<j k≡j(mod R) 2 α(k-j) ω k = G j . It then follows that g L ∞ R-1 c=0 j≡c(mod R) G j j >j j ≡c(mod R) (1 -G j ) R.
This completes the proof.

In the next two sections, we will always assume that

(4.18) f Ḟ α,p q ≤ 2 -κσ η
and also that

(4.19) αR > 1.

Estimating h -h

We still write ∂ x for a derivative in any of the "good" directions, namely ∂ 1 , . . . , ∂ κ . This section is devoted to the proof of the Ḟ α-1,p q estimate for the derivatives of h -h: Proposition 5.1. Let α, p, q and κ be as in Theorem 1.1. Define h (resp. h) by (3.4) (resp. (3.5)). Then

∂ x (h -h) Ḟ α-1,p q Rσ 2 2 (-min(1,α)+ κ p )σ f Ḟ α,p q + 2 max(1-α,0)+κ 1+[α]+ 1 p σ f 2 Ḟ α,p q ,
and for any

1 ≤ i ≤ d, ∂ i (h -h) Ḟ α-1,p q Rσ 2 2 κ p σ f Ḟ α,p q + 2 max(1-α,0)+κ 1+[α]+ 1 p σ f 2 Ḟ α,p q ,
where the implicit constants depend on α, p and q but not on f, R, σ.

Here, [α] is the integer part of α.

Proof of Proposition 5.1: We only prove the first inequality of the statement. The proof of the second one is very similar (and easier to establish).

Step 1. Let

V j := j <j h j j <j <j (1 -U j ). Then (5.1) h -h = j U j V j .
Identity (5.1) is a consequence of Lemma 3.2:

h -h = ∞ j=-∞ h j   1 - j >j (1 -U j )   = j h j j >j U j j<j <j 1 -U j = j U j j<j h j j<j <j 1 -U j = j U j V j .
Step 2: estimates on U j , V j and their derivatives. Let us first collect the estimates for U j :

Lemma 5.2.

(1) For every

γ ∈ N κ , γ ∈ N d and every m ∈ Z, x ∈ R d , |∂ γ ∂ γ x U m (x)| 2 m|γ| 2 (m-σ)|γ | ω m (x)χ 2 αm ωm> 1 2 k<m,k≡m(mod R) 2 αk ω k (x), (2) For every γ ∈ N d , ∂ γ U m L ∞ 2 m|γ| 2 κσ f Ḟ α,p q .
In the above statement as well as in the lemmata below, the implicit constants may depend on the number of derivatives |γ| and |γ | (but neither on m, x nor on f ).

Proof. When there exists k < m with k ≡ m(mod R) such that ω k ≡ 0, estimate (1) follows from the definition of the functions U m , see (3.5), Proposition 4.4, Proposition 4.5 and the Leibniz rule. We also rely on the fact that (1 -ζ m ) ≡ 0 and thus U m ≡ 0 on the set where

2 αm ω m ≤ 1 2 k<m,k≡m(mod R) 2 αk ω k . When ω k ≡ 0 for every k < m, k ≡ m(mod R), U m = ω m and one therefore has |∂ γ ∂ γ x U m (x)| 2 m|γ| 2 (m-σ)|γ | ω m (x).
If ω m (x) > 0, the conclusion readily follows. Otherwise, ω m identically vanishes and the estimate is obvious. It follows from the first item and (4.7) that, for every γ ∈ N d ,

∂ γ U m L ∞ 2 m|γ| ω m L ∞ 2 m|γ| 2 κσ f Ḟ α,p q ,
which proves the second item.

Lemma 5.3. For all m ∈ Z and γ ∈ N d , ∂ γ h m L ∞ 2 m|γ| f Ḟ α,p q .
Proof. By definition of h m , the Leibniz rule and Proposition 4.5,

∂ γ h m L ∞ 0≤γ ≤γ 2 m|γ-γ | ∂ γ ∆ m f L ∞ .
We now rely on (2.11) to get

∂ γ h m L ∞ 0≤γ ≤γ 2 m|γ-γ | 2 m|γ | f Ḟ α,p q 2 m|γ| f Ḟ α,p q .
Here are now the estimates for V m :

Lemma 5.4.

(1) For every m ∈ Z, |V m | 1.

(

) For every γ ∈ N d , |∂ γ V m | 2 m|γ| 2 κ|γ|σ f Ḟ α,p q . 2 
Proof. The first item follows from the construction of V m , (3.7) and the fact that for all x ∈ R d ,

|h j (x)| (1 -ζ j (x))ω j (x) = U j (x) ≤ 1,
where the last inequality above is due to (4.16).

Let us prove the second item. Arguing as in [33, (6.8)], one obtains

∂ k V m = m <m (∂ k h m -V m ∂ k U m ) m <m <m (1 -U m ).
Using this calculation, one can prove by induction on |γ|, γ ∈ N d , that

(5.2)

∂ γ V m = m <m   ∂ γ h m - 0<α≤γ c α,γ ∂ α U m ∂ γ-α V m   m <m <m (1 -U m )
where c α,γ is some positive integer for each 0 < α < γ. Indeed, for any finite sequence I = (I 1 , . . . , I k ) where I 1 , . . . , I k ∈ {1, . . . , d} and k ∈ N, we have

∂ I V m = m <m     ∂ I h m - J =∅ J subsequence of I ∂ J U m ∂ I\J V m     m <m <m (1 -U m )
where for each non-empty subsequence J of I, I \ J is the subsequence of I obtained by removing J from I. (A subsequence J of I = (I 1 , . . . , I k ) is a finite sequence of the form (I i 1 , . . . , I i ) with ≤ k and 1 ≤ i 1 < • • • < i ≤ k.) From (5.2) we deduce that for every γ ∈ N d ,

∂ γ V m L ∞ ≤ m <m   ∂ γ h m L ∞ + C 0<α≤γ ∂ α U m L ∞ ∂ γ-α V m L ∞   By item (2) in Lemma 5.2, ∂ α U m L ∞ 2 m |α| 2 κσ f Ḟ α,p q . Moreover, as a consequence of Lemma 5.3, ∂ γ h m L ∞ 2 m |γ| f Ḟ α,p q .This implies ∂ γ V m L ∞ m <m   2 m |γ| + 0<α≤γ 2 m |α| 2 κσ ∂ γ-α V m L ∞   f Ḟ α,p q .
The result then follows by induction on |γ|, since induction hypothesis implies

∂ γ-α V m L ∞ 2 m (|γ|-|α|) 2 (|γ|-|α|)κσ if 0 < α ≤ γ.
Step 3 Completion of the proof of Proposition 5.1. From (5.1) we see that

∂ x (h -h) Ḟ α-1,p q = 2 (α-1)m ∆ m (∂ x (h -h)) q (m) L p = 2 (α-1)m ∆ m (∂ x j∈Z U j V j ) q (m) L p = 2 (α-1)m ∆ m (∂ x r∈Z U r+m V r+m ) q (m) L p .
By the triangle inequality, this gives

(5.3) ∂ x (h -h) F α-1,p q ≤ r∈Z 2 (α-1)m ∆ m (∂ x (U r+m V r+m )) q (m) L p .
We now introduce a positive integer T to be defined later and we split the sum into three parts that we estimate separately:

r>T . . ., 0≤r≤T . . . and r<0 . . ..

5.1.

Estimate of r>T . In this case, we let ∂ x differentiate the Littlewood-Paley projection ∆ m . By Lemma 9.1 below and the fact that V m L ∞ 1 (Lemma 5.4),

2 (α-1)m ∆ m (∂ x (U r+m V r+m )) q (m) L p 2 (α-1)m 2 m U r+m V r+m q (m) L p 2 -αr 2 αm U m q (m) L p . (5.4)
By Lemma 4.9, and the definition of U j ,

2 αm U m q (m) L p 2 αm ω m χ 2 αm ωm> 1 2 k<m,k≡m(mod R) 2 αk ω k q (m) L p Rσ2 κσ p f Ḟ α,p q .
Hence, by summing over r > T , one gets

r>T 2 (α-1)m ∆ m (∂ x (U r+m V r+m )) q (m) L p Rσ2 -αT + κσ p f Ḟ α,p q .
5.2. Estimate of r<0 . Let a be the integer part of α. By Lemma 9.2 and (2.3), there exist Schwartz functions ∆ (γ) 

such that ∆ = |γ|=a ∂ γ ∆ (γ) . Then ∆ m (x) = 2 md ∆(2 m x) = |γ|=a 2 md [∂ γ ∆ (γ) ](2 m x) = 2 -ma |γ|=a ∂ γ [(∆ (γ) ) m ](x) where (∆ (γ) ) m (x) = 2 md ∆ (γ) (2 m x). Hence, 2 (α-1)m ∆ m (∂ x (U m+r V m+r )) q (m) L p ≤ |γ|=a 2 (α-1-a)m ∂ γ [(∆ (γ) ) m ](∂ x (U m+r V m+r )) q (m) L p = |γ|=a 2 (α-1-a)m (∆ (γ) ) m (∂ (γ) ∂ x (U m+r V m+r )) q (m) L p |γ|=a 2 (α-1-a)m (∂ γ ∂ x (U m+r V m+r )) q (m) L p .
(5.5)

In the last line, we have used Lemma 9.1, applied to the function ∆ (γ) . This implies (5.6)

2 (α-1)m ∆ m (∂ x (U m+r V m+r )) q (m) L p 2 -(α-1-a)r |γ|=a 2 (α-1-a)m (∂ γ ∂ x (U m V m )) q (m) L p .
Now, by the Leibniz rule, (5.7)

|∂ γ ∂ x (U m V m )| |V m (∂ γ ∂ x U m )| + a =0 |(∂ x U m )(∂ a+1- x V m )|.
Here, ∂ x refers to the full partial differential operator of order and similarly for ∂ a+1-

x By Lemmata 5.2 and 5.4, one gets

|∂ γ ∂ x (U m V m )| 2 -σ 2 m(a+1) ω m χ 2 αm ωm> 1 2 k<m,k≡m(mod R) 2 αk ω k + a =0 2 m ω m χ 2 αm ωm> 1 2 k<m,k≡m(mod R) 2 αk ω k 2 (a+1-)m 2 (a+1-)κσ f Ḟ α,p q (2 -σ + 2 (a+1)κσ f Ḟ α,p q )2 m(a+1) ω m χ 2 αm ωm> 1 2 k<m,k≡m(mod R) 2 αk ω k . We deduce from (5.6) that 2 (α-1)m ∆ m (∂ x (U m+r V m+r )) q (m) L p (2 -σ + 2 (a+1)κσ f Ḟ α,p q )2 -(α-1-a)r 2 αm ω m χ 2 αm ωm> 1 2 k<m,k≡m(mod R) 2 αk ω k q (m) L p Rσ(2 -σ + 2 (a+1)κσ f Ḟ α,p q )2 -(α-1-a)r 2 κσ p f Ḟ α,p q ,
where the last line follows from Lemma 4.9.

Thus by summing over r < 0 (taking into account that α < 1 + a), (5.8)

r<0 2 (α-1)m ∆ m (∂ x (U r+m V r+m )) q (m) L p Rσ 2 (-1+ κ p )σ f Ḟ α,p q + 2 κσ a+1+ 1 p f 2 Ḟ α,p q .
5.3. Estimate of 0≤r≤T . This is exactly the same calculation as in the case r≤0 except that in (5.5) we take a = 0; that is, we do not perform the preliminary integration by parts and we keep ∆ m instead of introducing ∆ (γ) m . Hence, when summing over 0 ≤ r ≤ T , (5.8) is replaced by (5.9)

0≤r≤T 2 (α-1)m ∆ m (∂ x (U r+m V r+m )) q (m) L p ≤ C α (T )Rσ 2 (-1+ κ p )σ f Ḟ α,p q + 2 κσ 1+ 1 p f 2 Ḟ α,p q , where C α (T ) =      C2 (1-α)T if α < 1, CT if α = 1, C if α > 1.
Remark 5.5. Note that it is crucial for the sequel to obtain an arbitrarily small factor in front of f Ḟ α,p q in the right-hand sides of (5.8) and (5.9). This in turn follows from Lemma 5.2 and the fact that we take one derivative in a "good" direction in (5.7). 5.4. Conclusion. From the three above subsections, one gets, with a = [α],

(1) When α > 1, one can take T = ∞:

∂ x (h -h) Ḟ α-1,p q Rσ 2 (-1+ κ p )σ f Ḟ α,p q + 2 κσ a+1+ 1 p f 2 Ḟ α,p q .
(2) When α = 1, one can take T = σ, which implies

∂ x (h -h) Ḟ α-1,p q Rσ σ2 (-1+ κ p )σ f Ḟ α,p q + σ2 κσ 2+ 1 p f 2 Ḟ α,p q .
(3) When 0 < α < 1, one can take T = σ, which yields

∂ x (h -h) Ḟ α-1,p q Rσ 2 -(α-κ p )σ f Ḟ α,p q + 2 1-α+κ 1+ 1 p σ f 2 Ḟ α,p q .
Altogether this proves Proposition 5.1.

Estimating g -g

Proposition 6.1. Let α, p, q be as in Theorem 1.1. Define g (resp. g) by (3.4) (resp. (3.6)). We also introduce a number a α ∈ (0, α] such that a α < α 1-α when α < 1 and a α = 1 when α ≥ 1. Then

(6.1) ∂ x (g -g) Ḟ α-1,p q 2 κσ R2 -min(1,αaα)R f Ḟ α,p q + 2 ([α]+2)κσ R 2 2 -min(1,αaα)R f 2 Ḟ α,p q .
where the implicit constant depends on α and a α , p, q but not on f, R, σ.

Recall that [α] is the integer part of α. Also, we have written ∂ x for any partial derivative ∂ i , 1 ≤ i ≤ d. Remark 6.2. Note that, contrary to Proposition 5.1, we do not state an improved estimate for the derivatives in the good directions.

Step 1. Let

H j := j <j j ≡j(mod R) g j j <j <j j ≡j(mod R) (1 -G j ).
Then, as in Step 1 of the proof of Proposition 5.1,

g -g = j G j H j .
Step 2 Estimates on G m , H m and their derivatives. Let us collect the upper bounds for G m and H m which will be needed in the sequel (see [START_REF] Wang | A subelliptic Bourgain-Brezis inequality[END_REF]). In the lemmata below, the implicit constants may depend on |γ| but neither on m, σ, R nor on f . Lemma 6.3. For all m ∈ Z and all γ ∈ N d ,

|∂ γ G m | 2 κσ t>0 t≡0(mod R) 2 -αt 2 |γ|(m-t) MM∆ m-t f.
Proof. By definition of G m , see (3.6), and Proposition 4.4, one has

|∂ γ G m | ≤ t>0 t≡0(mod R) 2 -αt |∂ γ ω m-t | t>0 t≡0(mod R) 2 -αt 2 |γ|(m-t) ω m-t .
By (4.6), this implies 

|∂ γ G m | 2 κσ t>0 t≡0(mod R) 2 -αt 2 |γ|(m-t) MM∆ m-t f.
|∂ γ g m | 0≤γ ≤γ 2 |γ-γ |m ∂ γ ∆ m f .
We now rely on (2.10) to get

|∂ γ g m | 0≤γ ≤γ 2 |γ-γ |m 2 |γ |m M∆ m f 2 |γ|m M∆ m f. Lemma 6.5. For all m ∈ Z and all γ ∈ N d , |H m | 1 , |∂ γ H m | 2 |γ|κσ t>0 t≡0(mod R) 2 |γ|(m-t) MM∆ m-t f.
Proof. In order to prove the estimate on |H m |, we recall that under the conditions (4.18) and (4. [START_REF] Mitrea | A remark on the regularity of the div-curl system[END_REF], 0 ≤ G j ≤ 1. In view of (4.17), namely |g j (x)| G j (x), this, in conjunction with (3.7), implies |H m (x)| 1.

For the second estimate, we argue by induction, assuming the correct bound for ∂ γ H m with |γ | < |γ|. We have the analogue of (5.2) for H m in place of V m :

∂ γ H m = m <m m ≡m(mod R)   ∂ γ g m - 0<γ ≤γ c γ ,γ ∂ γ G m ∂ γ-γ H m   m <m <m m ≡m(mod R) (1 -G m ). Thus |∂ γ H m | m <m, m ≡m(mod R) |∂ γ g m | + m <m, m ≡m(mod R) 0<γ ≤γ ∂ γ G m ∂ γ-γ H m = I + II.
In view of Lemma 6.4,

I t>0 t≡0(mod R) 2 |γ|(m-t) MM(∆ m-t f ).
Using instead Lemma 6.3 and the induction assumption, we get

II 2 |γ|κσ m <m, m ≡m(mod R) 0<γ ≤γ t>0, l>0, t≡l≡0(mod R) 2 -αt 2 |γ |(m -t) MM∆ m -t f • 2 |γ-γ |(m -l) MM∆ m -l f = 2 |γ|κσ m <m, m ≡m(mod R) 2 |γ|m 0<γ ≤γ t>0, l>0, t≡l≡0(mod R) 2 -αt 2 -|γ |t MM∆ m -t f • 2 -|γ-γ |l MM∆ m -l f.
We split the innermost sum into two parts according to whether t > l or l ≥ t and estimate by 1 the factor MM∆ m -t f and MM∆ m -l f respectively (remember that ∆ m f L ∞ < 1 under the condition (4.18)); this gives t>0, l>0, t≡l≡0(mod R)

2 -αt 2 -|γ |t MM∆ m -t f • 2 -|γ-γ |l MM∆ m -l f t>0, t≡0(mod R) 2 -αt 2 -|γ|t MM∆ m -t f.
Finally,

II 2 |γ|κσ m <m, m ≡m(mod R) 2 |γ|m t>0, t≡0(mod R) 2 -αt 2 -|γ|t MM∆ m -t f = 2 |γ|κσ l>0, l≡0(mod R) t>0, t≡0(mod R) 2 -αt 2 |γ|(m-l-t) MM∆ m-l-t f.
We sum this double sum by first summing over the pairs (t, l) where l + t is constant, and then sum over the remaining variable. This gives the desired conclusion.

Step 3 Completion of the proof. As in the proof of (5.3),

∂ x (g -g) Ḟ α-1,p q ≤ r∈Z 2 (α-1)m ∆ m (∂ x (G r+m H r+m )) q (m) L p .
By definition of G r+m (see (3.6)) and the triangle inequality,

∂ x (g -g) Ḟ α-1,p q ≤ t>0, t≡0(mod R) 2 -αt r∈Z 2 (α-1)m ∆ m (∂ x (ω r+m-t H r+m )) q (m) L p .
For each fixed t, we now split the sum over r into three parts as follows r∈Z

• • • = r≤0 • • • + 0<r<aαt • • • + r≥aαt . . . ,
where a α > 0 was defined in Proposition 6.1. We proceed to estimate the three terms separately. 6.1. Estimate of r≥aαt . As in the proof of (5.4) we integrate by parts to let ∂ x hit ∆ m , and use

H m L ∞ 1 to get 2 (α-1)m ∆ m (∂ x (ω r+m-t H r+m )) q (m) L p 2 -α(r-t) 2 αm ω m q (m) L p .
This implies 2 (α-1)m ∆ m (∂ x (ω r+m-t H r+m )) q (m) L p 2 κσ 2 -α(r-t) f Ḟ α,p q , by Proposition 4.6. Summing over r and t, one gets

t>0 t≡0(mod R) r≥aαt 2 -αt 2 (α-1)m ∆ m (∂ x (ω r+m-t H r+m )) q (m) L p 2 κσ   t≥R r≥aαt 2 -αr   f Ḟ α,p q 2 κσ 2 -αaαR f Ḟ α,p q . (6.2)
6.2. Estimate of r≤0 . Let a ≥ 0 be an integer. Arguing as for the proof of (5.6), we write ∆ m as an a-th derivative and integrate by parts to hit ∂ x (ω m+r-t H m+r ), and obtain (6.3) 2 (α-1)m ∆ m (∂ x (ω m+r-t H m+r )) q (m) L p 2 -(α-1-a)r 2 (α-1-a)m (∂ a+1 x (ω m-t H m )) q (m) L p . Here ∂ a+1

x refer to the full partial differential operator of order a + 1. We now use the fact that for every ∈ N

ω m-t 2 κσ MM(∆ m-t f ) , |∂ x ω m-t | 2 (m-t) ω m-t
(see Propositions 4.3 and 4.4) and also for k

∈ N * |H m | 1 , |∂ k x H m | 2 kκσ t >0 2 (m-t )k MM∆ m-t f
(see Lemma 6.5). By the Leibniz rule, this implies

|∂ a+1 x (ω m-t H m )| 2 (m-t)(a+1) ω m-t +2 (a+2)κσ t >0 a =0 2 (t -t) 2 (a+1)(m-t ) MM∆ m-t f •MM∆ m-t f.
We split the sum over t into two parts according to whether t ≤ t or t > t and we estimate by f Ḟ α,p q the factor MM∆ m-t f or MM∆ m-t f respectively (here we use (2.12)):

t >0 a =0 2 (t -t) 2 (a+1)(m-t ) MM∆ m-t f • MM∆ m-t f f Ḟ α,p q   0<t ≤t 2 (a+1)(m-t ) MM∆ m-t f + t >t 2 (t -t)a 2 (a+1)(m-t ) MM∆ m-t f   f Ḟ α,p q 0<t ≤t 2 (a+1)(m-t ) MM∆ m-t f.
Putting these together,

|∂ a+1 x (ω m-t H m )| 2 (m-t)(a+1) ω m-t + 2 (a+2)κσ f Ḟ α,p q 0<t ≤t 2 (a+1)(m-t ) MM∆ m-t f.
Setting B a,α (t) := 0<t ≤t 2 (α-1-a)t , we deduce that

2 (α-1-a)m (∂ a+1 x (ω m-t H m )) q (m) L p 2 (α-1-a)t 2 α(m-t) ω m-t q (m) L p + 2 (a+2)κσ f Ḟ α,p q 0<t ≤t 2 -(a+1)t 2 αm MM∆ m-t f q (m) L p 2 (α-1-a)t 2 αm ω m q (m) L p + 2 (a+2)κσ f Ḟ α,p q B a,α (t) 2 αm MM∆ m f q (m) L p When α > 1, one has a α = 1. Since A α (t) = C and B 0,α (t) = C2 (α-1)t , this implies t>0, t≡0(mod R) 2 -αt 0≤r≤aαt 2 (α-1)m ∆ m (∂ x (ω m+r-t H m+r )) q (m) L p 2 κσ 2 -R f Ḟ α,p q +2 2κσ 2 -R f 2 Ḟ α,p q . When α = 1, the choice a α = 1 leads to A α (t) = Ct and B 0,α (t) = Ct. Hence t>0, t≡0(mod R) 2 -αt 0≤r≤aαt 2 (α-1)m ∆ m (∂ x (ω m+r-t H m+r )) q (m) L p 2 κσ R2 -R f Ḟ α,p q +2 2κσ R 2 2 -R f 2 Ḟ α,p q .
When α < 1, A α (t) = C2 (1-α)aαt and B 0,α (t) = C. One needs to take a α < α 1-α for the sum to converge and one gets t>0, t≡0(mod R)

2 -αt 0≤r≤aαt 2 (α-1)m ∆ m (∂ x (ω m+r-t H m+r )) q (m) L p 2 κσ 2 -R(1-(1-α)aα) f Ḟ α,p q + 2 2κσ 2 -R(α-(1-α)aα) f 2 Ḟ α,p q .
In any case, for every α > 0, and assuming further that a α ≤ α when α < 1, we have

(6.6) t>0, t≡0(mod R) 2 -αt 0≤r≤aαt 2 (α-1)m ∆ m (∂ x (ω m+r-t H m+r )) q (m) L p 2 κσ R2 -R min(1,αaα) f Ḟ α,p q + 2 2κσ R 2 2 -R min(1,αaα) f 2 Ḟ α,p q .
6.4. Conclusion. The three subsections above, namely inequalities (6.2), (6.5) and (6.6), imply the desired estimate (6.1). This completes the proof of Proposition 6.1.

Completion of the proof of Proposition 3.3

Let us summarize the current state of the proof. For every σ ∈ N * , we define

R := κ + 1 min(1, αa α ) σ
where a α has been introduced in Proposition 6.1. This automatically implies the condition (4.19) since αR ≥ (κ + 1)σ/a α > 1. Then by Lemma 4.10, Proposition 5.1 and Proposition 6.1, there exists η > 0 such that for every f ∈ Ḟ α,p q with f Ḟ α,p q ≤ η2 -κσ , there exists a map

F = g + h in Ḟ α,p q such that g L ∞ R, h L ∞ 1 
and in the good directions x :

∂ x (h -h) Ḟ α-1,p q σ 3 2 (-min(1,α)+ κ p )σ f Ḟ α,p q + 2 max(1-α,0)+κ 1+[α]+ 1 p σ f 2 Ḟ α,p q ,
while in all directions:

∂ x (h -h) Ḟ α-1,p q σ 3 2 κ p σ f Ḟ α,p q + 2 max(1-α,0)+κ 1+[α]+ 1 p σ f 2 Ḟ α,p q , ∂ x (g -g) Ḟ α-1,p q σ2 -σ f Ḟ α,p q + σ 2 2 ([α]+1)κσ f 2 Ḟ α,p q .
In order to prove Proposition 3.3, we take for every δ > 0 an integer σ > 0 such that

σ 3 2 (-min(1,α)+ κ p )σ ≤ δ 2 , σ2 -σ ≤ δ 2 .
This is possible in view of the fact that κ p < min(1, α). This implies that ∂

x (f -F ) Ḟ α-1,p q ≤ ∂ x (h -h) Ḟ α-1,p q + ∂ x (g -g) Ḟ α-1,p q ≤ δ f Ḟ α,p q + D δ f 2 Ḟ α,p q
for some D δ > 0 which may depend on σ (and thus on δ). We also have

F L ∞ ≤ g L ∞ + h L ∞ ≤ D δ , and using Proposition 2.3 F Ḟ α,p q ≤ h -h Ḟ α,p q + g -g Ḟ α,p q + f Ḟ α,p q ≤ D δ ,
by enlarging D δ if necessary. This completes the proof of Proposition 3.3.

Solving Hodge systems

Proof of Theorem 1.2: We follow [5, p. 284]. On the space Ḟ s,p q (Λ l R d ) of l-forms with coefficients in Ḟ s,p q (R d ), we use the norm

λ Ḟ s,p q (Λ l R d ) = max |I|=l λ I Ḟ s,p q (R d ) if λ = |I|=l λ I dx I . Let ϕ ∈ Ḟ α,p q (Λ l R d ). Since d : Ḟ α,p q (Λ l R d ) → Ḟ α-1,p q (Λ l R d
) is bounded with closed range, by the open mapping theorem, there exists λ (0) ∈ Ḟ α,p q (Λ l R d ) such that dλ (0) = dϕ and (8.1)

λ (0) Ḟ α,p q (Λ l R d ) ≤ C dϕ Ḟ α-1,p q (Λ l R d ) .
Choose δ > 0 such that Cδ ≤ 1 2 . Let I ⊂ N d be a multi-index with length l. Theorem 1.1 provides a function β (0)

I ∈ Ḟ α,p q (R d ) ∩ L ∞ (R d
) such that, for all j ∈ 1, d \ I (note that there are at most κ such indexes),

∂ j λ (0) I -β (0) I Ḟ α-1,p q (R d ) ≤ δ λ (0) I Ḟ α,p q (R d ) ≤ Cδ dϕ Ḟ α-1,p q (Λ l R d ) and β (0) I Ḟ α,p q (R d ) + β (0) I L ∞ (R d ) ≤ C δ λ (0) I Ḟ α,p q (R d ) ≤ C δ dϕ Ḟ α-1,p q (Λ l R d ) .
Set β (0) := I β (0)

I dx I . Then, β (0) ∈ Ḟ α,p q (Λ l R d ) ∩ L ∞ (Λ l R d ). Moreover, since dϕ = dλ (0) , d(ϕ -β (0) ) Ḟ α-1,p q (Λ l R d ) = max |I|=l max j ∈I ∂ j (λ (0) I -β (0) I ) Ḟ α-1,p q (Λ l R d ) ≤ 1 2 dϕ Ḟ α-1,p q (Λ l R d ) and β (0) Ḟ α,p q (Λ l R d ) + β (0) L ∞ (Λ l R d ) ≤ C dϕ Ḟ α-1,p q (Λ l R d ) .
The same argument, applied to 2(ϕ -

β (0) ) instead of ϕ, yields β (1) ∈ Ḟ α,p q (Λ l R d ) ∩ L ∞ (Λ l R d ) such that β (1) Ḟ α,p q (Λ l R d ) + β (1) L ∞ (Λ l R d ) ≤ C 2d ϕ -β (0) Ḟ α-1,p q (Λ l R d ) ≤ C dϕ Ḟ α-1,p q (Λ l R d ) and dϕ -d β (0) + 1 2 β (1) Ḟ α-1,p q (Λ l R d ) ≤ 1 4 dϕ Ḟ α-1,p q (Λ l R d ) .
Iterating this procedure, we construct a sequence (

β (i) ) i≥0 ∈ Ḟ α,p q (Λ l R d ) ∩ L ∞ (Λ l R d ) such that, for all N ≥ 0, dϕ -d N i=0 2 -i β (i) Ḟ α-1,p q (Λ l R d ) ≤ 1 2 N +1 dϕ Ḟ α-1,p q (Λ l R d ) and β (N ) Ḟ α,p q (Λ l R d ) + β (N ) L ∞ (Λ l R d ) ≤ C dϕ Ḟ α-1,p q (Λ l R d ) .
Therefore, if ψ := ∞ i=0 2 -i β (i) , ψ satisfies all the conclusions of Theorem 1.2.

Appendix: some properties of Schwartz functions

As a consequence of Proposition 2.5, Lemma 9.1. There exists a constant C which depends only on ∆ such that for all p, q ∈ (1, ∞), for all

(f m ) m∈Z ∈ L p (R d ; q (Z)), for all k ∈ N, ∂ k x ∆ m f m q (m) L p ≤ C 2 km f m q (m) L p .
For every γ = (γ 1 , . . . , γ d ) ∈ N d , we denote

|γ| = γ 1 + • • • + γ d , ∂ γ = ∂ γ 1 1 • • • ∂ γ d d .
Moreover, X γ is the polynomial X γ 1 1 . . . X γ d d and for every polynomial P (X 1 , . . . , X d ) = γ a γ X γ , P (D) is the differential operator γ a γ ∂ γ . Also, M satisfies a vector-valued weak-L 1 and strong-L p bound, namely (10.6) Mf i q L 1,∞ A f i q L 1 , 1 < q ≤ ∞, and (10.7) Mf i q L p A 1/p f i q L p , 1 < p ≤ q ≤ ∞.

The first part of the statement, namely (10.4) and (10.5), is essentially in the work of Zó [START_REF] Zó | A note on approximation of the identity[END_REF], whose proof we reproduce below. One relies on a Banach-valued version of the singular integral theorem. To prove (10.4) Since T M : L ∞ → L ∞ ( ∞ ) with norm 1, the vector-valued singular integral theorem ([2, Theorem 4.2]) gives T M L 1 →L 1,∞ ( ∞ ) A, and interpolation in turn gives T M L p →L p ( ∞ ) A 1/p for all 1 < p < ∞. Both bounds being independent of M , we obtain (10.4) and (10.5) by letting M → +∞. Similarly, to prove (10.6), we consider the Banach spaces B 1 = q , B 2 = q ( ∞ ), and for each M ∈ N the vector-valued truncated singular integral At almost every point x ∈ R d , the kernel {k j (x)} j∈Z,|j|≤M can be thought of as a linear map from B 1 to B 2 , whose operator norm is sup j∈Z,|j|≤M |k j (x)|. As before, we note that this latter expression is in L 1 for all M ∈ N. Now if 1 < q ≤ ∞ and M ∈ N, (10.5) gives T M : L q ( q ) → L q ( q ( ∞ )), with norm A 1/q uniformly in M . Hence the vector-valued singular integral theorem gives T M L 1 ( q )→L 1 ( q ( ∞ )) A, and interpolation in turn gives T M L p ( q )→L p ( q ( ∞ )) A 1/p for all 1 < p ≤ q. Therefore, (10.6) and (10.7) follow, as we let M → +∞. To apply Proposition 10.1, we use the following Lemma: Define, for all j ∈ Z and all x ∈ R d , (10.12) ϕ j (x) := 2 jd ϕ(2 j x), and define, for r ∈ R d , (10.13) k j (x) := ϕ j (x + 2 -j r).

f = {f i } i∈Z → T M f := {f i * k j } i,
Then the kernels k j satisfy (10.2) with A ln(2 + r ), i.e. We assume r ≥ 2, for the case r < 2 follows from a simple modification of the following argument. We split the sum into three parts: j∈Z = 2 j x ≤1 + 1<2 j x < r + 2 j x ≥ r . The first sum can be estimated using condition (10.11):

y ≥4 x 2 j x ≤1 |k j (y -x) -k j (y)|dy ≤ R d 2 j x ≤1
2 jd |ϕ(2 j (y -x) + r) -ϕ(2 j y + r)|dy

= R d 2 j x ≤1
|ϕ(y -2 j x + r) -ϕ(y + r)|dy

2 j x ≤1 2 j x 1.
The second sum can be estimated using condition (10.9): Altogether we get (10.14).

(2. 9 )

 9 |g * φ(x)| AMg(x). Proof. See ([23, Chapter 1, Theorem 1], [23, Chapter 2, Theorem 1]) and [22, Chapter 3, Theorem 2(a)]) respectively.

4. 1 .Proposition 4 . 1 .

 141 Pointwise estimates. First we have (see[START_REF] Wang | A subelliptic Bourgain-Brezis inequality[END_REF] Section 9]): For all j ∈ Z and all x ∈ R d , (4.1)

Proposition 4 . 4 .

 44 For every γ ∈ N κ and γ ∈ N d , (4.8) |∂ γ ∂ γ x ω j | 2 (|γ |+|γ|)j 2 -|γ |σ ω j . The implicit constant may depend on |γ| and |γ | but neither on j nor on f .

Lemma 6 . 4 .

 64 For all m ∈ Z and all γ ∈ N d ,|∂ γ g m | 2 |γ|m M∆ m f.Proof. By definition of g m see (3.4), the Leibniz rule and Proposition 4.5,

Lemma 9 . 2 .( 1 -|γ|=m+1 ξ γ 1 m! 1 0( 1 -! 1 0( 1 - 1 and( 10 . 5 )

 92111111105 Suppose φ is a Schwartz function on R d and m ∈ N. Assume that for every polynomial P of degree less or equal to m, R d P (x)φ(x) dx = 0. Then for every γ ∈ N d such that |γ| = m + 1, there exists a Schwartz function φ(γ) such thatφ = |γ|=m+1 ∂ γ φ (γ) .Proof. In terms of the Fourier transform ψ of φ, the assumption means that ∂ γ ψ(0) = 0 for every |γ| ≤ m while the conclusion amounts to the existence of Schwartz functions ψ (γ) such thatψ = |γ|=m+1 ξ γ ψ (γ) . Let η ∈ C ∞ c (R d) is a smooth cut-off function with η ≡ 1 near the origin. By the Taylor formula: t) m ∂ γ ψ(tξ) dt .By the identity |ξ| 2(m+1) = |γ|=m+1 c γ ξ 2γ with c γ = (m + 1)!/(γ 1 ! . . . γ d !), we also haveψ(ξ) = η(ξ) t) m ∂ γ ψ(tξ) dt + 1 -η(ξ) |ξ| 2(m+1) ψ(ξ) |γ|=m+1 c γ ξ 2γ .We can thus setψ (γ) (ξ) := η(ξ) 1 mt) m ∂ γ ψ(tξ) dt + c γ (1 -η(ξ)) ξ γ |ξ| 2(m+1) ψ(ξ).The proof is complete. 10. Appendix: proof of Proposition 4.8 We begin with the following result. Proposition 10.1. Let {k j } j∈Z be a sequence of non-negative integrable functions on R d , with (10.1) sup j∈Z k j L 1 (R d ) 1 and (10.2) y ≥4 x sup j∈Z |k j (y -x) -k j (y)|dy ≤ A for some constant A ≥ 1. Then the associated maximal function (10.3) Mf := sup j∈Z |f | * k j is of weak-type (1, 1), and is bounded on L p (R d ) for all 1 < p ≤ ∞; more precisely, (10.4) Mf L 1,∞ A f L Mf L p A 1/p f L p , 1 < p ≤ ∞.

  , we consider the Banach spaces B 1 = C, B 2 = ∞ , and the vector-valued singular integralf → T f := {f * k j } j∈Z which is a mapping of a B 1 -valued function f to a B 2 -valued function T f = {f * k j } j∈Z .For technical reasons, we consider truncations of this operator T , namely T M f := {f * k j } j∈Z,|j|≤M for M ∈ N, and show that the operator normT M L 1 →L 1,∞ ( ∞ ) is A uniformly for M ∈ N. At almost every point x ∈ R d ,the kernel {k j (x)} j∈Z,|j|≤M can be thought of as a linear map from B 1 to B 2 , whose operator norm is sup j∈Z,|j|≤M |k j (x)|, and we note that the latter is in L 1 (R d |k j (x)|dx M.

  j∈Z,|j|≤M which is a mapping of a B 1 -valued function f = {f i } i∈Z to a B 2 -valued function T M f = {f i * k j } i,j∈Z,|j|≤M . The B 2 norm of T M f at x is by definition    i∈Z sup j∈Z |j|≤M |f i * k j (x)| q

Lemma 10 . 2 .

 102 Suppose ϕ : R d → R is a non-negative integrable function on R d satisfying (10.9) dy R -1 for all R ≥ 1, and (10.11) R d |ϕ(y -x) -ϕ(y)|dy x for all x ∈ R d with x ≤ 1.

y

  ≥4 x sup j∈Z |k j (y -x) -k j (y)|dy ln(2 + r ). Proof. The proof is a variant of the argument in [23, Chapter II, Section 4.2]. Indeed, it suffices to replace the sup by a sum, and show that (10.14) y ≥4 x j∈Z |k j (y -x) -k j (y)|dy ln(2 + r ).

y2 j x ≥ r 2 y2 j x ≥ r 2 y

 22 ≥4 x 1<2 j x < r |k j (y -x) -k j (y)|dy ≤The last sum can be estimated using condition (10.10):y ≥4 x 2 j x ≥ r |k j (y -x) -k j (y)|dy ≤ ≥2 x k j (y)dy =

By Proposition 2.5, this implies 2 (α-1-a)m (∂ a+1

x (ω m-t H m )) q (m) L p 2 (α-1-a)t 2 αm ω m q (m) L p + 2 (a+2)κσ f Ḟ α,p q B a,α (t) 2 αm ∆ m f q (m) L p ≤2 κσ 2 (α-1-a)t f Ḟ α,p q + B a,α (t)2 (a+2)κσ f 2 Ḟ α,p q , where the last line is a consequence of Proposition 4.6. Coming back to (6.3), we get (6.4)

Choose now a = [α], so that B a,α (t) 1. Summing up on r ≤ 0, which is possible since α-a-1 < 0, we thus obtain

Summing over t, we finally get (6.5)

6.3. Estimate of 0≤r≤aαt . Applying (6.4) with a = 0, we obtain

Combining Proposition 10.1 and Lemma 10.2, we see that: Corollary 10.3. If ϕ is as in Lemma 10.2, r ∈ R d , and ϕ j , k j and M are as defined as in (10.12), (10.13) and (10.3) respectively, then M is bounded on L p with norm [ln(2 + r )] 1/p , and it satisfies the vector-valued estimate

The above statement is reminiscent of similar estimates in the scalar-valued case [23, Chapter II.5.10] and [START_REF] Muscalu | Calderón commutators and the Cauchy integral on Lipschitz curves revisited: I. First commutator and generalizations[END_REF]Theorem 4.1]. See also [START_REF] Guo | Maximal operators and Hilbert transforms along variable non-flat homogeneous curves[END_REF]Theorem 3.1] for a more general vector-valued estimate, that includes the case p > q.

We are now in position to prove Proposition 4.8. We apply Corollary 10.3 when ϕ = T , where T (x) := min(1, x -(d+1) ) as in (3.2). We first verify conditions (10.9), (10.10) and (10.11) with T in place of ϕ. Indeed (10.9) and (10.10) are obvious, and (10.11) 

where the first inequality relies on the fact that T (y -x) = T (y) = 1 when y ≤ 1 -x while in the second inequality we have used the mean value theorem to estimate the integrand (if y ≥ 1 + x and x ≤ 1, then y ≥ 2 x , so y -tx ≥ y /2 for all t ∈ [0, 1], hence the desired estimate). Hence Corollary 10.3 applies. Now for any r ∈ R d and any j ∈ Z, we have

Duality between L p ( q ) and L p ( q ) then shows that

Since both [ln(2 + r )]