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Abstract

Are human perception and decision biases grounded in a form of
rationality? You return to your camp after hunting or gathering. You
see the grass moving. You do not know the probability that a snake
is in the grass. Should you cross the grass — at the risk of being
bitten by a snake — or make a long, hence costly, detour? Based
on this storyline, we consider a rational decision maker maximizing
expected discounted utility with learning. We show that his optimal
behavior displays three biases: status quo, salience, overestimation of
small probabilities. Biases can be the product of rational behavior.

Keywords: status quo bias, salience bias, overestimation of small prob-
abilities, optimal behavior
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1 Introduction

When we perceive sounds, we overestimate the change in level of rising level
tones relative to equivalent falling level tones Neuhoff (1998). When we
assess pros and cons in decision making, we weigh losses more than gains
Kahneman and Tversky (1979).

Are some of our perception and decision biases grounded in a form of ra-
tionality? In the “heuristics and biases” literature Kahneman et al. (1982);
Gilovich et al. (2002), a debate opposes two conceptions: on the one hand,
some behaviors are qualified of “bias” when they depart from given “ratio-
nality benchmarks” (like expected utility theory); on the other hand, some
scholars (see Gigerenzer (2004, 2008); Hutchinson and Gigerenzer (2005))
claim that those “so-called bias” were in fact advantageous in the type of
environment where our ancestors lived and thrived (ecological or, rather,
evolutionary, validity Barkow et al. (1992); Boutang and De Lara (2015)).
In this second conception, the benchmark should be a measure of fitness
reflecting survival and reproduction abilities.
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We tackle a limited version of this broad issue by proposing insight from
a decision model. Closing the gap between the two conceptions, we will show
that a rational decision maker — maximizing expected discounted utility —
can display biases.

For this purpose, we will put forward a model inspired by the one given
by Haselton and Nettle in Haselton and Nettle (2006). They consider an
individual who, to reach his destination, has two options: a short risky route
passes through a grassy land — possibly hiding a poisonous snake inflicting
serious (though non lethal) pains; whereas a safe route makes a long costly
detour. They define a critical probability related to costs of encounter and
avoidance. They show that, for a “bad” outcome with probability lower than
the critical probability, the (optimal) individual should take the risky route.
The general conclusion is nicely expressed by Martie G. Haselton (on her
personal webpage) when she claims that “selection has led to adaptations
that are biased by design and functioned to help ancestral humans avoid
particularly costly errors”. However, the so-called “error management the-
ory” analysis in Haselton and Nettle (2006) is performed supposing known
the probability that a snake is in the grass.

What happens when the individual does not know a priori the objective
probability driving the occurence of a bad outcome? In this paper, we will
consider a decision maker (DM) who has to make successive decisions. At the
beginning of every period, he has to choose between two options: if he makes
a “risky decision”, he receives a random payoff, depending on a bad (snake)
or good (no snake) outcome revealed at the end of the period (learning); if
he makes a “safe decision”, he receives a deterministic payoff (safe way with
a long costly detour) and does not observe the outcome (good or bad). The
occurrence of the bad or good outcome is drawn from a Bernoulli distribution
with unknown probability. We suppose that the DM is Bayesian in that he
holds a prior — an estimate of the (unknown) Bernoulli distribution. We
suppose that the DM maximizes discounted expected payoffs.

We will show that a DM following an optimal strategy displays a behavior
with the following three biases:

• status quo bias : there are at most two consecutive phases of “status
quo” — one (possibly empty) of experimenting, that is, making a “risky
decision”, one (possibly empty) of prudence — with at most one switch;
in particular, once prudent, this is forever;

• salience bias : if it exists, the experimenting/learning phase can only
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stop when a bad outcome materializes; in other words, the switch from
riskiness to prudence occurs when a salient and vivid outcome occurs;

• probability overestimation bias (of bad and unlikely outcomes): the
probability of a bad and unlikely outcome is overestimated when the
experimenting/learning phase stops.

The paper is organized as follows. In Sect. 2, we recall a decision model
from Haselton and Nettle (2006) where the probability driving the occurence
of a bad outcome is supposed to be known. In Sect. 3, we extend the model to
the case of unknown probability, and we exhibit the behavior of the optimal
DM. In Sect. 4, we show features of the optimal DM that have interesting
psychological interpretations in terms of human biases. Interpreting costs as
a measure of fitness (the lower the costs, the higher the fitness), we conclude
in Sect. 5 that natural selection may have favored individuals who display
status quo bias, salience bias and probability overestimation bias.

2 Optimal decision-making under risk

Before examining learning in the next Sect. 3, we first focus on decision-
making under risk, by means of an example from Haselton and Nettle (2006).
Haselton and Nettle make use of what they call error management theory
(EMT) to understand “how natural selection engineers psychological adap-
tations for judgment under uncertainty”. We will follow their terminology,
though EMT amounts to optimal decision-making under risk, that is, with
uncertainties following a known probability distribution.

2.1 Error management theory

In Haselton and Nettle (2006), the following situation is examined. Consider
two possible outcomes (states of Nature) — a “bad” one B and a “good”
one G — that we illustrate by B = “a snake is in the grass”, and by G the
contrary. Now, suppose that the grass is moving. According to our belief
in what makes the grass moving — either “a snake is believed to be in the
grass”, or the contrary — two decisions are possible. Supposing a snake
in the grass leads to avoid (α) the place and make a costly detour. On the
other hand, passing through (“trying”, “learning”, “experimenting” ε) is less

4



costly if the snake is not, but can be very costly (painful though not lethal)
if the snake is present.

Then, a belief can be adopted when it is in fact true (a true positive or
TP), or it cannot be adopted and not be true (a true negative or TN). There
are two possible errors: a false positive (FP) error occurs when a person
adopts a belief that is not in fact true (believing there is a snake, when this
is not the case); a false negative (FN) occurs when a person fails to adopt a
belief that is true. This is summarized in Table 1:

• assuming there is a snake induces avoidance (α) with cost Cα – like
losing time in making a detour — let there indeed be a snake (B, true
positive TP) or not (G, false positive FP);

• assuming there is no snake induces a cost CB of encounter (bad B) —
being bitten, with painful and incapacitating consequences — if there
indeed is a snake (B, false negative FN) and a cost CG of no encounter
if not (G, true negative TN).

snake (bad B) no snake (good G)

avoid (α) cost of avoidance Cα cost of avoidance Cα
experiment (ε) cost of encounter CB cost of no encounter CG

Table 1: Costs according to decisions (rows) and states of Nature (columns)

We suppose that the cost of avoidance lies between the costs of good and
bad encounters:

cost of no encounter︷︸︸︷
CG < Cα︸︷︷︸

cost of avoidance

<

cost of encounter︷︸︸︷
CB . (1)

Now, assume that a snake is in the grass with probability pB, and no
snake is in the grass with probability pG = 1 − pB. If the above situation
repeats itself independently, the empirical mean costs (over repetitions) are
approximated by the theoretical expected costs, due to the Law of Large
Numbers:
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• assuming there is a snake makes you avoid, and induces the same cost
whatever the state of Nature, which is the cost of avoidance Cα;

• assuming there is no snake makes you experiment — and induces a cost
of encounter CB with probability pB, and a cost CG with probability pG

— hence a mean cost pBCB + pGCG.

Therefore, in the mean, it is better to believe there is a snake rather than
not if the cost of avoidance falls below the mean cost of encounter, that is,1

avoidα ⇐⇒

expected costs of crossing︷ ︸︸ ︷
pBCB + pGCG >

cost of avoidance︷︸︸︷
Cα . (2)

Rearranging the last inequality using the property that pB + pG = 1, we
summarize the optimal rule in the following Proposition 1.

Proposition 1. We define the critical probability pc — or avoidability in-
dex pc — by the following ratio:

pc =
Cα − CG

CB − CG
=

relative costs of avoidance

relative costs of encounter
∈]0, 1[ . (3)

The optimal DM under risk adopts the following rule:

avoidα ⇐⇒ pB > pc . (4)

We have coined the critical probability pc an avoidability index. Indeed,
all things being equal, the worse a bad outcome (that is, high bad costs) and
the lower the cost of avoidance, the lower pc in (3): a low index pc means that
it is cheap to avoid the bad outcome, whereas an index pc close to 1 means
that the bad outcome can only be avoided at high costs. As a consequence,
the higher the cost of encounter and the lower the cost of avoidance, the
better to believe there is a snake rather than not, hence to avoid.

1We use a strict inequality below, because we do not consider the exceptional case
where the two quantities are equal.
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2.2 Error management theory supports adaptive bi-
ases

The conclusion of Haselton and Nettle is that, when errors are asymmetrical
in cost, there is a tendency to favor false positive error (FP), that is, adopting
a belief that is not in fact true (believing there is a snake, when this is not
the case).

As Haselton claims (personal webpage), “when the costs of false positive
and false negative errors were asymmetrical over evolutionary history, selec-
tion will have designed psychological adaptations biased in the direction of
the less costly error”.

Speaking of snakes, neuroscientist Joseph LeDoux has a nice way to ex-
press such bias, in his book The Emotional Brain: ”It is better to have
treated a stick as a snake than not to have responded to a possible snake”
(LeDoux, 1996, p.166).

Such asymmetry in costs is manifest in the so-called life-dinner principle
of Richard Dawkins — “The rabbit runs faster than the fox, because the
rabbit is running for his life while the fox is only running for his dinner” —
and can exert a strong selection pressure Dawkins and Krebs (1979).

2.3 From risk to uncertainty with unknown probability

The optimal decision rule (4) depends on two quantities attached to the
situation: one is the probability pB that a snake is in the grass; the other
is the ratio (3) of two costs, which, being less than 1, we interpret as a
probability pc. Whereas each cost — “avoid” Cα, “experiment and snake” CB,
“experiment and no snake” CG — can be learnt by three single experiments,
the probability pB of encounter is usually learned as a frequency resulting
from multiple encounters. This is what we discuss in the next Section.

3 Optimal decision-making with learning

To “implement” the rule (4) — namely, avoid or experiment depending on
beliefs — the DM needs to know the probability pB that a snake is in the
grass. This assessment is acquired by experimenting and learning. In fact,
the DM learns only if he crosses the grass. Such a mix of experimenting and
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of acting is examplified in the famous “multi-armed bandit problem” Gittins
(1979).

In §3.1, we lay out mathematical ingredients to set up a model with
sequential learning of an unknown probability. In §3.2, we formulate an
expected discounted payoff maximization problem. Finally, we recall in §3.3
that this problem displays an optimal strategy based upon a so-called Gittins
index.

3.1 A model for sequential learning

We lay out mathematical ingredients to set up a model with sequential learn-
ing.

Discrete time span

We suppose that, at discrete times t ∈ N, the DM makes a decision — either
“avoid” (α) or “experiment” (ε) — without knowing in advance the state
of Nature occurring at that time — either “bad” (B) or “good” (G). We
denote by t = 0, 1, 2 . . . the discrete time corresponding to the beginning of
period [t, t + 1[.

Sample Space

Define the sample space

H∞ = {B, G}N
∗

= {B, G} × {B, G} × · · · , (5)

with generic element an infinite sequence (ω1, ω2, . . . ) of elements in {B, G}.
Denote by

Xt+1 : H∞ → {B, G} , Xt+1(ω1, ω2, . . . ) = ωt+1 , (6)

the state of Nature at time t = 1, 2 . . . The index t+ 1 stresses the fact that
the state of Nature Xt+1, though realized at the beginning of period [t, t+1[,
cannot be revealed before time t+ 1.

Strategies

At the beginning of each period [t, t + 1[, the DM can either “avoid” (de-
cision α) — in which case the DM has no information about the state of
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Nature — or “experiment” (decision ε)– in which case the state of Nature
Xt+1 (B or G) is revealed and experimented, at the end of the period [t, t+1[.
We note by {α, ε} the set of decisions, and by vt ∈ {α, ε} the action taken
by the DM at the beginning of the period [t, t+ 1[.

We assume that the DM is not visionary and learns only from the past:
he cannot know the future in advance, neither can he know the state of
Nature (B or G) if he decides to avoid. Define the observation sets at time
t = 0, 1, 2, 3 . . . by O0 = {∂}, where ∂ corresponds to no information (no
observation at initial time t = 0), and Ot = {B, G, ∂}t for t = 1, 2, 3 . . . Define
the observation mapping O : {α, ε} × {B, G} → {B, G, ∂} by O(ε, B) = B,
O(ε, G) = G and O(α, B) = O(α, G) = ∂. Thus, the observation at time
t = 0, 1, 2 . . . if the DM makes decision vt ∈ {α, ε} is Yt+1 = O(vt, Xt+1).

We allow the DM to accumulate past observations; therefore the decision
vt at time t can only be a function of Y1, . . . , Yt (the initial decision v0 is
made without information). A policy at time t is a mapping St : Ot → {α, ε}
that tells the DM what will be his next action in view of past observations.
A strategy S is a sequence S0,S1 . . . of policies.

Given the scenario X(·) = (X1, X2, . . .) of states of Nature, and given a
strategy S, decisions and observations are inductively given by

vt = St(Y1, . . . , Yt) ∈ {α, ε} and Yt+1 = O(vt, Xt+1) ∈ {B, G, ∂} . (7)

True unknown probability distribution

Consider pB ≥ 0 and pG ≥ 0 such that pB + pG = 1. We equip the sam-
ple space H∞ in (5) with the probability distribution P such that the ran-
dom process (X1, X2, . . .) is a sequence of independent Bernoulli trials with
P{Xt = B} = pB and P{Xt = G} = pG, that is,

P =
(
pBδB + pGδG

)⊗N∗

. (8)

Hypothesized probability

We suppose that the DM does not know the probability pB (nor pG), but that
he is a Bayesian assuming that

• the parameter (pB, pG) is a random variable with a distribution π0 on
the one-dimensional simplex

S1 = {pB ≥ 0 , pG ≥ 0 | pB + pG = 1} ; (9)

9



• the extended sample space S1 ×H∞ = S1 × {B, G}N
∗

is equipped with
the probability distribution

π0(dp
BdpG)⊗

(
pBδB + pGδG

)⊗N∗

. (10)

We denote by Pπ0
its marginal distribution on the sample space H∞ in (5).

3.2 An expected discounted payoff maximization prob-

lem

Now, to compare strategies, we will make up a criterion. Beware that, in
Sect. 2, we dealt with costs (to be minimized), whereas here, in Sect. 3, we
deal with payoffs (to be maximized).

Instant payoffs

In an evolutionary interpretation, payoffs are measured in “fitness” unit. For
instance, costs might be measured in “number of days alive” or “number of
days in a reproductive state”, taken as proxies for the number of offspring.
The payoffs depend both on the decision and on the state of Nature as in
Table 2.

“bad” state B “good” state G

avoid α avoidance payoff U(α, B) = Uα avoidance payoff U(α, G) = Uα

experiment ε encounter payoff U(ε, B) = UB base payoff U(ε, G) = UG

Table 2: Instant payoffs according to decisions (rows “avoid” (α) or “exper-
iment” (ε)) and states of Nature (columns “bad” B or “good” G)

We assume that the payoffs attached to the couple (action, state) in
Table 2 are ranked as follows:2

base payoff︷ ︸︸ ︷
U(ε, G) = UG > U(α, B) = U(α, G) = Uα︸ ︷︷ ︸

avoidance payoff

>

encounter payoff︷ ︸︸ ︷
U(ε, B) = UB . (11)

2The relations between payoffs and the costs of Sect. 2 are UB = −CB, UG = −CG and
Uα = −Cα.
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In other words, avoiding yields more utility than a bad encounter but less
than a good one.

Intertemporal criterion

As the payoffs in Table 2 are measured in “fitness”, we suppose that they
are cumulative, like days in a healthy condition or number of offspring. This
is why we suppose that the DM can evaluate his lifetime performance using
strategy S by the discounted intertemporal payoff

J
(
S, X(·)

)
=

+∞∑

t=0

ρtU(vt, Xt+1) , (12)

where vt is given by (7).
The rationale behind using discounted intertemporal payoff is the follow-

ing. Suppose that the DM’s lifetime is a random variable θ — independent
of the randomness in the occurence of a bad and good outcomes — that
follows a Geometric distribution with values in {0, 1, 2, 3 . . .}. Then, we have
the relation

∑+∞
t=0 ρ

tU(vt, Xt+1) = E[
∑

θ

t=0 U(vt, Xt+1)]. And we can interpret
the discount factor ρ ∈ [0, 1[ as the mean θ of the DM’s lifetime θ, by means
of the relations θ = ρ/(1 − ρ) and ρ = θ/(θ + 1). For instance, a discount
factor ρ = 0.95 corresponds to a mean lifetime θ = 0.95/0.05 = 19 periods.

Expected discounted payoff maximization problem

Since the payoff (12) is contingent on the unknown scenarioX(·) = (X1, X2, . . .),
it is practically impossible that a strategy S performs better than another
for all scenarios. We look for an optimal strategy S⋆, solution of

E
Pπ0

[
J
(
S⋆, X(·)

)]
= max

S
E
Pπ0

[
J
(
S, X(·)

)]
, (13)

where J is given by (12), and the probability Pπ0
is the marginal distribution

of (10) on the sample space H∞ in (5).

Remark. In Robson (2001), Robson chooses to maximize the total
expected offspring in the limit as the horizon goes to infinity, uniformly in
all originally unknown distribution, as inspired by the minimax approach for
bandit problems (Berry and Fristedt, 1985, chap. 9).
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3.3 Gittins index optimal strategy (GI-strategy)

It is well-known that the maximum in (13) is achieved by a so-called Gittins
index strategy Gittins (1989); Berry and Fristedt (1985); Bertsekas (2000)
as follows (see (Berry and Fristedt, 1985, Theorem 5.3.1)).

Bayesian update

Let ∆(S1) denote the set of probability distributions on the simplex S1 in (9).
An optimal strategy for the optimization problem (13) can be searched for
among state feedbacks strategies of the form

St(Y1, . . . , Yt) = Ŝ(π̂t) with Ŝ : ∆(S1) → {ε, α} , (14)

where the information state is π̂t ∈ ∆(S1), the conditional distribution, with
respect to Y1, . . . , Yt, of the first coordinate mapping on S1 ×H∞.

The dynamics of the posterior π̂t ∈ ∆(S1) is given by:

π̂0 = π0 and π̂t+1 =





π̂t if Yt+1 = ∂

θBπ̂t if Yt+1 = B

θGπ̂t if Yt+1 = G .

(15)

In this formula, the mappings θB, θG : ∆(S1) → ∆(S1) map a probability π
on the simplex S1 towards probabilities θBπ and θGπ, absolutely continuous
with respect to π, and given by:

(θBπ)(dpBdpG) =
pB∫

S1 pBπ(dpBdpG)
π(dpBdpG) , (16a)

(θGπ)(dpGdpG) =
pB∫

S1 pGπ(dpBdpG)
π(dpBdpG) . (16b)

Gittins index optimal strategy (GI-strategy)

Here is the Gittins index strategy.

Proposition 2 (Gittins (1989)). There exists a function I : ∆(S1) → R

(called the Gittins index) — which depends on the discount factor ρ and on
the payoff U — such that the following strategy is optimal for the expected
discounted payoff maximization problem (13):
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• if I(π̂t) < Uα (index < sure payoff),
then select decision α (“avoid”);

• if I(π̂t) > Uα (index > sure payoff),
then select decision ε (“experiment”);

• if I(π̂t) = Uα (index = sure payoff),
then select indifferently decision α or decision ε.

To avoid the indifference case I(π̂t) = Uα, we single out the following pru-
dent Gittins index optimal strategy. It is prudent because it favors avoidance
over risk taking in case of indifference.

Definition 3. We call Gittins index strategy (GI-strategy) the strategy

• if I(π̂t) ≤ Uα, then select decision α (“avoid”),

• if I(π̂t) > Uα, then select decision ε (“experiment”),

and GI-DM a decision-maker who adopts the Gittins index strategy.

Behavior of the GI-DM

To describe the behavior of a decision-maker who adopts the Gittins index
strategy of Definition 3, we introduce the following stopping time, which
plays a pivotal role.

We define the learning time τ as the first time t, if it exists, where the
avoidance payoff Uα exceeds the Gittins index:

τ = inf{t = 0, 1, 2, 3 . . . | I(π̂t) ≤ Uα} . (17)

In case I(π̂t) > Uα for all times t = 0, 1, 2, 3 . . ., the convention is τ = inf ∅ =
+∞.

We now outline the behavior of a DM that follows the GI-strategy.

Proposition 4. The DM that follows the GI-strategy of Definition 3 switches
at most one time from experimenting to avoiding. More precisely, his behav-
ior displays one of the three following patterns, depending on the learning
time τ in (17).
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a) Infinite learning:
if τ = +∞, that is, if I(π̂t) > Uα for all times t = 0, 1, 2, 3 . . ., the GI-DM
never avoids.

b) No learning:
if τ = 0, that is, if I(π0) ≤ Uα, the GI-DM avoids from the start and,
from then on, he keeps avoiding for all times.

c) Finite learning:
if 1 ≤ τ < +∞, the GI-DM

• experiments from t = 0 to τ − 1, that is, as long as I(π̂t) > Uα,

• switches to avoiding at time t = τ , that is, as soon as I(π̂t) ≤ Uα,

• from then on, keeps avoiding for all times.

Proof.

a) By Proposition 2 and Definition 3, when τ = +∞ — that is, when the
Gittins index I(π̂t) > Uα for all times t — it is optimal to select decision ε
and experiment forever.

b) By Proposition 2 and Definition 3, when τ = 0 — that is, when I(π̂0) ≤
Uα — it is optimal to select decision α and avoid for all times. Indeed,
once the GI-DM avoids, he does not observe the random outcomes, hence
he no longer updates the posterior π̂t in (15), so that he keeps avoiding.

c) When 1 ≤ τ < +∞, we have

• I(π̂t) > Uα for times t = 0 up to τ − 1; hence, by Proposition 2 and
Definition 3, it is optimal to select decision ε and experiment from
times t = 0 up to τ − 1;

• I(π̂t) ≤ Uα for times t = τ up to +∞; hence, by Proposition 2 and
Definition 3, it is optimal to select decision α and avoid for times
t = τ up to +∞. Indeed, once the GI-DM avoids, he does not observe
the random outcomes, hence he no longer updates the posterior π̂t

in (15), so that he keeps avoiding.

This ends the proof.
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4 Killing three biases with one stone

Here, we show three features of the GI-strategy of Definition 3 that possess
interesting psychological interpretations in terms of human biases: status
quo bias in §4.1, salience bias in §4.2, overestimation of small probabilities
bias in §4.3. Such features provide insights into which attitudes natural
selection may have favored in humans having to decide under uncertainty
and learning. These insights send us back to the introductory Section 1 on
the debate about benchmarks for qualifying biases.

4.1 Status quo bias

Our analysis provides theoretical support to the so-called status quo bias,
a preference for the current state of affairs, documented in Samuelson and
Zeckhauser (1988).

Proposition 5. The behavior of the GI-DM displays at most two consecutive
phases of “status quo” — one (possibly empty) of experimenting, that is,
making a “risky decision” , one (possibly empty) of prudence — with at most
one switch; in particular, once prudent, this is forever.

This follows from Proposition 4. In particular, once the GI-DM selects
the “avoid” option, he will never more experiment. Indeed, the optimal rule
of Proposition 2 states that, once the GI-DM selects the “avoid” option,
he does not observe the random outcomes, hence he no longer updates the
posterior π̂t because of the dynamics (15) so that he keeps avoiding. Thus,
once stuck in a risk avoidance attitude, the status quo holds sway.

4.2 Salience bias

Our analysis provides theoretical support to the so-called salience bias, or
availability heuristic Tversky and Kahneman (1982), that makes humans
sensitive to vivid, salient events.

Proposition 6. If it exists, the experimenting phase can only stop when a bad
outcome materializes; in other words, the switch from riskiness to prudence
occurs when a salient and vivid outcome occurs.

We will see that a “stay-with-a-winner” characteristics of the GI-strategy
makes that a (prudent) change in behavior occurs only when a bad outcome
materializes.
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Proof. Suppose that, at time t the GI-DM is experimenting. We will show
that, if a “good” outcome G materializes at the end of the interval [t, t + 1[
(Yt+1 = G), then necessarily the DM goes on experimenting at time t + 1.

By Definition 3, we have that I(π̂t) > Uα since the GI-DM is exper-
imenting at time t. Now, the Gittins index function I : ∆(S1) → R of
Proposition 2 has the property that I ◦ θG ≥ I, that is, the index increases
when the posterior changes following a “good” outcome (Berry and Fristedt,
1985, Theorem 5.3.5, page 103). As we supposed that Yt+1 = G, we have
that π̂t+1 = θGπ̂t by the dynamics (15). As a consequence, we have that
I(π̂t+1) = I(θGπ̂t) ≥ I(π̂t) ≥ Uα. As I(π̂t+1) ≥ Uα, the GI-DM goes on
experimenting at time t+ 1 by Definition 3.

Therefore, the switch from experimenting to avoiding can only occur when
a “bad” outcome materializes.

4.3 Overestimation of small probabilities bias

Under expected utility theory, a lottery is assessed by a non-linear transfor-
mation of the outcomes into utility, followed by a sum weighted by the prob-
abilities. However, other theories of decision-making under risk propose to
perform a non-linear transformation of the probabilities attached to a lottery
when weighing outcomes Yaari (1987); Quiggin (1982). Based upon exper-
imental observations, Kahneman and Tversky’s prospect theory Kahneman
and Tversky (1979); Tversky and Kahneman (1992) and Lopes’security/potential
and aspiration theory Lopes (1996); Lopes and Oden (1999) produce curves
of S-shaped probability deformations, exhibiting overweighting of low prob-
abilities.

Somewhat related is the observation that low probability-vivid conse-
quences outcomes, like plane crashes, receive disproportionate coverage and
attention with respect to their statistical occurrence.

Why do we overweigh small probabilities? Why do we display such a
bias? We will show that the overweighing of small probabilities is an output
from the model we developed in Sect. 3.
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Probability estimator and critical probability

We introduce the numbers NB

t and NG

t of “bad” and “good” encounters up
to time t

NB

0 = NG

0 = 0 , NB

t
=

t∑

s=1

1{Ys=B} , NG

t
=

t∑

s=1

1{Ys=G} , t = 1, 2, 3, . . . (18)

where the observations Ys are given by (7).
Let nB

0 > 0 and nG

0 > 0 be two positive scalars. We suppose that the
distribution π0 is a beta distribution β(nB

0, n
G

0) on the simplex S1 in (9), that
is, for any continuous function ϕ : S1 → R,

∫

S1

ϕ(pB, pG)π0(dp
BdpG) =

∫ 1

0
ϕ(p, 1− p)pn

B

0
−1(1− p)n

G

0
−1dp

∫ 1

0
pn

B

0
−1(1− p)n

G

0
−1dp

. (19)

By the dynamics (15), we easily establish that the posterior π̂t in §3.3 is the
beta distribution

π̂t = β(nB

0 +NB

t
, nG

0 +NG

t
) . (20)

As we are interested in what estimates of the (true) probability value pB

in (8) the GI-DM forms, we introduce the following statistics.

Definition 7. For t = 0, 1, 2 . . ., we define the statistics p̂B
t
by

p̂B0 =
nB

0

nB

0 + nG

0

and p̂Bt =
nB

0 +NB

t

nB

0 +NB

t + nG

0 +NG

t

, t = 1, 2 . . . . (21a)

where the numbers of “bad” and “good” encounters up to time t are given
in (18). We also define

p̂G
t
= 1− p̂B

t
. (21b)

The statistics p̂B
t
is built from the parameters nB

0 and nG

0 of the prior beta
distribution π0 = β(nB

0, n
G

0) in (19) and from the observations up to time t,
summarized in the number NB

t
of “bad” encounters up to time t, and the

same for NG

t
with “good”, as defined in (18).

As in Sect. 2, we introduce a critical probability pc as follows.
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Definition 8. We define the critical probability pc — or avoidability in-
dex pc — by the following ratio:

pc =
UG − Uα

UG − UB
=

relative costs of avoidance

relative costs of encounter
∈]0, 1[ . (22)

All things being equal, the “worse” a bad outcome (that is, high bad
costs), the lower the critical probability.

How does the DM obtain the basic data to set up the optimization
problem?

So, how does the DM set the two positive scalar parameters nB

0 and nG

0 of the
beta distribution π0 in (19) to make up the probability Pπ0

? How does he
set the instant payoffs — avoidance payoff Uα, encounter payoff UB and base
payoff UG — in Table 2?

We suppose that the DM knows the avoidance payoff Uα. He starts ex-
perimenting and

• either he first enjoys n good outcomes G — hence discovering the base
payoff UG — before suffering a bad outcome B — hence discovering the
encounter payoff UB; in that case, he sets nG

0 = n and nB

0 = 1;

• or he first suffers n bad outcomes B — hence discovering the encounter
payoff UB — before enjoying a good outcome G — hence discovering
the base payoff UG; in that case, he sets nG

0 = 1 and nB

0 = n.

So, at the end of those nG

0 + nB

0 trials, the DM disposes of the two payoffs UB

and UG, as well as the two parameters nB

0 > 0 and nG

0 > 0.

Probability estimates made by the GI-DM

The following Proposition 9 details what estimates p̂B
t
of the (true) probability

value pB the DM forms by (21a), when he follows the GI-strategy.

Proposition 9. Consider a GI-DM, a decision-maker who follows the Git-
tins index strategy of Definition 3. Here are the estimates of the (true) prob-
ability value pB.
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a) Infinite learning: when τ = +∞, the GI-DM experiments forever and,
asymptotically, the statistics p̂B

t
in (21a) reaches the (true) probability

value pB, almost surely under the (true) probability distribution P in (8):

lim
t→+∞

p̂B
t
= pB , P− p.s. (23)

b) No learning: when τ = 0, the GI-DM never experiments and his initial
estimate p̂B0 of the (true) probability value pB satisfies

pc ≤ p̂B0 , (24)

where the critical probability pc is defined in (22).

c) Finite learning: when 1 ≤ τ < +∞, the GI-DM experiments till time τ
and his estimate p̂B

τ
of the (true) probability value pB satisfies

pc ≤ p̂B
τ
. (25)

Proof.

a) By Proposition 2 and Definition 3, when τ = +∞ it is optimal to select
decision ε and experiment forever. Then, asymptotically, the statistics p̂B

t

reaches the (true) probability value pB by the Law of large numbers, al-
most surely under the probability P in (8). Indeed, the random variables
(X1, X2, . . .) in (6) are i.i.d. under P.

b) See the proof below.

c) By definition of τ in (17), we have that

τ < +∞ ⇒ Uα ≥ I(π̂τ ) . (26)

Now, it is well known that (Berry and Fristedt, 1985, Corollary 5.3.2,
page 101)

I
(
β(NB, NG)

)
≥

NB

NB +NG
UB +

NG

NB +NG
UG . (27)

From the two above equations and from (20), we deduce that

τ < +∞ ⇒ Uα ≥
nB

0 +NB

τ

nB

0 +NB

τ
+ nG

0 +NG

τ

UB +
nG

0 +NG

τ

nB

0 +NB

τ
+ nG

0 +NG

τ

UG . (28)

Rearranging the terms, and using (21a) and (22), we obtain:

τ < +∞ ⇒ p̂B
τ
≥ pc . (29)

This ends the proof.
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The Biased Learning Theorem

An easy consequence of Proposition 9 is the following theorem.

Theorem 10 (Biased Learning Theorem). Suppose that the “bad” outcome B
is unlikely, in the sense that

pB ≤ pc . (30)

A GI-DM — a decision-maker who follows the Gittins index strategy of Def-
inition 3 — will

• either experiment forever, and he will accurately estimate asymptoti-
cally the (true) probability of the unlikely bad outcome B;

• or experiment during a finite number of periods (possibly zero) and,
when the experiment phase ends at τ < +∞, he will overerestimate
the (true) probability of the unlikely bad outcome B:

pB ≤ p̂B
τ
. (31)

The proof combines (25) and (30) when τ < +∞. Table 3 sums up the
results of Proposition 9 when the inequality (30) holds true.

Case pB ≤ pc estimate of pB comment

τ = +∞ limt→+∞ p̂B
t
= pB exact estimation of pB

0 ≤ τ < +∞ p̂B
τ
≥ pc ≥ pB overestimation of pB

Table 3: Estimate p̂Bt of the “bad” outcome in the case pB ≤ pc

In the case (30), the (unknown) probability pB of the bad outcome is low
enough so that the expected utility outweighs the sure utility of avoiding, as
in (2). Therefore, with foresight, an optimal DM would take the risk forever.
However, the Biased Learning Theorem 10 reveals that, without foresight,
an optimal DM would be more prudent, and not always take the risk forever.

We conclude that — in a situation where, with foresight, an optimal DM
would take the risk forever — the GI-DM will

• either accurately estimate (asymptotically) the probability of the bad
and unlikely outcome B when learning never stops,
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• or overestimate the probability of the bad and unlikely outcome B when
learning stops.

The intuition for the overestimation is that the probability of a bad and un-
likely outcome is approached from below, as follows from item c) of Propo-
sition 9 and from (28).

Relations with economics and biology literature

Economists have made the point, coined the Incomplete Learning Theorem,
that the optimal strategy (to maximize discounted expected utility) does
not necessarily lead to exactly evaluate the unknown probability Rothschild
(1974); Easley and Kiefer (1988); Brezzi and Lai (2000). Thus, optimality
does not necessarily lead to perfect accuracy. Our results point to a Biased
Learning Theorem, as we prove that the departure from accuracy displays a
bias towards overestimation of bad and unlikely outcomes.

Our contribution resorts to economics, focusing on optimality benchmarks
and resulting optimal strategies, whereas, in the evolutionary literature, the
discussion bears on the precision of Bayesian estimates of the unknown prob-
ability Trimmer et al. (2011).

5 Conclusion

Our model and analysis show that biases can be the product of rational be-
havior, in the sense of maximizing expected discounted utility with learning.

We have provided theoretical support to the so-called status quo bias.
Our formal analysis also provides theoretical support to the salience bias,

related to the availability bias for vivid outcomes.
Finally, we have shown a Biased Learning Theorem that provides rational

ground for the human bias that consists in attributing to bad and unlikely
outcomes an importance larger than their statistical occurrence. Let us dwell
on this point.

In many situations, probabilities are not known but learnt. The 2011 nu-
clear accident in Japan has led many countries to stop nuclear energy. This
sharp switch may be interpreted as the stopping of an experiment phase
where the probability of nuclear accidents has been progressively learnt. In
financial economics, the equity premium puzzle comes from the observation
that bonds are underrepresented in portfolios, despite the empirical fact that
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stocks have outperformed bonds over the last century in the USA by a large
margin Mehra and Prescott (1985). However, this analysis is done ex post
under risk, while decision-makers make their decisions day by day under un-
certainty, and sequentially learn about the probability of stocks losses. Ex
ante, the underrepresentation of bonds can be enlightened by the Biased
Learning Theorem: the (small) probability of (large) bonds losses is overes-
timated with respect to their statistical occurrence. To end up, our results
point to the fact that overestimation depends upon the relative payoffs (costs)
by the formula (22). This property could possibly be tested in experiments.
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