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Rationally Biased Learning

Michel De Lara

CERMICS, Ecole des Ponts, Marne-la-Vallée, France

Abstract

Humans display a tendency to pay more attention to bad outcomes, often
in a disproportionate way relative to their statistical occurrence. They also
display euphorism, as well as a preference for the current state of affairs
(status quo bias). Based on the analysis of optimal solutions of infinite
horizon stationary optimization problems under imperfect state observation,
we show that such human perception and decision biases can be grounded
in a form of rationality. We also provide conditions (boundaries) for their
possible occurence and an analysis of their robustness. Thus, biases can be
the product of rational behavior.

Keywords: pessimism bias, status quo bias, euphorism bias, probability
overestimation, optimal behavior, imperfect state information.

1. Introduction

When we perceive sounds, we overestimate the change in level of rising
level tones relative to equivalent falling level tones (Neuhoff (1998)). When
we assess pros and cons in decision making, we weigh losses more than gains
(Kahneman and Tversky (1979)). We are more frightened by a snake or a
spider than by a passing car or an electrical shuffle. Such human assessments
are qualified of biases, because they depart from physical measurements or
objective statistical estimates. Thus, there is “bias” when a behavior is not
aligned with a given “rationality benchmark” (like expected utility theory),
as documented in the “heuristics and biases” literature (Kahneman et al.
(1982); Gilovich et al. (2002)).

However, if such biases are found consistently in human behavior, they
must certainly have a reason. Some scholars (see (Gigerenzer (2004, 2008);
Hutchinson and Gigerenzer (2005))) claim that those “so-called bias” were in
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fact advantageous in the type of environment where our ancestors lived and
thrived (ecological or, rather, evolutionary, validity (Barkow et al. (1992);
Boutang and De Lara (2015, 2019))). In this conception, the benchmark
should be a measure of fitness reflecting survival and reproduction abilities,
and the “bias” can be explained in two ways.

• Bias by mismatch. The bias can result from a timelag: because the
modern environment has departed so much from the environment in
which natural selection had time to shape our minds, human behavior
displays a mismatch (cars are objectively more dangerous than spiders
in our modern environment).

• Bias by design. But the bias can be the feature of an optimal strategy
where optimality is measured in fitness (the genes of those who ac-
curately estimated the change in level of rising level tones have, more
often than the “overestimaters”, finished in the stomach of a predator).

This last conception of “bias by design” is reflected, for example, in (Haselton
and Nettle (2006)). In their attempt to understand “how natural selection
engineers psychological adaptations for judgment under uncertainty”, Hasel-
ton and Nettle consider an individual who has to decide between a safe option
(one known payoff) and a risky option (known bad and good payoffs). They
define a critical probability and observe that, if the bad outcome has higher
probability, the (optimal) individual should avoid taking risks and select the
safe option. The interesting point is that the critical probability is the ratio
of the difference between good and safe payoffs over the difference between
good and bad payoffs. As a consequence, the higher the latter difference,
the more the individual should avoid taking risks. The general conclusion is
nicely expressed by Martie G. Haselton (on her personal webpage) when she
claims that “selection has led to adaptations that are biased by design and
functioned to help ancestral humans avoid particularly costly errors” and
that “when the costs of false positive and false negative errors were asym-
metrical over evolutionary history, selection will have designed psychological
adaptations biased in the direction of the less costly error”.1 However, the

1Such asymmetry in costs is manifest in the so-called life-dinner principle of Richard
Dawkins — “The rabbit runs faster than the fox, because the rabbit is running for his life
while the fox is only running for his dinner” — and can exert a strong selection pressure
(Dawkins and Krebs (1979)). Neuroscientist Joseph LeDoux has a nice way to express
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above analysis is performed under the so-called “error management theory”,
that is, supposing known the probability of the bad outcome. What happens
when the individual does not know a priori the objective probability driving
the occurence of a bad outcome?

In this paper, we consider the classical problem of a decision maker (DM)
faced with a repeated choice between a certain option (one known safe payoff)
and a risky option (two known risky payoff values, but unknown probability of
each). Regarding uncertainty, we are thus in the so-called ambiguity setting
(and not in the risk setting). Regarding payoffs, we suppose that the three
payoffs are ranked in such a way that the safe one stands between the two
risky ones; thus, the lowest (risky) payoff reflects a bad outcome. We will
show that a rational decision maker — in the sense of maximizing expected
discounted utility (where the mathematical expectation involves a prior on
the unknown probabilities) — can exhibit a behavior displaying “euphorism”
and status quo biases, as well as, under suitable conditions, the pessimistic
erroneous assessment of the best objective option (which goes against the
so-called “maximization”, which consists in choosing the lottery with the
highest expected payoff) and an overestimation bias for the probability of
the bad outcome. Thus, in some settings (detailed in the paper), it is quite
rational to pay more attention to bad outcomes than to good ones, and to
exaggerate their importance, even if one aggregates uncertainties by means of
a (balanced, risk-neutral) mathematical expectation, and aggregates payoffs
by summation.

The questions that we examine have been extensively discussed in the lit-
erature. Many approaches are empirical, bearing on experiments with human
subjects having to choose between lotteries (Erev et al. (2017, 2010); Bar-
ron and Erev (2003); Hertwig et al. (2004)). The experimental settings are
manifold: continuous or discrete probability distribution of payoffs, known
or unknown payoffs, known or unknown payoffs probabilities (risk or am-
biguity), one shot decisions from description (decisions under risk) or one
shot decisions from experience or repeated decisions from experience, known
or unknown experiment termination, known or unknown foregone payoffs
(full or partial feedback), etc. (in (Erev et al. (2017)), the “space of exper-
imental paradigms” is described with 11 dimensions). Often, behaviors of

“bias by design” in his book The Emotional Brain: ”It is better to have treated a stick as
a snake than not to have responded to a possible snake” ((LeDoux, 1996, p.166)).
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participants are compared with the “rational maximization” behavior, and
then are possibly interpreted as biases. For instance, deviations from maxi-
mization may suggest that the participants behave as if they overweight or
underweight rare events (Erev et al. (2017)). Biases are also analyzed as
contingent on the experimental setting. For instance, whether decisions are
from description or from experience may change the nature of a bias, like
the overweighting or underweighting of rare events (Erev et al. (2017, 2010);
Hertwig and Erev (2009); Barron and Erev (2003)). The predictive power
of models and heuristics is also challenged, with discussions on boundaries
and competitions between heuristics for choice prediction (Erev et al. (2010,
2017)).

Some authors propose a specific mathematical model of human behavior
— that is, a specific strategy on how information is searched for and pro-
cessed as time goes on — and explore its consequences by means of numerical
simulations and theoretical analysis (Denrell (2005); Denrell and Le Mens
(2007)).

Finally, some authors specify an intertemporal objective function and a
class of solutions (strategies), then try to find an optimal strategy (Le Mens
and Denrell (2011)). Others explore the properties of suboptimal solutions,
like in (Denrell (2007)) where the problem is framed as a finite horizon one-
armed bandit problem, but there does not seem to be a mathematically
formulated intertemporal criterion to be optimized, and the focus is on an-
alyzing special strategies, like rolling horizon strategy assuming that the
estimate of the decision maker follows Bayes rule.

Our approach is neither experimental nor simulation-based, but theoret-
ical in the sense that we do not propose and test a possible human strategy,
but that we put forward a sequential (repeated) decision-making framework,
then make a theoretical analysis to deduce features of an optimal strategy. To
the difference of (Le Mens and Denrell (2011)), who also propose an optimal
sequential decision-making framework, we do not rely on numerical resolu-
tion to capture features of an optimal strategy but only on theory. Thus,
if, like others, we formulate the problem as one of optimization and analyze
optimal solutions in terms of human psychology, our results are less precise
but we aim at greater generality. Let us explain how.

It is well-known that the problem we address can be framed as a two-
armed bandit problem, as there are only two decisions, as information is
triggered by decision, as the criterion is intertemporal under unknown prob-
abilities. There is a huge literature on armed bandit problems, and on its
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celebrated solution (when suitable hypothesis are met, see (Gittins (1979)))
by means of a dynamic allocation index (Gittins Index Theorem), in the
mathematics and the psychology literature. However, this not the route we
follow. Indeed, we revisit this type of problem as an instance of optimization
problem under imperfect state observation, and we devote a whole part to
discuss which of our results are robust w.r.t. (with respect to) to assumptions
like stationarity, discounting, finite or infinite horizon. By doing so, we want
to reveal features of optimal strategies that are more general than those ob-
tained by means of the Gittins index strategy. Of course, some features —
for instance that the information needed for optimal decisions can be sum-
marized in a posterior that is updated following Bayes rule — are shared
with this latter, but they do not depend on the mathematical expression of
the index.

To finish, let us stress that his paper is about sampling, and certainly
about adaptive sampling (as information is triggered by decision), but not
about “selective sampling”, like in (Denrell (2005); Denrell and Le Mens
(2007)) who analyze “sampling selection bias”, as we do not address social
influence, social psychology or strategic interactions. Let us also point out
that our contribution resorts to economics, focusing on optimality bench-
marks and resulting optimal strategies, whereas, in the evolutionary litera-
ture, the discussion rather bears on the precision of Bayesian estimates of
the unknown probability (Trimmer et al. (2011)).

The paper is organized as follows. In Sect. 2, we consider the problem
of a decision maker faced with a repeated choice between a certain option
(one known safe payoff) and a risky option (yielding either a bad or a good
outcome, but with unknown probabilities). We set up a formal mathematical
model of stochastic sequential decision-making — under (Bayesian) ambigu-
ity regarding random sequences of bad and good outcomes (Bernoulli trials)
— and we describe an optimal strategy and the behavior of the optimal DM.
This section contains known results, but with new proofs that make it possi-
ble to assess the robustness of the findings. In Sect. 3, we prove and display
features of the optimal strategy — optimally designed for a Bayesian crite-
rion, that is, for a certain (subjective) probability distribution on sequences
of bad and good outcomes — when it is implemented with a Bernoulli pro-
cess under objective probabilities (objective environment). We distinguish
two outputs of the optimal strategy — estimation of the unknown objec-
tive probability of the bad outcome, assessement of whether the objective
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environment is prone to risk-taking or not. When one output is not what it
would be were the objective probability distribution known, we deal with a
biais. We summarize in Tables 2 and 3 our findings regarding consistency
or discrepancy w.r.t. what would be optimal in the objective environment:
“euphorism” and status quo biases, as well as boundaries and amplitudes of
two effects, the pessimistic erroneous assessment of the best objective option
and the overestimation of the probability of the bad outcome. In Sect. 4, we
discuss the cognitive burden of implementing the optimal strategy (hence the
possibility to be an outcome of natural selection), the robustness of our find-
ings and possible psychological interpretations, and we compare our results
with the literature. Sect. 5 concludes and Appendix A gathers technical
results.

2. Repeated decision-making under unknown probability

In §2.1, we lay out mathematical ingredients to set up a model of sequen-
tial decision-making under unknown probability, and formulate an expected
discounted payoff maximization problem. In §2.2, we analyze the structure
of an optimal strategy, and then describe the behavior of a decision-maker
who adopts such optimal strategy.

The results of this Section are not new: the structure of an optimal strat-
egy and the induced behavior are well-known, although they are generally
presented as a consequence of the Gittins Index Theorem, which is not the
way we prove them. Nevertheless, this Section fixes vocabulary, notation and
main properties that will be used to show our main results in Sect. 3, and
also to discuss, in §4.2, which of our results are robust w.r.t. to assumptions
like stationarity, discounting, finite or infinite horizon.

2.1. An expected discounted payoff maximization problem

In (Haselton and Nettle (2006)), the following situation is examined. To
reach her/his destination, an individual has two options: a short risky route
passes through a grassy land — possibly hiding a poisonous snake inflicting
serious (though non lethal) pains — whereas a safe route makes a long costly
detour. Two decisions are possible, with different costs. If one avoids the
grass, one makes a detour that is costly in time, but one suffers no pain from
the (possible) snake. If one passes through the grass (“trying”, “learning”,
“experimenting”), the time spent is shorter but one can suffer pain (though
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not lethal) if the snake is present. We will illustrate our mathematical setting
with this story.

Sequential decision-making

We consider two possible outcomes (states of Nature) — a bad one B and
a good one G — that we illustrate by B = “a snake is in the grass”, and by
G the contrary. We suppose that, at discrete stages t ∈ N, the DM makes
a decision — either “avoid” and be prudent (α) or “experiment” and take
risks (ε) — without knowing in advance the state of Nature occurring at that
time — either bad (B) or good (G). We denote by t = 0, 1, 2 . . . the stage
corresponding to the beginning of the time interval [t, t + 1[. We denote by
{α, ε} the set of decisions, and by vt ∈ {α, ε} the action taken by the DM at
the beginning of the time interval [t, t + 1[. We define the sample space

H∞ = {B, G}N
∗

= {B, G} × {B, G} × · · · , (1)

with generic element an infinite sequence (w1, w2, . . . ) of elements in {B, G}.
For t = 1, 2 . . ., we denote by2

Wt : H∞ → {B, G} , Wt(w1, w2, . . . ) = wt , (2)

the state of Nature realized at the beginning of the time interval [t, t + 1[,
but that cannot be revealed before the end of [t, t+ 1[.

Strategies

At the beginning of each time interval [t, t+1[, the DM can either “avoid”
(decision α) — in which case the DM has no information about the state of
Nature — or “experiment” (decision ε)– in which case the state of Nature
Wt+1 (B or G) is revealed and experimented, at the end of the time inter-
val [t, t + 1[.

We assume that the DM is not visionary and learns only from the past:
she/he cannot know the future in advance, neither can the DM know the state
of Nature (B or G) if the DM decides to avoid. We define the observation sets
at stage t = 0, 1, 2, 3 . . . by Y0 = {∂}, where ∂ corresponds to no information
(no observation at initial stage t = 0), and Yt = {B, G, ∂}t for t = 1, 2, 3 . . .We
define the observation mapping O : {α, ε}×{B, G} → {B, G, ∂} byO(ε, B) = B,

2We denote random variables by uppercase bold letters.
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O(ε, G) = G and O(α, B) = O(α, G) = ∂. Thus, the observation at stage
t = 0, 1, 2 . . . if the DM makes decision vt ∈ {α, ε} is Yt+1 = O(vt,Wt+1).
This case is also known as the partial feedback case, where foregone payoffs
are not revealed.

We allow the DM to accumulate past observations; therefore the decision
vt at stage t can only be a function of Y1, . . . ,Yt (the initial decision v0 is
made without information). A policy at stage t is a mapping St : Yt → {α, ε}
that tells the DM what will be the next action in view of past observations.
A strategy S is a sequence S = (S0,S1, . . .) of policies. Given a strategy S,
decisions and observations are inductively given by

V0 = S0 ∈ {α, ε} , (3a)

Yt+1 = O(Vt,Wt+1) ∈ {B, G, ∂} , ∀t = 0, 1, 2 . . . , (3b)

Vt = St(Y1, . . . ,Yt) ∈ {α, ε} , ∀t = 0, 1, 2 . . . . (3c)

In the full feedback case, where foregone payoffs are revealed no matter what
the decision made, we have Yt = Wt, for t = 0, 1, 2 . . ..

Hypothesized probability

We introduce the one-dimensional simplex

Σ1 =
{
(pB, pG) ∈ R

2
∣∣ pB ≥ 0 , pG ≥ 0 , pB + pG = 1

}
. (4)

The simplex Σ1 is identified with the unit segment [0, 1] by the mapping
(measurable bijection with measurable inverse) Σ1 ∋ (pB, pG) 7→ pB ∈ [0, 1].
For any (pB, pG) ∈ Σ1, we denote by

B(pB, pG) =
∞⊗

t=0

(
pBδB + pGδG

)
(5)

the probability P on the sample space H∞ in (1) which makes the stochastic
process (W1,W2, . . .) of states of Nature, as in (2), a sequence of independent
Bernoulli trials with marginals given by P{Wt = B} = pB and P{Wt = G} =
pG.

We suppose that the DM makes the assumption that the stochastic pro-
cess (W1,W2, . . .) is governed by B(pB, pG), but that the DM does not know
the probabilities (pB, pG). Moreover, we suppose that the DM is a Bayesian
who makes the assumption that the unknown couple (pB, pG) is a random
variable with a distribution π0 on the one-dimensional simplex Σ1 in (4).
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This is why we consider the extended sample space Σ1×H∞ = Σ1×{B, G}N
∗

equipped with the probability distribution π0

(
d(pB, pG)

)
⊗ B(pB, pG), whose

marginal distribution on the sample space H∞ in (1) we denote by P
π0 . Thus,

for any measurable bounded function g : H∞ → R, we have that

E
P
π0 [g] =

∫

Σ1

π0

(
d(pB, pG)

)
E
B(pB,pG)[g] . (6)

Instantaneous payoffs

Now, to compare strategies, we will make up a criterion, or an objective
function for the DM. In an evolutionary interpretation, payoffs are measured
in “fitness” unit, for instance “number of days alive” or “number of days
in a reproductive state”, taken as proxies for the number of offspring. The
payoffs depend both on the decision and on the state of Nature as in Table 1.

bad state B good state G

avoid α avoidance payoff avoidance payoff
U(α, B) = Uα U(α, G) = Uα

experiment ε low payoff high payoff
U(ε, B) = UB U(ε, G) = UG

Table 1: Instant payoffs according to decisions (rows avoid (α) or experiment (ε)) and
states of Nature (columns bad B or good G)

We assume that the payoffs attached to the couple (action, state) in
Table 1 are ranked as follows:

high payoff︷ ︸︸ ︷
U(ε, G) = UG > U(α, B) = U(α, G) = Uα︸ ︷︷ ︸

avoidance (middle) payoff

>

low payoff︷ ︸︸ ︷
U(ε, B) = UB . (7)

In other words, avoiding yields more utility than a bad outcome but less than
a good one.

Intertemporal criterion

As the payoffs in Table 1 are measured in “fitness”, we suppose that they
are cumulative, like days in a healthy condition or number of offspring. This

9



is why we suppose that the DM can evaluate her/his lifetime performance
using strategy S by the discounted intertemporal payoff

j
(
S,W

)
=

+∞∑

t=0

ρtU(Vt,Wt+1) , (8)

where Vt is given by (3). Beyond “fitness”, our analysis extends to the
maximization of any objective function which can be expressed as an infinite
sum over time of discounted payoffs.

The rationale behind using discounted intertemporal payoff is the follow-
ing. Suppose that the DM makes decisions up to a random ultimate stage T
like, for instance, the DM’s lifetime (measured in number of decision stages).
If we suppose that the random variable T is independent of the randomness
in the occurence of a bad and good outcomes, and follows a (memoryless)
Geometric distribution with values in {0, 1, 2, 3 . . .}, then it is easy to estab-
lish the equality

∑+∞
t=0 ρ

tU(Vt,Wt+1) = ET[
∑

T

t=0 U(Vt,Wt+1)], where the
mathematical expectation ET is only w.r.t. the random variable T. Then, we
can interpret the discount factor ρ ∈ [0, 1[ in term of the expected value T of
the random number T of stages during which the DM has to make decisions,
by means of the equations T = ρ/(1−ρ) and ρ = T/(T+1). For instance, for
an individual making daily decisions during a mean time of one year (resp.
fifty years), we have T = 365 (resp. T = 365× 50), hence ρ ≈ 0.9972 (resp.
ρ ≈ 0.9999).

Expected discounted payoff maximization problem

As the payoff (8) is contingent on the unknown scenarioW = (W1,W2, . . .),
it is practically impossible that a strategy S performs better than another
for all scenarios. We look for an optimal strategy S∗, solution of

E
P
π0
[
j(S∗,W)

]
= max

S
E
P
π0
[
j(S,W)

]
, (9)

where j(S,W) is given by (8), and the probability P
π0 , on the sample

space H∞ in (1), is defined by (6).
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2.2. Structure of an optimal strategy and behavior of an optimal decision-
maker

Let ∆(Σ1) denote the set of probability distributions on the simplex Σ1

in (4). For any π ∈ ∆(Σ1), we define

JπK =

∫

Σ1

(pB, pG)π
(
d(pB, pG)

)
=

(
JπKB, JπKG

)
∈ ∆(Σ1) , (10a)

JπKB =

∫

Σ1

pBπ
(
d(pB, pG)

)
∈ [0, 1] , (10b)

JπKG =

∫

Σ1

pGπ
(
d(pB, pG)

)
∈ [0, 1] , (10c)

that is, the mean of the random variable (pB, pG) under probability π, and
the means of its two components (with Jπτ K

B + JπτK
G = 1). We also define

the two shift mappings θB, θG : ∆(Σ1) → ∆(Σ1) by

(θBπ)
(
d(pB, pG)

)
=

pB

JπKB
π
(
d(pB, pG)

)
, (11a)

(θGπ)
(
d(pB, pG)

)
=

pG

JπKG
π
(
d(pB, pG)

)
. (11b)

Thus, θBπ and θGπ, are absolutely continuous with respect to π. When
JπKB = 0, that is, when π = δ(0,1), we set θBδ(0,1) = δ(0,1) and, when JπKG = 0,
that is, when π = δ(1,0), we set θGδ(1,0) = δ(1,0).

The proof of the following Proposition 1 is to be found in Appendix A.1.

Proposition 1. There exists an optimal strategy S∗ = (S∗
0 ,S

∗
1 , . . .) solution

of the optimization problem (9) made of stationary feedback policies of the
form

S∗
t (Y1, . . . ,Yt) = Ŝ(πt) , ∀t = 0, 1, 2 . . . , (12)

where πt ∈ ∆(Σ1) is given by the dynamical equation

π0 = π0 and πt+1 = f(πt,Yt+1) =





πt if Yt+1 = ∂ ,

θBπt if Yt+1 = B ,

θGπt if Yt+1 = G .

(13)

Regarding the stationary feedback Ŝ : ∆(Σ1) → {ε, α}, there exists a subset
Πα ⊂ ∆(Σ1), and its complementary subset Πε = ∆(Σ1) \ Πα, such that
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• Ŝ(π) = α (that is, select decision “avoid”) if π ∈ Πα,

• Ŝ(π) = ε (that is, select decision “experiment”) if π ∈ Πε.

Regarding the complementary subsets Πα and Πε, there exists a function V :
∆(Σ1) → R such that

π ∈ Πα ⇐⇒ V (π) =
Uα

1− ρ
, π ∈ Πε ⇐⇒ V (π) >

Uα

1− ρ
. (14)

The so-called information state πt ∈ ∆(Σ1) is the conditional distribution,
with respect to Y1, . . . ,Yt, of the first coordinate mapping on Σ1×H∞, that
is, the posterior of (pB, pG) at stage t.

We call optimal DM a decision-maker who adopts the optimal strategy of
Proposition 1. To describe the behavior of an optimal DM, we introduce the
first avoidance stage, or first prudent stage, as the random variable defined
by

τ = inf
{
t = 0, 1, 2 . . .

∣∣πt ∈ Πα

}
. (15)

In case πt 6∈ Πα for all stages t = 0, 1, 2 . . ., the convention is τ = inf ∅ = +∞.
The proof of the following Proposition 2 is to be found in Appendix A.2

(as we said at the beginning of this Section, the following result is not new,
but we give a proof that does not rely on the Gittins Index Theorem).

Proposition 2. The DM that follows the optimal strategy of Proposition 1
switches at most once from experimenting to avoiding. More precisely, her/his
behavior displays one of the three following patterns, depending on the first
avoidance stage τ in (15).

a) Infinite risky behavior:
if τ = +∞, that is, if πt ∈ Πε for all stages t = 0, 1, 2 . . ., the optimal DM
always experiments (taking risks), hence never avoids.

b) No risky behavior:
if τ = 0, that is, if π0 6∈ Πα (that is, π0 ∈ Πε), the optimal DM avoids
from the start and, from then on, the DM keeps avoiding (prudence) for
all times.

c) Finite risky behavior:
if 1 ≤ τ < +∞, the optimal DM
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• experiments (taking risks) from t = 0 to τ − 1, that is, as long as
πt ∈ Πε,

• switches to avoiding at stage t = τ , that is, as soon as πt ∈ Πα,

• from then on, keeps avoiding (prudence) for all times.

Both optimal strategy and behavior are simpler in the full feedback case,
where foregone payoffs are revealed no matter what the decision made. In-
deed, in this case, the posterior πt is updated as in (A.11), and then one
chooses the risky option at stage t if and only if JπtK

BUB + JπtK
GUG > Uα.

As a consequence, when under full feedback, one optimally selects the risky
option, it is also optimal to do so under partial feedback because, by (A.8b),
JπtK

BUB + JπtK
GUG > Uα =⇒ V (πt) ≥ JπtK

BUB + JπtK
GUG > Uα.

3. Conditions for biased or accurate assessments

Now, we show features of the optimal DM behavior that possess inter-
esting psychological interpretations in terms of human biases: “euphorism”
and status quo biases in §3.1; possible erroneous assessments of the objective
best option and of the objective probabilities in §3.2.

3.1. “Euphorism” and status quo biases

Our analysis provides theoretical support to a mix of the so-called status
quo bias — a preference for the current state of affairs documented in Samuel-
son and Zeckhauser (1988) — and to an inclination that we coin “euphorism”
bias, related to the “stay-with-a-winner” rule — if an individual experiments
a good outcome, it is rational to go on taking risks.

Proposition 3. If the optimal DM experiments a good outcome, the DM will
go on experimenting (“euphorism”). As a consequence, the experimenting
phase (in case it exists) of the optimal DM can only stop when a bad outcome
materializes: the switch from riskiness to prudence can only be triggered by
the occurrence of a bad outcome.

Therefore, the behavior of the optimal DM displays at most two consecu-
tive phases of “status quo” — one (possibly empty) of experimenting, that is,
taking risks, one (possibly empty) of prudence — with at most one switch; in
particular, once prudent, this is forever.

13



Proof. First, we prove that, if the optimal DM experiments a good outcome,
the DM will go on experimenting.

Suppose that, at stage t the optimal DM is experimenting. We will show
that, if a good outcome G materializes at the end of the interval [t, t+1[ (that
is, if Yt+1 = G), then necessarily the optimal DM goes on experimenting at
stage t + 1. In what follows, the value function V : ∆(Σ1) → R has been
introduced in Proposition 1, and is defined in (A.5). We have that

V (πt+1) = V (θGπt)

because, as we supposed that Yt+1 = G, we have that πt+1 = θGπt by the
dynamics (13)

≥ V (πt) (by the property V ◦ θG ≥ V , shown afterward)

>
Uα

1− ρ

by (14), because, as we supposed that the optimal DM is experimenting at
stage t, we have that πt ∈ Πε. Thus, we have obtained that V (πt+1) >
Uα

1−ρ
. By (14), we conclude that the optimal DM goes on experimenting at

stage t+ 1 by Proposition 1.
We now prove that the value function (A.5) has the property

V ◦ θG ≥ V , (16)

that is, the value function cannot decrease when the posterior changes follow-
ing a good outcome. We will use this “stay-with-a-winner” property when
we discuss the robustness of our findings in §4.2.

Before that, we recall that two random variables C and D, defined on a
probability space (Ω,F ,P), are said to be comonotonic when we have that(
C(ω)−C(ω′)

)(
D(ω)−D(ω′)

)
≥ 0, for any (ω, ω′) ∈ Ω2. In that case,

it is easily shown that E
[
CD

]
≥ E

[
C
]
E
[
D
]
, when C and D are square

integrable.
By definition (A.5) of the value function V , to prove (16) it suffices to

show that
∫

Σ1

L(x, v)(θGπ)(dx) ≥

∫

Σ1

L(x, v)π(dx) , ∀v ∈ {α, ε} .

14



This is obvious for v = α since L(x, α) = Uα by (A.1e). For v = ε, we have
that
∫

Σ1

L(x, ε)(θGπ)(dx) =

∫

Σ1

[
pBUB + pGUG

] pG

JπKG
π
(
d(pB, pG)

)

(by (A.1e) and (11))

≥
1

JπKG

∫

Σ1

[
pBUB + pGUG

]
π
(
d(pB, pG)

) ∫

Σ1

pGπ
(
d(pB, pG)

)

because the random variables C : Σ1 ∋ (pB, pG) 7→ pBUB + pGUG and D :
Σ1 ∋ (pB, pG) 7→ pG are comonotonic, since the function pG 7→ pBUB + pGUG =
pG(UG − UB) + UB is increasing as a consequence of UG > UB by (7)

=

∫

Σ1

[
pBUB + pGUG

]
π
(
d(pB, pG)

)

(by the definition (10) of JπKG)

=

∫

Σ1

L(x, ε)π(dx) (by (A.1e).)

We can prove in the same way that V ◦ θB ≤ V , so that we have obtained

V ◦ θG ≥ V ≥ V ◦ θB . (17)

The rest of the proof follows from Proposition 1. In particular, once the
optimal DM selects the “avoid” option, the DM will never more experiment.
Indeed, the optimal rule of Proposition 1 states that, once the optimal DM
selects the “avoid” option, the DM does not observe the random outcomes,
hence the DM no longer updates the posterior πt because of the dynamics (13)
so that the DM keeps avoiding.

This ends the proof.

3.2. Possible erroneous assessments of the objective best option and of the
objective probabilities

3.2.1. Objective environment

We suppose that Nature produces bad and good outcomes that are se-
quences of independent Bernoulli trials governed by a given (pB, pG) ∈ Σ1.
Thus, we equip the sample space H∞ in (1) with the probability distribu-
tion P

δ(pB,pG) = B(pB, pG) as in (5).
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Definition 4. We call the couple p = (pB, pG) ∈ Σ1 the objective or true
probabilities. We call environment the triplet (ρ, U, p) consisting of the dis-
count factor ρ ∈ [0, 1[, the payoff function U in Table 1 (that is, avoidance
payoff Uα, low payoff UB and high payoff UG), and the objective probabilities
p = (pB, pG).

We define the critical probability pc by the ratio

pc =
UG − Uα

UG − UB
=

relative payoff of avoidance

relative payoff of bad outcome
∈]0, 1[ , (18a)

so that we have the equivalence

pB < pc ⇐⇒ pBUB + pGUG > Uα . (18b)

When pB < pc (resp. ≥) or, equivalently, when pBUB + pGUG > Uα (resp. ≤),
we say that the risky (resp. certain) option is the objectively best option and
that the environment is prone to risk-taking (resp. prudence).

All things being equal, the worse a bad outcome (that is, low payoff of
bad outcome), the lower the critical probability (18a). When pc ≈ 0, the
bad outcome is so bad that the positive difference between the payoff of
the good outcome and the avoidance payoff is negligible w.r.t. the positive
difference between the payoff of the good and the bad outcomes; hence,
prudence (avoidance) is the best objective option for most of the values pB,
since pB ≥ pc ≈ 0. When pc ≈ 1, the good outcome is so good that avoiding
the bad outcome costs almost as well as suffering it; taking risks is the best
objective option for most of the values pB, since pB < pc ≈ 1.

3.2.2. Tentative formal definition of bias

We consider the situation where the optimal DM adopts the strategy of
Proposition 1, optimal for a given prior beta distribution π0. More precisely,
let nB

0 > 0 and nG

0 > 0 be two positive scalars. We suppose that the distri-
bution π0 is the beta distribution β(nB

0, n
G

0) on the simplex Σ1 in (4), that is,
for any integrable function ϕ : Σ1 → R, we have that

∫

Σ1

ϕ(pB, pG)π0d(p
B, pG) =

∫ 1

0
ϕ(p, 1− p)pn

B

0−1(1− p)n
G

0−1dp
∫ 1

0
pn

B

0−1(1− p)n
G

0−1dp
. (19)

Now, we are equipped to formally define what we call a bias. On the
one hand, the optimal strategy of Proposition 1, depends on the discount
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factor ρ ∈ [0, 1[, on the payoff function U in Table 1, and on the prior beta
distribution π0 = β(nB

0, n
G

0), but not on the objective probabilities (pB, pG).
In other words, optimality is w.r.t. the criterion (9), where the mathematical
expectation is taken w.r.t. the (subjective) probability P

π0, on the sample
space H∞ in (1), as defined by (6). On the other hand, Nature produces
bad and good outcomes that are sequences of independent Bernoulli trials
governed by the objective probabilties (pB, pG) ∈ Σ1. Would the DM know
(pB, pG), she/he would design a strategy mawimizing the criterion (9), but
where the mathematical expectation would be taken w.r.t. the (objective)
probability P

δ(pB,pG) = B(pB, pG) as in (5). We say that the optimal strategy
of Proposition 1 displays a bias when one of its outputs is discrepant with
what it would be if the objective probability distribution were known.

Thus, the probability distribution P
δ(pB,pG) = B(pB, pG) and the stochastic

process (W1,W2, . . .) governed by B(pB, pG) play the role of a background
reference objective environment against which one can assess the outputs of
the optimal strategy (optimal for π0), and possibly qualify them of biased or
not. We distinguish two outputs of the optimal strategy. One such output is
JπtK

B, the mathematical expectation (10) of the random variable pB. By op-
timally updating the posterior distribution πt, the optimal DM also updates
her/his estimate JπtK

B of the unknown probability pB of the bad outcome B.
Another output is whether JπtK

BUB+JπtK
GUG > Uα or JπtK

BUB+JπtK
GUG ≤ Uα,

that is, how the DM assesses whether the environment is prone to risk-taking
or to prudence.

3.2.3. Main result

The following Proposition 5 details what are the estimates JπtK
B of the

objective probability value pB that the optimal DM is forming during the
course of learning, and how she/he assesses the environment. It also es-
tablishes how the probability of relevant events monotonically depend upon
objective probabilities. To our knowledge, these results are new.

Proposition 5. Let (W1,W2, . . .) be a sequence of independent Bernoulli
trials governed by the objective probability distribution P

δ(pB,pG) = B(pB, pG), as
in (5), where (pB, pG) ∈ Σ1. Suppose that the DM adopts the corresponding
strategy S∗ of Proposition 1, based on the observations (Y1,Y2, . . .) induc-
tively given by (3) (for S = S∗) and on the sequence of posteriors πt given
by the dynamics (13).

Suppose also that the DM holds the prior beta distribution π0 = β(nB

0, n
G

0),
where nB

0 > 0 and nG

0 > 0 are two positive scalars. Then, if we define the
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numbers NB

t and NG

t of bad and good outcomes up to stage t by

NB

0 = NG

0 = 0 , NB

t =

t∑

s=1

1{Ys=B} , NG

t =

t∑

s=1

1{Ys=G} , t = 1, 2, . . . (20)

the posterior πt in Proposition 1 is the beta distribution

πt = β(nB

0 +NB

t , n
G

0 +NG

t ) , (21)

on the simplex Σ1, whose conditional expectation (10) is given by the statistics

Jπ0K
B =

nB

0

nB

0 + nG

0

and JπtK
B =

nB

0 +NB

t

nB

0 + nG

0 + t
, t = 1, 2 . . . . (22)

Moreover, here are the assessments of the objective probability value pB and
of the environment made by the above optimal DM.

a) Infinite learning τ = +∞. Infinite learning can only happen when π0 ∈
Πε. When τ = +∞, the optimal DM experiments forever and, the statis-
tics JπtK

B in (22) asymptotically reaches the objective probability value pB,
almost surely under the objective probability distribution P

δ(pB,pG), that is,

lim
t→+∞

JπtK
B = pB , (23a)

or, in more precise terms,

P
δ(pB,pG)

{
lim

t→+∞
JπtK

B = pB , τ = +∞
}
= P

δ(pB,pG)
{
τ = +∞

}
. (23b)

Then, the optimal DM asymptotically makes an accurate assessment of
the objective best option as limt→+∞

(
JπtK

BUB + JπtK
GUG

)
= pBUB + pGUG.

Infinite learning happens with probability Pδ(pB,pG)
(
πt ∈ Πε , ∀t = 0, 1, 2 . . .

)
,

which goes up to 1 when the objective probability pB of the bad outcome B

goes down to 0. As a consequence, an accurate estimation of the objective
probability of a rare bad outcome is likely.

b) No learning τ = 0. No learning happens if and only if π0 ∈ Πα. When τ =
0, the optimal DM never experiments and the DM initial estimate Jπ0K

B

of the objective probability value pB satisfies

pc ≤ Jπ0K
B , (24)

where the critical probability pc is defined in (18a). From the start, the op-
timal DM assesses that the environment is prone to prudence, as Jπ0K

BUB+
Jπ0K

GUG ≤ Uα.
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c) Finite learning 1 ≤ τ < +∞. Finite learning can only happen when
π0 ∈ Πε. When 1 ≤ τ < +∞, the optimal DM experiments till stage τ
and the DM stops her/his estimation of the objective probability value pB

at a value JπτK
B which satisfies

pc ≤ Jπτ K
B , (25a)

or, in more precise terms,

P
δ(pB,pG)

{
pc ≤ Jπτ K

B , 1 ≤ τ < +∞
}
= P

δ(pB,pG)
{
1 ≤ τ < +∞

}
. (25b)

When the optimal DM stops experimenting, she/he assesses that the en-
vironment is prone to prudence, as JπτK

BUB + JπτK
GUG ≤ Uα.

Finite learning happens with probability P
δ(pB,pG)

(
∃t = 1, 2, . . . , πt ∈ Πα

)
,

which goes down to 0 when the objective probability pB of the bad outcome B
goes down to 0. As a consequence, if the objective probability pB of the bad
outcome B is low enough, in the sense that pB ≤ pc, when the experiment
phase ends at τ < +∞, we have

pB ≤ pc ≤ Jπτ K
B , (26)

hence the DM will overerestimate the objective probability pB of the bad
outcome B, but this with a vanishing probability as pB ↓ 0.

Proof. By the dynamics (13), we easily establish that (21) holds true. Equa-
tion (22) follows from property of beta distributions (19).

a) By Proposition 1, when τ = +∞ it is optimal to select decision ε and
experiment forever. Thus, the observations (Y1,Y2, . . .) in (3) coincide
with (W1,W2, . . .), and we get that NB

t =
∑t

s=1 1{Ws=B} and NG

t =∑t
s=1 1{Ws=G}, for all t = 1, 2, . . ., by (20). As the random variables

(W1,W2, . . .) in (2) are i.i.d. under Pδ(pB,pG) , by the Law of large numbers
we have that

nB

0 +NB

t

nB

0 +NB

t + nG

0 +NG

t

=
nB

0 +
∑t

s=1 1{Ws=B}

nB

0 + nG

0 + t
→t→+∞ pB , P

δ(pB,pG) − p.s.

By (22), asymptotically the statistics JπtK
B reaches the objective proba-

bility value pB almost surely under the probability P
δ(pB,pG).
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Now, we show that the function [0, 1] ∋ pB 7→ P
δ(pB,pG)

(
πt ∈ Πε , ∀t = 0, 1, 2 . . .

)

is nonincreasing. For this purpose, it suffices to prove that, for any stage t,
the function

[0, 1] ∋ pB 7→ P
δ(pB,pG)

(
πs ∈ Πε , ∀s = 0, 1, 2 . . . , t

)
(27)

is nonincreasing, and then let t → +∞. Now, the functions ϕs(π) =
1{π∈Πε} (the same function for all s = 0, 1, 2 . . .) satisfy the assumptions
of Proposition 7 because

(ϕs ◦ θ
G)(π) = 1{θGπ∈Πε}

= 1{(V ◦θG)(π)> Uα

1−ρ
} (by (14))

≥ 1{(V ◦θB)(π)> Uα

1−ρ
} (as V ◦ θG ≥ V ◦ θB by (17))

= 1{θBπ∈Πε} (by (14))

= (ϕs ◦ θ
B)(π) .

We conclude, using Proposition 7, that the function (27) is nonincreasing.

Finally, we easily establish that Pδ(0,1)
(
πt ∈ Πε , ∀t = 0, 1, 2 . . .

)
= 1. In-

deed, under the probability P
δ(0,1) , we have Wt = G for all stage t almost-

surely, hence πt+1 = θGπt by the dynamics (13). Therefore, we get that

πt ∈ Πε =⇒ V (πt) >
Uα

1− ρ
(by (14))

=⇒ V (θGπt) ≥ V (πt) >
Uα

1− ρ
(by (17))

=⇒ V (πt+1) >
Uα

1− ρ
(since πt+1 = θGπt)

=⇒ πt+1 ∈ Πε . (by (14))

Since π0 ∈ Πε, we deduce that Pδ(0,1)
(
πt ∈ Πε , ∀t = 0, 1, 2 . . .

)
= 1.

b) See the proof below.

c) Let us suppose that τ < +∞. We have that

Uα = (1− ρ)V (πτ ) (by definition (15) of τ and since τ < +∞)

≥ Jπτ K
BUB + Jπτ K

GUG (by the inequality (A.8b))

= −Jπτ K
B
(
UG − UB

)
+ UG (since Jπτ K

B + JπτK
G = 1 by (10).)
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Rearranging the terms, and using (18a), we obtain that JπτK
B ≥ pc =

UG−Uα

UG−UB
.

The rest of the proof follows using the property that, if π0 ∈ Πε, then

P
δ(pB,pG)

(
∃t = 1, 2, . . . , πt ∈ Πα

)
= 1− P

δ(pB,pG)
(
πt ∈ Πε , ∀t = 0, 1, 2 . . .

)
.

This ends the proof.

3.2.4. The case of environments prone to prudence

In Table 2, we sum up the results of Proposition 5 in the case of a
prudence-prone environment. Apart from the “euphorism” and status quo
biases, already discussed in §3.1, the optimal DM displays no bias in the
sense that she/he makes the accurate assessment that the environment is
prone to prudence, and that nothing can be said of how the estimate Jπτ K

B

is related to the objective probability pB (hence the empty box in Table 2).

3.2.5. The case of environments prone to risk-taking

In Table 3, we sum up the results of Proposition 5 in the case of an
environment prone to risk-taking, and we point out two possible biases. On
top of the “euphorism” and status quo biases, already discussed in §3.1,
the optimal DM displays an additional form of pessimism bias. Indeed,
the first (and last) time the optimal DM stops choosing the risky option,
she/he will erroneously assess that the environment is prone to prudence,
and will overestimate the probability of the bad outcome. More precisely,
Proposition 5 yields the following Biased Learning Theorem.

Theorem 6 (Biased Learning Theorem). Suppose that the assumptions of
Proposition 5 are satisfied and that π0 ∈ Πε, so that learning happens, either
infinite or finite. Suppose that the environment is prone to risk-taking, that
is,

pB < pc . (28)

Then, the optimal DM (of Proposition 1) can only display two behaviors.

1. Either the optimal DM will experiment forever, and will accurately es-
timate asymptotically the objective probability pB of the bad outcome B;
this experiment phase happens with a probability Pδ(pB,pG)

(
πt ∈ Πε , ∀t = 0, 1, 2 . . .

)

which goes up to 1 when the objective probability pB of the bad outcome B
goes down to 0. In that case, we conclude that the more likely a bad
outcome, the more likely the optimal DM makes an accurate estimation
of its objective probability.
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Environment Endless risk-taking Risk-taking
prone to then endless prudence
prudence τ = +∞ 1 ≤ τ < +∞

Behavior discrepant Behavior consistent
with the with the

feature of the environment feature of the environment
pB ≥ pc The more likely The more likely
⇐⇒ the bad outcome, the bad outcome,

pBUB + pGUG the lower the probability the higher the probability
≤ Uα of discrepant of consistent

endless risk-taking: endless prudence:
pB ր =⇒ pB ր =⇒

P
δ(pB,pG)

{
τ = +∞

}
ց P

δ(pB,pG)
{
τ < +∞

}
ր

Accurate
asymptotic estimation of pB:

limt→+∞JπtK
B = pB

Asymptotic
accurate assessment Accurate assessment

that the environment is that the environment is
prone to prudence: prone to prudence:

limt→+∞

(
JπtK

BUB + JπtK
GUG

)
Jπτ K

BUB + Jπτ K
GUG ≤ Uα

≤ Uα

Table 2: Optimal behavior in an environment objectively prone to prudence
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Environment Endless risk-taking Risk-taking
prone to then endless prudence

risk τ = +∞ 1 ≤ τ < +∞

Behavior consistent Behavior discrepant
with the with the

feature of the environment feature of the environment
pB < pc The more unlikely The more unlikely
⇐⇒ the bad outcome the bad outcome

pBUB + pGUG the higher the probability the lower the probability
> Uα of consistent of discrepant

endless risk-taking: endless prudence:
pB ց =⇒ pB ց =⇒

P
δ(pB,pG)

{
τ = +∞

}
ր P

δ(pB,pG)
{
τ < +∞

}
ց

Vanishing discrepancy:
pB ↓ 0 =⇒ pB ↓ 0 =⇒

P
δ(pB,pG)

{
τ = +∞

}
↑ 1 P

δ(pB,pG)
{
τ < +∞

}
↓ 0

Asymptotic
Possible bias accurate estimation Overestimation

of the probability pB of the probability pB

of the bad outcome: of the bad outcome:
limt→+∞JπtK

B = pB pB < pc ≤ Jπτ K
B

Asymptotic
Possible bias accurate assessment Erroneous assessment

that the environment is that the environment is
prone to risk-taking: prone to prudence:

limt→+∞

(
JπtK

BUB + JπtK
GUG

)
Jπτ K

BUB + Jπτ K
GUG ≤ Uα

> Uα

Table 3: Optimal behavior in an environment objectively prone to risk-taking
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2. Or the DM will experiment during a finite number of stages and then
stop experimenting forever; this stopping phase happens with a proba-
bility P

δ(pB,pG)
(
∃t = 1, 2, . . . , πt ∈ Πα

)
which goes down to 0 when the

objective probability pB of the bad outcome B goes down to 0. In that
case, we conclude that, if the objective probability pB of the bad out-
come B is so low that pB ≤ pc, then, when the experiment phase ends
at τ < +∞, the optimal DM will overerestimate the objective probabil-
ity pB of the bad outcome B because of the inequalities

pB ≤ pc ≤ Jπτ K
B . (29)

However, such an overerestimation happens with a vanishing probability
as pB ↓ 0.

Economists have made the point, coined the Incomplete Learning Theo-
rem, that the optimal strategy (to maximize discounted expected utility) does
not necessarily lead to exactly evaluate the unknown probability (Rothschild
(1974); Easley and Kiefer (1988); Brezzi and Lai (2000)). Thus, optimality
does not necessarily lead to perfect accuracy. Our results point to a Biased
Learning Theorem, as we prove that the departure from accuracy displays a
bias towards overestimation of the bad outcome when learning stops. How-
ever, learning stops (hence overerestimation happens) with nonincreasing and
vanishing probability as the objective probability of the bad outcome goes
down to zero.

4. Discussion

In §4.1, we discuss the possible implementation of an optimal strategy
by humans, and, in §4.2, the robustness of our findings. Finally, we discuss
boundaries and compare our results with the literature in §4.3.

4.1. Possible implementation of an optimal strategy by humans

We discuss the data necessary to design an optimal strategy, as in Propo-
sition 1, and the cognitive burden of implementing it, to see if they are insu-
perable impediments to its progressive selection during the course of human
evolution.
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How does the DM obtain the basic data needed to implement an optimal
strategy?

The optimal strategy of Proposition 1 depends on the discount factor ρ
in (8) and on the payoff function U in Table 1 (that is, avoidance payoff Uα,
low payoff UB and high payoff UG). Also, under the assumptions of Propo-
sition 5, the DM holds the prior beta distribution π0 = β(nB

0, n
G

0) in (19),
where nB

0 > 0 and nG

0 > 0 are two positive scalars.
We have already discussed, right after Equation (8), how the discount

factor ρ can be related to the mean number of stages during which the DM has
to make decisions. We suppose that the DM knows the avoidance (middle)
payoff Uα. Then, we suggest a way for the DM to jointly determine two
integers nB

0 and nG

0 for the beta distribution β(nB

0, n
G

0), and both the low
payoff UB and the base payoff UG. The DM starts by making a risky decision
and

• either the DM first enjoys n good outcomes G — hence discovering the
high payoff UG — before suffering a bad outcome B — hence discovering
the low payoff UB; in that case, the DM sets nG

0 = n and nB

0 = 1;

• or the DM first suffers n bad outcomes B — hence discovering the low
payoff UB — before enjoying a good outcome G — hence discovering
the high payoff UG; in that case, the DM sets nG

0 = 1 and nB

0 = n.

So, at the end of those nG

0 + nB

0 trials, the DM disposes of the two payoffs UB

and UG, as well as the two integer parameters nB

0 > 0 and nG

0 > 0.

What is the stage by stage cognitive load of the optimal DM?

We suppose that the DM holds the prior beta distribution π0 = β(nB

0, n
G

0),
where nB

0, n
G

0 are integers. Then, we know from Proposition 5 that the pos-
terior πt is the beta distribution β(nB

0 + NB

t , n
G

0 + NG

t ) as in (21). Thus, at
each decision stage t, the cognitive load of the optimal DM is to keep track
of the two integers nB

0+NB

t and nG

0+NG

t since, by Proposition 1, the optimal
decision at stage t is function of the posterior πt.

How can the DM make an optimal decision at stage t?

By Proposition 1, the DM has to determine if the current posterior πt ∈
∆(Σ1) either belongs to the subset Πα ⊂ ∆(Σ1) or to the complementary
subset Πε = ∆(Σ1) \ Πα, to make an optimal decision at stage t. As πt =
β(nB

0+NB

t , n
G

0+NG

t ), the DM needs to identify in which of two subsets of N2
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— that is, the couples of integers corresponding to the subsets Πα and Πε

of ∆(Σ1) — does the couple (nB

0 +NB

t , n
G

0 +NG

t ) belong.
It is hard to say if our mind can design — using the discount factor ρ,

the avoidance (middle) payoff Uα, the low payoff UB and the high payoff UG

— and if our brain can hold such a “mental planar map” made of couples
of integers. For instance, for an individual making daily decisions during a
mean time of one year (resp. fifty years), this planar map would consist of
3652 = 133, 225 (resp. (5×365)23 ≈ 333 106 couples of integers labelled with
a binary label. Even if they are not astronomical, these numbers are huge.3

However, it is possible that a close suboptimal strategy be much more
simply encoded by the following rule: if

JπtK
BUB + JπtK

GUG =
nB

0 +NB

t

nB

0 + nG

0 + t
UB +

nG

0 +NG

t

nB

0 + nG

0 + t
> Uα

then make the risky decision Vt = ε, else avoid. A DM adopting this strategy
would be more prudent than the optimal DM because, by (A.8b), we have
that

JπtK
BUB + JπtK

GUG

1− ρ
>

Uα

1− ρ
=⇒ V (πt) >

Uα

1− ρ
=⇒ πt ∈ Πε .

4.2. Robusteness of the results obtained

We discuss which of our results are robust w.r.t. to assumptions like
stationarity (of the primitive random variables, of the payoffs), discounting,
finite or infinite horizon.

3We can easily arrive at astronomical figures with general policies. Indeed, recall that
a policy at stage t is a mapping St : {B, G, ∂}t → {α, ε} that tells the DM what will be the
next action in view of past observations. Disregarding the irrelevant “observation” ∂, a
policy at stage t is a mapping from a set of cardinal 2t towards a binary set. If an interval
[t, t + 1[ represents one day, the storage of policies for one year would be astronomically
prohibitive. This is why the existence of a stationary feedback optimal policy seems
good news. However, the argument of such policy is now an element of ∆(Σ1), that is,
a probability distribution on the one-dimensional simplex. Equivalently, being able to
implement the optimal strategy of Proposition 1 amounts to being able to characterize
the two complementary subsets Πα and Πε, which is out of question except with simple
rules.
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“Euphorism” and status quo biases

The property that, if the optimal DM experiments a good outcome,
she/he will go on taking risks is a consequence of the “stay-with-a-winner”
property (16): the value function cannot decrease when the posterior changes
following a good outcome. Screening the proof of (16) shows that this prop-
erty only depends the ranking (7) of payoffs, hence that our finding (“eupho-
rism” bias) is robust w.r.t. nonstationarity (as long as it does not change the
ranking), absence of discounting, and finite or infinite horizon.

The property that, if one selects the prudent decision once, one will no
longer make risky decisions afterwards is a consequence of both the stopping
of posterior updating and of the stationarity of the avoidance domain Πα.
We discuss both of them. The property that the posterior is a sufficient in-
formation state for optimization is quite robust, as it holds true under non-
stationarity, absence of discounting, and finite or infinite horizon ((Bertsekas
and Shreve, 1996, Chap. 10)). The stopping of posterior updating follows
from the information structure, as avoidance freezes observation, hence is
robust. However, it is stationarity and infinite horizon that lead to status
quo. Indeed, were the avoidance domain Πα dependent on the stage t that
we could no longer conclude to status quo. Thus, the status quo bias is less
robust than the “euphorism” bias.

Pessimistic erroneous assessment of the environment and overestimation bias
for the probability of the bad outcome

The property that the probability of a bad outcome is overestimated when
the risky phase stops (hence the erroneous assessment that the environment
is prone to prudence) comes from the inequality (A.8b), itself a consequence
of stationarity, discounting and infinite horizon. In this sense, it is less robust
than the “euphorism” bias.

4.3. Boundaries and comparison with the literature

Regarding the status quo bias, it is the consequence of the existence of a
prudent decision which freezes observation. So, the boundaries of such a phe-
nomenon are rather narrow. For instance, the status quo bias theoretically
vanishes in case of full feedback, that is, when foregone payoffs are revealed
no matter what the decision made.

Regarding what we call “euphorism” bias, it is certainly supported by the
observations of “economic bubbles”. However, it also (partially) contradicts
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the observed biais that individuals tend to perceive sequence of random pay-
offs as “compensating”: if too many good outcomes materialize, one thinks
that a bad one “has to” pop up. We leave the discussion open.

Now, we concentrate on the question whether rare events are under-
weighted or overweighted, which has triggered intense debates. It is common
observation that low probability-vivid negative consequences outcomes, like
plane crashes, receive disproportionate coverage and attention with respect
to their statistical occurrence. Such observation is at odds with expected
utility theory, where a lottery is assessed by a non-linear transformation of
the outcomes into utility, followed by a sum weighted by the probabilities.
Some theories of decision-making under risk propose to perform a non-linear
transformation of the probabilities attached to a lottery when weighing out-
comes (Yaari (1987); Quiggin (1982)). Based upon experimental observa-
tions, Kahneman and Tversky’s prospect theory (Kahneman and Tversky
(1979); Tversky and Kahneman (1992)) and Lopes’security/potential and
aspiration theory (Lopes (1996); Lopes and Oden (1999)) produce curves
of S-shaped probability deformations, exhibiting overweighting of low proba-
bilities. However, more recent works dispute the overweighting of rare events.

The article (Erev et al. (2017)) analyzes fourteen choice anomalies. The
authors report that there is no indication of initial overweighting of rare
events and “that the emergence of underweighting of rare events in decisions
with feedback is robust”. They discuss the discrepancy between studies that
report overweighting and those reporting underweighting by noting that they
studied 1/20 and 1/100 events, where “classical demonstrations examined
a 1/1,000 event”, and they add that “It is possible that the tendency to
overweight rare events increases with their rarity”.

At first sight, such empirical data would seem to go against our theoretical
findings regarding overestimation (see the corresponding box in Table 3 and
more details in Proposition 5 and Theorem 6). Nevertheless, our claim is
that

• the probability, not of all outcomes but of bad outcomes, is either accu-
rately estimated or overestimated, be they likely or not, under the con-
dition (28), where by estimation we precisely mean the statistics Jπτ K

B

in (22) obtained at the first prudent stage in (15),

• when the bad outcome is unlikely, such overestimation happens but
with vanishing probability as the objective probability pB of the bad
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outcome B goes down to zero, so that accurate estimation is the most
likely.

First, our claim is about overestimation, in the mathematical sense of (29),
and not about overweighting, in the sense that individuals “behave as if they
underweight rare events” (Erev et al. (2010)). Second, we have tried to com-
pare our predictions in Table 3 with some experimental work. We have chosen
(Barron and Erev (2003)) because the experimental framework corresponds
to our theoretical one in several aspects — the decisions are repeated, the
termination time is not known in advance, the probabilities of the payoffs
are not provided to the DM — although not in some other aspects — the
range of the payoffs are not provided to the DM in advance, the alternatives
have small similar expected values. In (Barron and Erev (2003)), Experi-
ment 2, Problem 4 corresponds to our setting with avoidance payoff Uα = 3,
low payoff UB = 0 and high payoff UG = 4, and with objective probabilities
(pB, pG) = (0.2, 0.8). We get that pc = (4 − 3)/(4 − 0) = 0.25 > 0.2 = pB,
hence the environment is prone to risk-taking. We deduce from Table 3
that the optimal DM should choose the risky option with high probabil-
ity (as pB = 0.2 ≈ 0 =⇒ P(τ = +∞) ≈ 1) and should choose to stop
and choose the certain option with low probability. In (Barron and Erev,
2003, Results p.221), it is observed that 63 % of the subjects chose the
risky option. These observations do not contradict our theoretical predic-
tions. In (Barron and Erev (2003)), Experiment 4, Problem 11 corresponds
to our setting with avoidance payoff Uα = −3, low payoff UB = −32 and
high payoff UG = 0, and with objective probabilities (pB, pG) = (0.1, 0.9).
We get that pc = (0 − (−3))/(0 − (−32)) = 0.09375 > 0.1 = pB, hence
the environment is prone to risk-taking. We deduce from Table 3 that
the optimal DM should choose the risky option with high probability (as
pB = 0.1 ≈ 0 =⇒ P(τ = +∞) ≈ 1) and should choose to stop and choose
the certain option with low probability. In (Barron and Erev, 2003, Results
p.224), it is observed that 60 %=100 %-40 % of the subjects chose the risky
option. These observations do not contradict our theoretical predictions.

Of course, our comparison with the literature is limited. However, our
boundaries for the overestimation of the probability of bad outcomes are nar-
row and it is not easy to find out which experiment fits our theoretical setting
(for instance, in (Hertwig et al. (2004)), the framework for what is called the
“experience group” is like ours, except for the objective as respondents “were
encouraged to sample until they felt confident enough to decide from which
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box to draw for a real payoff”). We hope that our predictions in Tables 2
and 3 and that this first discussion may contribute to sharpen the boundaries
for when rare events are underweighted or overweighted.

5. Conclusion

Our model and analysis show that certain biases can be the product of
rational behavior, here in the sense of maximizing expected discounted utility
with learning (that is, being risk neutral). Indeed, our theoretical results
provide support to “euphorism” and status quo biases, as well as, under
narrow boundary conditions, the pessimistic erroneous assessment of the best
objective option (which goes against “maximization”) and an overestimation
bias for the probability of bad outcomes. In particular, we have shown a
Biased Learning Theorem that provides rational ground for the human bias
that consists in attributing to bad outcomes an importance larger than their
statistical occurrence. Let us dwell on this point.

In many situations, probabilities are not known but learnt. The 2011 nu-
clear accident in Japan has led many countries to stop nuclear energy. This
sharp switch may be interpreted as the stopping of an experiment phase
where the probability of nuclear accidents has been progressively learnt. In
financial economics, the equity premium puzzle comes from the observation
that bonds are underrepresented in portfolios, despite the empirical fact that
stocks have outperformed bonds over the last century in the USA by a large
margin (Mehra and Prescott (1985)). However, this analysis is done ex post
under risk, while decision-makers make their decisions day by day under un-
certainty, and sequentially learn about the probability of stocks losses. Ex
ante, the underrepresentation of bonds can be enlightened by the Biased
Learning Theorem: the (small) probability of (large) bonds losses is overes-
timated with respect to their statistical occurrence.

To end up, our results point to the fact that overestimation depends upon
relative payoffs by the formula (18a). This property could possibly be tested
in experiments.
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Appendix A. Technical results

Appendix A.1. Proof of Proposition 1

Proof. We follow the approach of (Bertsekas and Shreve, 1996, Chap. 10) for
the analysis of imperfect state information models.

The infinite horizon imperfect state information stochastic optimization
problem (9)-(8)-(3) can be written as5

supEP
π0
[+∞∑

t=0

ρtU(Vt,Wt+1)
]
= sup

∫

Σ1

[+∞∑

t=0

ρtL(xt, vt)
]
π0(dx0) (A.1a)

where we have introduced the one-dimensional simplex Σ1 in (4) as state
space, and the state dynamics

x0 = (pB, pG) ∈ Σ1 , xt+1 = xt , ∀t = 0, 1, 2 . . . , (A.1b)

5We do not detail over which possible solutions the two suprema are taken. The left
hand side supremum is w.r.t. (3), whereas the right hand side supremum is w.r.t. suitable
stochastic kernels deduced from the information structure below.
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or, equivalently, the state space Σ1 and the state transition kernels

kX(dx | x, v) = kX(d(p
B, pG) | (pB, pG), v) = δx = δ(pB,pG) , (A.1c)

the control space {α, ε} and the controls

vt ∈ {α, ε} , ∀t = 0, 1, 2 . . . , (A.1d)

the one-stage payoff

L(x, v) = L
(
(pB, pG), v

)
= pBU(v, B) + pGU(v, G)

=

{
Uα if v = α ,

pBUB + pGUG if v = ε ,

(A.1e)

and the observation space {B, G, ∂} and the observation stochastic kernel

kY (dy | x, v) = kY (dy | (pB, pG), v)

=

{
δ∂(dy) if v = α ,

pBδB(dy) + pGδG(dy) if v = ε .

(A.1f)

The stochastic kernel

kX(dx | π, v, y) =





π(dx) if v = α and y = ∂ ,

(θBπ)(dx) if v = ε and y = B ,

(θGπ)(dx) if v = ε and y = G .

(A.1g)

satisfies (Bertsekas and Shreve, 1996, Lemma 10.3), because it can be checked
that, for any measurable subset Σ ⊂ Σ1 and subset C ⊂ {B, G, ∂}, and any
v ∈ {α, ε}, one has that

∫

Σ

kY (C | x, v)π(dx) =

∫

Σ1

[∫

C

kX(Σ | π, v, y)kY (dy | x, v)
]
π(dx) . (A.2)

Indeed, for v = α, Equation (A.2) is satisfied because

∫

Σ1

[∫

C

kX(Σ | π, α, y)kY (dy | x, α)
]
π(dx)

=

∫

Σ1

[∫

C

π(Σ)δ∂(dy)
]
π(dx)
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by the expressions (A.1g) for kX(dx | π, α, y) and (A.1f) for kY (dy | x, α)

= δ∂(C)π(Σ) =

∫

Σ

δ∂(C)π(dx)

=

∫

Σ

kY (C | x, α)π(dx) . (by the expression (A.1f) for kY (dy | x, α))

For v = ε, we show that Equation (A.2) is satisfied for C = {B}, {G}, {∂}.
For C = {∂}, both sides of the Equation (A.2) are zero as kY ({∂} | x, ε) = 0
by the expression (A.1f) for kY (dy | x, ε). For C = {B}, we calculate

∫

Σ1

[∫

{B}

kX(Σ | π, ε, y)kY (dy | x, ε)
]
π(dx)

=

∫

Σ1

kX(Σ | π, ε, B)kY ({B} | x, ε)π(dx)

=

∫

Σ1

(θBπ)(Σ) pBπ
(
d(pB, pG)

)

by the expressions (A.1g) for kX(dx | π, ε, y) and (A.1f) for kY (dy | x, ε)

=
1∫

Σ1 pBπ
(
d(pB, pG)

)
∫

Σ1

[∫

Σ

qBπ
(
d(qB, qG)

)]
pBπ

(
d(pB, pG)

)

(by the expression (11) of θBπ)

=

∫

Σ

qBπ
(
d(qB, qG)

)

=

∫

Σ

kY ({B} | (pB, pG), ε)π
(
d(pB, pG)

)

(by the expression (A.1f) for kY (dy | (pB, pG), ε))

=

∫

Σ

kY ({B} | x, ε)π(dx) .

For C = {G}, we obtain Equation (A.2) in the same way.
By (Bertsekas and Shreve, 1996, Propositions 10.5 and 10.6), we conclude

that the imperfect state information model can be reduced to a perfect state
one, with new information state π ∈ ∆(Σ1), new information state transition
kernels

kΠ(dπ | π, v) =

{
π if v = α ,

JπKBδθBπ + JπKGδθGπ if v = ε ,
(A.3)
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where JπKB and JπKG have been defined in (10), and new one-stage payoff

L̃(π, v) =

∫

Σ1

L(x, v)π(dx) (A.4)

=

∫

Σ1

[
pBU(v, B) + pGU(v, G)

]
π
(
d(pB, pG)

)
(by (A.1e))

=

{
Uα if v = α ,

JπKBUB + JπKGUG if v = ε .

The value function V : ∆(Σ1) → R given by

V (π) = supEPπ

[+∞∑

t=0

ρtU(Vt,Wt+1)
]
= sup

∫

Σ1

[+∞∑

t=0

ρtL(xt, vt)
]
π(dx0)

(A.5)
satisfies, by (Bertsekas and Shreve, 1996, Proposition 9.8), the dynamic pro-
gramming equation

V (π) = max
v∈{α,ε}

(
L̃(π, v) +

∫

Σ1

kΠ(dπ
′ | π, v)V (π′)

)
, (A.6)

that is, by (A.4) and (A.3),

V (π) = max
{
Uα + ρV (π), JπKB

(
UB + ρV (θBπ)

)
+ JπKG

(
UG + ρV (θGπ)

)}
.

(A.7)
By definition (A.5) of the value function V : ∆(Σ1) → R, we have that

V (π) ≥
+∞∑

t=0

ρt
∫

Σ1

L(xt, α)π(dx0) =

+∞∑

t=0

ρtUα =
Uα

1− ρ
(A.8a)

by applying the open-loop strategy St = α for all t, and we also have that

V (π) ≥
JπKBUB + JπKGUG

1− ρ
. (A.8b)
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Indeed, we have that

V (π) ≥
+∞∑

t=0

ρt
∫

Σ1

L(xt, ε)π(dx0)

(by applying the open-loop strategy St = ε for all t)

=

+∞∑

t=0

ρt
∫

Σ1

[
pBUB + pGUG

]
π
(
d(pB, pG)

)
(by (A.1e))

=
JπKBUB + JπKGUG

1− ρ
(by (10).)

The existence of the proposed stationary optimal policy is given by (Bertsekas
and Shreve, 1996, Proposition 9.12, Corollary 9.12.1, Corollary 9.17.1): de-
pending whether the maximum in the dynamic programming equation (A.6)
is achieved for v = α or for v = ε, we select an optimal strategy accordingly.
This is why we define the subset Πα ⊂ ∆(Σ1) by

π ∈ Πα ⇐⇒ V (π) = Uα + ρV (π) ⇐⇒ V (π) =
Uα

1− ρ
,

which gives the first part of (14). From the inequality (A.8a), we deduce the
second part of (14):

π 6∈ Πα ⇐⇒ π ∈ Πε ⇐⇒ V (π) >
Uα

1− ρ
.

This ends the proof.

Appendix A.2. Proof of Proposition 2

Proof.

a) By Proposition 1, when τ = +∞ — that is, when πt ∈ Πε for all stages t
— it is optimal to select decision ε and to experiment forever.

b) By Proposition 1, when τ = 0 — that is, when π0 ∈ Πα — it is optimal to
select decision α and to avoid for all times. Indeed, once the optimal DM
avoids, the DM does not observe the random outcomes, hence the DM no
longer updates the posterior πt in (13), so that the DM keeps avoiding.
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c) When 1 ≤ τ < +∞, we have, by definition (15) of the first avoidance
stage τ ,

• πt ∈ Πε for stages t = 0 up to τ − 1; hence, by Proposition 1, it is
optimal to select decision ε and experiment from stages t = 0 up to
τ − 1;

• πt ∈ Πα for stages t = τ up to +∞; hence, by Proposition 1, it is
optimal to select decision α and avoid for stages t = τ up to +∞.
Indeed, once the optimal DM avoids, the DM does not observe the
random outcomes, hence the DM no longer updates the posterior πt

in (13), so that the DM keeps avoiding.

This ends the proof.

Appendix A.3. Monotonicity property w.r.t. the probability pB

We consider the set of functions

Z =
{
ϕ : ∆(Σ1) → R

∣∣ϕ ◦ θG ≥ ϕ ◦ θB
}
, (A.10)

where the shift mappings θB, θG : ∆(Σ1) → ∆(Σ1) have been defined in (11).

Proposition 7. For any sequence {ϕs}s=0,...,t of functions in Z, the func-

tion [0, 1] ∋ pB 7→ EB(pB,1−pB)

[∏t
s=0 ϕs(πs)

]
is nonincreasing, where, for any

(pB, pG) ∈ Σ1, the probability distribution B(pB, pG) on the sample space H∞

in (1) is given in (5), and where the sequence {πs}s=0,...,t of posteriors is
given by

π0 = π0 and πs+1 = f(πs,Ws+1) =

{
θBπs if Ws+1 = B ,

θGπs if Ws+1 = G .
(A.11)

Proof. Let (pB, pG) and (p
B

, p
G

) in Σ1 be such that pB ≤ p
B

(or, equivalently,

that pG ≥ p
G

). We will show, by induction on t ∈ N, that, for any sequence
{ϕs}s=0,...,t of functions in Z, as in (A.10), we have the inequality

EB(pB,pG)

[ t∏

s=0

ϕs(πs)
]
≥ E

B(p
B
,p

G
)

[ t∏

s=0

ϕs(πs)
]
. (A.12)
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Before that, we need one notation and two preliminary results. For any
function ϕ : ∆(Σ1) → R, we put

Pϕ = pB(ϕ ◦ θB) + pG(ϕ ◦ θG) , Pϕ = p
B

(ϕ ◦ θB) + p
G

(ϕ ◦ θG) .

On the one hand, from the equalities

Pϕ−Pϕ = (pB − p
B

)(ϕ ◦ θB)+(pG − p
G

)(ϕ ◦ θG) = (pB − p
B

)(ϕ ◦ θB − ϕ ◦ θG) ,

we readily get that, as pB − p
B

≤ 0,

ϕ ∈ Z =⇒ (ϕ ◦ θB − ϕ ◦ θG) ≤ 0 =⇒ Pϕ ≥ Pϕ . (A.13)

On the other hand, we have that

ϕ ∈ Z =⇒ Pϕ ∈ Z and Pϕ ∈ Z , (A.14)

because, if ϕ ∈ Z, one has

(Pϕ) ◦ θB = pB(ϕ ◦ θB ◦ θB) + pG(ϕ ◦ θG ◦ θB) (by definition of (Pϕ) ◦ θB)

= pB(ϕ ◦ θB ◦ θB) + pG(ϕ ◦ θB ◦ θG)

because θB ◦ θG = θG ◦ θB as easily seen from the definitions (11)

≤ pB(ϕ ◦ θG ◦ θB) + pG(ϕ ◦ θG ◦ θG)
(as ϕ ∈ Z and by definition (A.10) of Z)

= (Pϕ) ◦ θG (by definition of (Pϕ) ◦ θG.)

The same inequality holds true for Pϕ.

Now, we can prove the inequality (A.12) by induction. For t = 0, the
inequality (A.12) is true as it is the equality ϕ0(π0) = ϕ0(π0). Let us sup-
pose that the inequality (A.12) holds true, for any sequence {ϕs}s=0,...,t of
functions in Z. We consider a sequence {ϕs}s=0,...,t,t+1 of functions in Z, and
we calculate

EB(pB,pG)

[t+1∏

s=0

ϕs(πs)
]
= EB(pB,pG)

[ t∏

s=0

ϕs(πs)EB(pB,pG)

[
ϕt+1(πt+1) | πs , s = 0, . . . , t

]]

= EB(pB,pG)

[ t∏

s=0

ϕs(πs)(Pϕt+1)(πt)
]

37



by (A.11) in which the sequence {Ws}s=0,...,t+1 is i.i.d. under the probability
distribution B(pB, pG) in (1) with probability pB (resp. pG) to take the value B
(resp. G)

≥ EB(pB,pG)

[ t∏

s=0

ϕs(πs)(Pϕt+1)(πt)
]

(by (A.13))

= EB(pB,pG)

[t−1∏

s=0

ϕs(πs)×
(
ϕt(Pϕt+1)

)
(πt)

]

≥ E
B(p

B
,p

G
)

[t−1∏

s=0

ϕs(πs)×
(
ϕt(Pϕt+1)

)
(πt)

]

by the induction inequality (A.12) because ϕs ∈ Z for s = 0, . . . , t by as-

sumption, that Pϕt+1 ∈ Z by (A.14) as ϕt+1 ∈ Z by assumption, and that
a product of nonnegative functions in Z is also in Z

= EB(pB,pG)

[t+1∏

s=0

ϕs(πs)
]

(by going backward in the same way.)

This ends the proof.
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