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Abstract—Cloud computing is the widely spread paradigm
of utility-computing that offers an “on-demand” internet-based
access to configurable resources available within data centers.
On one hand, public Cloud providers are well suited for highly
available access to IT resources (infrastructure, platform and
software), for sporadic use, or for elastic demands. On the
other hand, private clouds could sometimes be preferred for
security or privacy reasons, or for cost reasons due to a high
frequency usage of services. However, in many cases a choice
between public or private clouds does not fulfill all require-
ments of companies, and hybrid cloud infrastructures should
be preferred. A hybrid cloud solution could, for example,
answer sudden workload increase in private clouds, security or
fault tolerance requirements, or even latency issues thanks to
data-locality. Solutions have already been proposed to address
hybrid cloud infrastructures, however most of the time the
placement of a distributed software on such infrastructure has
to be indicated manually. For this reason, the automation of
software deployment on hybrid clouds is still under research.
In this paper we propose new specific placement constraints
and objectives adapted to hybrid clouds infrastructures within
our placement solution, namely OptiPlace, and we address
this problem through constraint programming. Furthermore,
we evaluate the expressivity and performance of the proposed
solution on a real case study.

Keywords-Hybrid Cloud; Virtual Machines Placement; Con-
straint Programming;

I. INTRODUCTION

Cloud computing is the widely spread paradigm of utility-

computing that proposes an “on-demand” internet-based

access to configurable resources available within data cen-

ters. One of the great advantage of Cloud computing is

being able to use as many resources as needed at a given

time, namely elasticity, while asking minimal administration

efforts compared to internal private servers. The economic

model under the Cloud paradigm is often called pay-as-you-

go.

Most of the time, when talking about Cloud computing,

public Cloud providers are considered. Public providers

enable simple access to resources for companies and users

who have sporadic or elastic demands and who need high

availability of services. However, sometimes for security or

privacy reasons, or sometimes because of the high usage fre-

quency of the Cloud (and thus for cost reasons), companies

prefer to handle their own private Cloud solution. As a result,

employees can use internal servers the same way as a public

Cloud. Of course, this solution re-introduces administration

costs, that could however be offset by computation and stor-

age cost savings. Moreover, the elasticity offered by public

Clouds is more limited within private Clouds (as resources

are more limited). Thus, the choice between private or public

Cloud is specific to each company, a trade-off has to be

found between cost, security, performance etc.

In many cases, though, a choice between public or private

Clouds does not fulfill all requirements of companies and an

hybrid solution should be preferred. First, a hybrid Cloud

solution can answer sudden workload increase that exceeds

capacities of the private Cloud. In such case, an occasional

demand for external private or public Clouds is an interesting

solution. Second, if some software components and specific

data may require to be hosted locally onto the private Cloud

of the company, others may on the contrary need to be hosted

into a distant server, for example to stay close to end-users

for latency reasons, or because of external data requirements,

or finally to prevent software and systems from widespread

failures etc.

Solutions have been proposed to be able to federate more

than one Cloud provider (public or private) by collabora-

tions of IaaS systems [1], [2]. Thus, the deployment of a

distributed software on multiple Cloud providers is partly

solved by manually indicating where to place each software

component or service. However, the complete automation

of this deployment process, is still under research. One of

the most important sub-process of deployment automation

is to handle the automation of placement problems hided

behind IaaSes. A placement problem appears when you try

to place n virtual machines (or container), by answering their

associated placement constraints, onto m physical machines

with their own capacities. Moreover, a placement problem

often answers one or multiple objective functions. This

is a NP-hard multi-dimensional and multi-objective bin-

packing problem. Solutions has been proposed to solve such

placement problem [3], [4] thus automating services and

distributed software deployment. However, as far as we

know, specific placement constraints for hybrid Cloud have

not been studied yet.

In this paper, we use the flexible placement framework

OptiPlace [5] to offer a new set of constraints and objective

functions for the specific case of hybrid Cloud and Cloud

federation. OptiPlace uses constraint programming in a flexi-

ble way by proposing software engineering capabilities such
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as modularity, separation of concerns and maintainability.

Contributions of the paper are:

• A generic infrastructure model to tackle hybrid Clouds

and Cloud federation;

• A new set of constraints into OptiPlace for the specific

context of hybrid Clouds and Cloud federation;

• An evaluation of the new placement constraints on

the real case study TrustyDrive, a distributed storage

system.

The rest of this paper is organized as follows: Section II

introduces context and related works, Section III gives an

overview of OptiPlace and its view mechanism, Section IV

presents the contribution of the paper and Section V its

evaluations. Finally, Section VI concludes the work and

opens to future challenges.

II. CONTEXT AND RELATED WORK

Many applications can benefit from hybrid Clouds. We

can classify them into four classes that can overlap each

other. The first class is the set of applications that seasonally

or punctually need to increase its capacity. As the need

is brief companies will not buy additional resources for

their own private Cloud but should instead use additional

resources from external public Cloud providers. The second

class is the set of applications that need to duplicate their

services, not because of higher workloads, but for reliability,

i.e., to prevent from failures. For example, ever-running

applications such as commercial websites or sandboxes must

always be available.A third class can be considered for geo-

distributed applications such as smart-* applications. In this

case, by selecting one Cloud provider or another (following

proximity constraints), hybrid Clouds can help to reduce

latencies. Finally, the fourth class to consider is the set of

applications that wants to place data or computations within

a specific country, region or data center for security and data

privacy reasons.

Because of such applications, hybrid Clouds have become

an active research domain. Currently, many issues need

to be solved to be able to reach the ideal hybrid Cloud

infrastructure. For example, in [6] authors tackle the problem

of heterogeneous virtualization techniques in hybrid Cloud

infrastructures. In [7] is proposed a solution to be able to

get a failure-aware resource provisioning in the context of

a hybrid Cloud infrastructure. Another research problem

is to solve scheduling problems to minimize the cost for

companies by using hybrid Clouds [8].

Recent IaaS managers allow users to move their local

virtual machines (VMs) on external Clouds. First, VMWare

proposes vCloud Air, a public Cloud that extends a com-

pany’s vSphere private infrastructure 1. In this solution,

VMWare VMs can be migrated from or to the public

Cloud. HP proposes the Helion 2 IaaS manager. Helion is

1http://www.vmware.com/fr/products/vCloud-suite.html
2http://www8.hp.com/fr/fr/Cloud/helion-eucalyptus-overview.html

based on OpenStack and contains the Eucalyptus module to

integrate VMs from Amazon’s AWS public Cloud. Finally,

Fujitsu offers Hybrid Cloud Services 3 that can migrate

VMs from their private Cloud solution to the Microsoft

Windows Azure public Cloud. These hybrid Cloud managers

provide integrated solutions to migrate VMs from private

to public Cloud or the opposite. However, none provides

an automated deployment and migration process. When

deploying a complex distributed application onto a large

Cloud infrastructure, though, a fully automated process is

needed by users and administrators. One important challenge

of this automation is to optimize services placement, such

that resources usage, and costs are themselves optimized.

As already mentioned a placement problem with multiple

variables and objectives is NP-hard which leads to two

different techniques to solve it. If the problem is small

enough it can be solved within an acceptable time by

exact solutions such as linear programming [9] or constraint

programming [3]. If the problem is larger or have to be

solved faster, however, heuristics and meta-heuristics should

be preferred [4], [10].

In this paper we use the OptiPlace [5] placement frame-

work based on the constraint programming solver Choco 4.

The Choco solver has previously been used to solve place-

ment problems, as for example in BtrPlace [3]. However,

and as it will be explained in Section III, OptiPlace has

been designed to enhance software engineering capabilities

to easily add new problems to the initial basic one, statically

or on the fly. This makes OptiPlace different from existing

placement frameworks. For example, OptiPlace has been

previously used to easily add placement problems related

to energy-saving constraints [5]. In this paper are proposed

specific constraints for hybrid Clouds. These new elements

have been added within OptiPlace. As far as we know, no

existing solution solve such placement problems by using

constraint programming.

III. OPTIPLACE

OptiPlace is part of a broader chain of frameworks de-

veloped during the Hosanna project. The complete chain

of frameworks, namely Entropy, is able to deploy and re-

configure on-the-fly a distributed application onto an hybrid

infrastructure. In this paper, we focus on the presentation

and the evolution of the OptiPlace framework responsible

for placement problems within Entropy.

OptiPlace [5] is an independent flexible framework to

solve placement problems for data centers. Thus, it could be

used by any Infrastructure-as-a-Service system to optimize

the placement of virtual machines (or containers) onto

physical machines. For example, it could be used inside

OpenStack or by cloud providers such as Amazon Web

3https://www.fujitsu.com/global/services/application-services/
application-development-Integration/hybridCloud/

4http://www.choco-solver.org/
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Services (AWS EC2), VMware, Google Compute Engine

etc. Even so, OptiPlace is more suitable to handle private

clouds.

OptiPlace is based on the constraint solver Choco [11],

written in java. As with any other constraint solver, a Choco

problem is composed of variables that represent unknowns

of the problem, and constraints applied onto variables. A so-

lution affects values to variables while verifying constraints.

With variables and constraints only, solvers will stop as soon

as a valid solution is found (if it exists). Sometimes though,

better solutions could be found according to some objectives.

This is the third element of a constraint program. Most of the

time objectives try to maximize or minimize a function that

is computed from the values given to variables. Finally, in

Choco it is also possible to provide exploration strategies,

or exploration heuristics, for a given problem thanks to a

built-in API. Such strategies are very important to speedup

the problem solving.

One of the strengths of constraint programming is that

any initial constraint program can be enriched afterwards

by additional variables, constraints and objectives. For this

reason, constraint programming facilitates flexibility. Opti-

Place makes use of this flexibility in a more specialized

way, for Cloud Computing and Virtual Machines placement

problems. Actually, OptiPlace proposes a core constraint

program and a view mechanism to add or remove sub-

problems to the core one, on the fly. These mechanisms of

OptiPlace are detailed in the rest of this section.

A. Core problem of OptiPlace

The core problem of OptiPlace is a reconfiguration prob-

lem inherited from Entropy [12]. This core problem is to

allocate a set of virtual machines to a set of hosts, taking into

account (or not) the current placement (the current execution

state) of a subset of these virtual machines. This problem is

modeled as follows: the set of all virtual machines to allocate

is denoted V; a data center is composed of a set of nodes,

i.e., physical machines, denoted N ; each node ni ∈ N is

associated to the vector Hi =< hi1, . . . , hij , . . . , hi|V| >

where hij = 1 if the virtual machine vj is hosted by ni,

hij = 0 otherwise.

The set of types of resource capacities (i.e., memory, cpu

and disk for example) is denoted C. Its size is |C|. For each

resource capacity type k ∈ C (for example cpu), two vectors

are associated:

• Ck denotes the vector representing the resource capac-

ity of type k associated to each node ni ∈ N , the size of

Ck is |Ck| = |N |, and we denote as Ck(i) the available

resource capacity of type k for the node ni ∈ N ;

• Rk denotes the vector representing the needed resource

capacity of type k associated to each virtual machine

vi ∈ V , the size of Rk is |Rk| = |V|.

In this core problem, there are as many constraints as the

number of types of resource capacities |C|. Each of these

constraints is defined as follows, for a capacity k:

Rk.Hi ≤ Ck(i)∀ni ∈ N . (1)

This means that for a given type of capacity k, the overall

capacity needed by the virtual machines hosted onto the

node ni must not exceed the maximum capacity of ni itself.

Unlike Entropy, OptiPlace takes into account as many

resource capacities as needed by the cloud administrator.

Moreover, unlike Entropy, OptiPlace does not have a default

objective. This means that the Choco solver will stop as soon

as a solution is found in the core Constraint Satisfaction

Problem (CSP).

B. Views mechanism

From the cloud administrator point of view, activating a

view is a way to add new variables, constraints and objectives

to the core problem of OptiPlace. Basic views are already

proposed inside OptiPlace, however it is also possible to

define new ones by using the OptiPlace-API. This API is

important to facilitate the addition of sub-problems to the

core one without knowing the Choco solver. Thus, the view

mechanism offers an abstraction over the solver.

When a placement problem is solved with OptiPlace,

more than one view can be activated. Moreover, a mech-

anism of dependencies between different views is also

possible.

One of the views proposed inside OptiPlace is the High

Availability view (HA). HA contains basic placement con-

straints, most of them inherited from Entropy. Among these

constraints are the one called spread that will be used in this

paper. The spread constraint offers a way to specify that a

subset of virtual machines Vsp ⊂ V must be spread among

available servers, i.e., must be placed on different servers.

This constraint can be formalized as follows:

∣

∣

∣

∣

⋃

ni∈N
hij=1

vj∈Vsp

ni

∣

∣

∣

∣

= |Vsp| (2)

In other words,

∀(vj , vl) ∈ V2

sp | hij = 1 ∧ hkl = 1 ⇒ ni �= nk (3)

Many others constraints exist in HA, for example lonely

guarantees that a given virtual machine is the only one

hosted on a server.

Another view of OptiPlace used in this paper is the Host

Cost view (HC). HC proposes to add specific variables

representing the cost of using a given node of N as a host

for one or several virtual machines. The HC view also adds

an objective function to minimize the overall cost of the
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placement solution. If χ denotes the vector of cost for all

nodes ni ∈ N , the cost function to minimize is denoted

X =
∑

i∈N

ui where ui =

{

χ(ni) ∃vj ∈ V | hij = 1

0 otherwise
(4)

Other views than HA and HC have also been added to

OptiPlace. For example, in [5] a specific view to optimize

data centers energy consumption has been proposed.

IV. CLOUD FEDERATION WITH OPTIPLACE

Until now, OptiPlace has been built to handle servers

managed by a single owner (or Cloud provider). Thus, it

was not possible to take into account external resources from

other Cloud providers, excluding Cloud federation as well

as hybrid Cloud solutions.

In this paper, three new infrastructure concepts are intro-

duced, namely extern, site and tag, to be able to manage ex-

ternal nodes as well as different sites and tags, i.e., groups of

servers. Moreover, a new view is added to OptiPlace, namely

the SkyPlace view (SP), to add specific constraints linked to

hybrid Cloud, and more widely to Cloud federation: OnSite,

OffSite, Near and Far.

A. Infrastructure modeling

Extern node: the set of external nodes is denoted E .

Such as an internal node ni ∈ N , an external node is

associated to a set of resource capacities C. However, unlike

internal nodes, an extern is a type of node provided by an

external Cloud provider (public or private). It is not limited

to one ocurrence as well as not associated to one given

hardware resource. Thus, one can ask as many external

nodes of a given type as required, without limitation. As

a result, the constraint of Equation (1) is not associated

to external nodes. This concept is similar to a flavor in

OpenStack or a type of virtual machine to rent in AWS.

Without any specific constraints or objective functions, that

could preferably choose internal nodes for cost reasons, or

on the contrary external nodes because of energy limitations,

an external node is considered exactly as any other node

but is unlimited as far as it is needed. This additional type

makes possible specific constraints or objectives for Cloud

federation and hybrid Clouds. One can note that the Spread

constraint applied to external nodes means that two different

types of external nodes e1 and e2 ∈ E should be used.

Site: a site is a subset of servers S ⊂ (N ∪ E). Each

node n ∈ (N ∪ E) is associated to a single site. Thus for

two nodes n1 and n2, if site(n1) �= site(n2) then n1 �= n2.

It means that the Cloud administrator can group servers in a

logical way, namely sites, for her needs. Usually, sites should

be used to group servers geographically close to each other,

however it is also possible to associate servers to a same

site for various reasons, as for example hardware type. The

set of all sites is denoted S.

Tag: the tag concept is close to the site one. It

associates one or multiple string tags to a given node,

thus building subsets of servers T ⊂ (N ∪ E). Two main

differences can be noticed though compared to sites. First,

any node n ∈ (N ∪E) can be associated to one or multiple

tags, while the same node can only be linked to a single

site. Second, tags are not used into CSP but used as filters,

as it will be described in the next section.

B. SkyPlace view

The SkyPlace view (SP) offers constraints which are

specific to hybrid Clouds. It takes advantages of the three

new infrastructure concepts extern, site and tag, and pro-

poses four placement constraints and one filter mechanism

described below.

OnSite: If a virtual machine is associated to an OnSite

constraint, it has to be hosted by a node included in the given

site. More formally, for a virtual machine vj ∈ V and a site

S ∈ S such that the constraint OnSite(S, vj) is applied, the

following property is verified:

hij = 1 ⇒ ni ∈ S (5)

OffSite: On the other hand, if a virtual machine is

associated to an OffSite constraint, it must not be hosted

by a node included in the given site. More formally, for

a virtual machine vj ∈ V and a site S ∈ S such that the

constraint OffSite(S, vj) is applied, the following property

is verified:

hij = 1 ⇒ ni �∈ S (6)

Near: A Near constraint is applied to a subset of virtual

machines Vnear ⊂ V such that these virtual machines must

be hosted onto the same site S ∈ S . More formally:

∣

∣

∣

∣

⋃

ni∈N
hij=1

vj∈Vnear

site(ni)

∣

∣

∣

∣

= 1 (7)

Far: The Far constraint is applied to a subset of virtual

machines Vfar ⊂ V such that these virtual machines must

be hosted onto different sites of S. More formally:

∣

∣

∣

∣

⋃

ni∈N
hij=1

vj∈Vfar

site(ni)

∣

∣

∣

∣

= |Vfar| (8)

One can note that the Far constraint is close to the spread

constraint defined in Equation (2). However this constraint

is applied to sites instead of servers. Thus, Far and Spread

constraints are applied at different levels.
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Tag filter: As already mentioned, tags are not used

into CSP. Filters are associated to tags to reduce the overall

searching space of nodes to consider for each virtual ma-

chine. Thus, before applying the CSP solver, every virtual

machine is associated to a subset of possible nodes included

in T ⊂ (N ∪E), all associated to the given tag. As a result,

a tag is a filter solution, while sites are used to express

complex constraints solved by the Choco CSP solver.

V. EVALUATION

In this section we evaluate the use of OptiPlace for a

real case study. First, we describe in details the use case

study application, namely TrustyDrive. Second, we present

two different placement problems which could be defined

to deploy TrustyDrive onto an hybrid Cloud. Being able to

describe all TrustyDrive constraints by using the new SP

view shows a good level of expressivity. Finally, we discuss

about performances of the new SP view.

A. TrustyDrive

As previously introduced in Section II, at least four classes

of applications can benefit from Cloud federation. Among

them are, the class of applications that need replication of

services for reliability, and the class of applications that

want to place data or computations within a specific country,

region or site for security and data privacy reasons.

In this paper we study an application relevant to both

these classes, namely TrustyDrive [13]. TrustyDrive is a

distributed storage system that uses many Cloud providers

instead of a single one to store user data. TrustyDrive

guarantees data privacy as well as a reliable storage. The

idea behind TrustyDrive is to divide sensitive documents

into multiple chunks and to place these encrypted chunks

onto different FTP servers themselves placed onto different

Cloud providers. As a result, TrustyDrive guarantees that

none of the Cloud providers has the possibility to rebuild

an entire protected document. Moreover, to be more reliable

TrustyDrive can be combined with erasure code algorithms

that provides RAID features at the Cloud storage level.

By using such erasure algorithm, intelligent duplication of

information are computed to be able to restore the document

even if k chunks are lost.

OptiPlace is used to solve the placement problem associ-

ated to the deployment of TrustyDrive onto Cloud providers.

Actually, TrustyDrive is a distributed software composed of

one dispatcher (or master) and n FTP servers (or clients)

that have to be placed onto an hybrid Cloud infrastructure

by respecting some constraints.

B. Basic use-case

The use case of Figure 1 is used as a basis in our

evaluation. This use case represents a simple deployment

of TrustyDrive. It also represents the minimum set of

constraints to guarantee the good behavior of TrustyDrive.

Actually, while the dispatcher and the web interface need to

be hosted onto the local private Cloud (for security reasons),

each FTP server has to be hosted onto a distant external host.

Moreover, to guarantee data privacy and security assumed by

TrustyDrive, each FTP server must be hosted onto a different

site.

site 1 site 3site 2

extern1 extern1extern1

site 4

FTP1 FTP3FTP2

Web Interface

Dispatcher

site LOCAL

Dispatcher

node2

node1

extern2 extern2 extern2

extern1

extern2

Figure 1: Basic experimental setup. Deployment of a basic

configuration of TrustyDrive with one WI, two Dispatchers

(for fault tolerance reasons) and three FTP servers.

The considered infrastructure for this basic use case

(depicted in Figure 1) is defined as follow:

• five sites are declared {local, S1, S2, S3, S4} ⊂ S;

• the site local represents the private Cloud and is com-

posed of two nodes {n1, n2} ⊂ N , both of them with

a capacity (memory) of 2Gb;

• each site S1 to S4 is composed of two types of external

nodes e1, e2 ∈ E . both with a capacity of 1Gb.

The set of virtual machines have to be defined and placed

according to a set of constraints as follows:

• one virtual machine is used for the web interface vwi ∈
V and needs a memory capacity of 1Gb;

• two virtual machines are built for the dispatcher of

TrustyDrive vd1, vd2 ∈ V , both of them need a capacity

of 5Mb. One of the two dispatcher is not used except if

the first one fall down, thus it guarantees that the dis-

patcher will continue to work. To ensure this reliability,

the two dispatchers have to be placed onto different

servers, thus we define the constraint Spread(vd1, vd2)
of HA;

• to ensure that the dispatcher and the web inter-

face are hosted onto a local site (for security rea-

sons) an OnSite constraint is applied as follows:

OnSite(local, vwi, vd1, vd2);
• one virtual machine is created for each FTP server

vftp1, vftp2 and vftp3 ∈ V , each of them need a

capacity of 1Gb;

• FTP servers must not be hosted by local, following the

constraint OffSite(local, vftp1
, vftp2

, vftp3
);
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• to guarantee data privacy of TrustyDrive vftp1, vftp2
and vftp3 must by placed onto different external Cloud

providers. Thus, the following constraint is defined:

Far(vftp1, vftp2, vftp3);

As a result, this use case is composed of five sites, five

nodes, eight external nodes, six virtual machines and four

constraints. By defining the above constraints, the placement

solution represented in Figure 1 is computed by OptiPlace.

This use case show the usefulness of the new SkyPlace view

of OptiPlace. Without the four constraints Spread, OnSite,

OffSite and Far, the expected deployment of TrustyDrive

could not be guaranteed automatically and would have to be

solved manually. By using the view a simple configuration

file could be given by an administrator to precise constraints.

For example, if the constraint Far(vftp1, vftp2, vftp3)
was not given, the placement solution computed by Opti-

Place would have been to place all FTP virtual machines

onto one extern type of site 1, because the number of

ocurrence of an external node is unlimited.

C. Advanced use-case

To illustrate more clearly the interest of OptiPlace, we also

would like to consider a more complex example represented

in Figure 2. In this example, all FTP servers are duplicated

to ensure fault tolerance of TrustyDrive.

We consider that the underlying infrastructure is defined

as follows:

• three different tags are declared: FRANCE, USA and

ENGLAND. These tags represents three different coun-

tries;

• eight sites are declared {local, Si, i ∈ �1, 8�} ⊂ S;

• the site local represents the private Cloud and is com-

posed of two nodes {n1, n2} ⊂ N , both of them with

a capacity (memory) of 2Gb;

• each site S1 to S8 is composed of two external nodes

e1, e2 ∈ E both with a capacity of 1Gb;

• Nodes of sites S1 and S4 are tagged as “USA”, nodes

of sites S0, S2, S3 and s7 are tagged as “FRANCE”,

and finally nodes of sites S5 and S6 are tagged as

“ENGLAND”.

The set of virtual machines and the set of constraints are

defined as follows:

• the web interface virtual machine vwi ∈ V , as well

as the dispatchers virtual machines vd1, vd2 ∈ V are

declared the same way than in the previous example,

and the constraints OnSite(local, vwi, vd1, vd2) and

Spread(vd1, vd2) are also applied;

• one virtual machine is created for each FTP server and

its associated replica vftp1, vftp1′ , vftp2, vftp2′ , vftp3
and vftp3′ ∈ V;

• FTP servers must not be hosted by local site, following

the constraint OffSite(local, vftp1
, vftp2

, vftp3
);

• the filter filter(”FRANCE”) is applied to all FTP

virtual machines to exclude from N ∪E external nodes

associated to tags USA and ENGLAND;

• to guarantee data privacy of TrustyDrive vftp1, vftp2
and vftp3 must by placed onto different Cloud

providers. Thus, the following constraint is defined:

Far(vftp1, vftp2, vftp3);
• in this example, we also want to place the replica on the

same site than the FTP server it replicates. For this rea-

son, three constraints are added: Near(vftp1, vftp1′),
Near(vftp2, vftp2′) and Near(vftp3, vftp3′);

• finally, we add three constraints such that the replica

is placed onto a different server than its parent FTP

VMs: Spread(vftp1, vftp1′), Spread(vftp2, vftp2′)
and Spread(vftp3, vftp3′).

Compared to the basic example, this advanced use-case

uses the new constraint Near, an additional use of Spread

and the tags. Thus, this use-case uses every constraint

proposed by the new SkyPlace view of OptiPlace. Once

again without those constraints it would not be possible to

get the expected placement solution depicted in Figure 2. For

example, without both Spread and Near constraints, the

Far constraint would still guarantee the good placement of

vftp1, vftp2 and vftp3 (as for the basic example), however,

because of unlimited external nodes, all replicas vftp1′ ,

vftp2′ and vftp3′ would be placed onto e1 of S0.

D. Cost minimization

In this paper we do not bring as a contribution a heuristic

to efficiently reach cost optimization. However, and as

detailed in Section III-B, OptiPlace is already implemented

with this mechanism with the HC view. To illustrate the

interest of this mechanism onto the new constraints proposed

in this paper, we have performed the following evaluations.

First, in the basic example of Figure 1, we have added a

default cost 1 to each site, and the second site has a specific

cost of 100. As a result, the fourth site is preferred to the

second one to minimize the cost of the placement solution.

Second, in the advanced example, we have added a default

cost 1 to each site, the second site has a specific cost of

200, and the third site has a specific cost of 100. Thus

by following this inequation, cost(site2) > cost(site3) >

cost(site7), the seventh site is preferred to both the second

and third sites, and the third site is preferred to the second

one. As a result, the second site stays empty.

Both those examples show that the cost minimization of

the HC view could be used within the placement problem

to improve the placement choice according to the cost.

E. Performances

Both basic and advanced use-cases has been performed

33 times, the execution times has been registered and the

median has been computed. Results are represented in

Table I.
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Figure 2: Advanced experimental setup. Deployment of a complex configuration of TrustyDrive with one WI, two Dispatchers

(for fault tolerance reasons) and three FTP servers. Each FTP server is duplicated (for safety reasons) close to the initial

one (on the same site for performance reasons in case of fault) but onto a different server.

time (ms)

basic 4.6
advanced 6.07

Table I: Execution times for basic and advanced use-cases

of TrustyDrive.

Results show that the execution time to solve both those

use-cases are very small. One can note, as expected, that the

advanced example is longer to solve. Actually the number of

variables and constraints are more important in the advanced

example.

Same experiments has been conducted by adding the Host

Cost view. Results are represented in Table II. In addition

to execution time, the number of backtracks is represented.

A backtrack happens when the constraint solver go back in

the solution tree to explore another branch.

time (ms) backtracks

basic 6.6 19
advanced 14.6 619

Table II: Execution times and number of bactracks for basic

and advanced use-cases of TrustyDrive, when Host Cost

optimization is enabled.

Results show that the execution time to solve these use-

cases are still very small even if the cost is minimized.

However, one can note that the advanced use-case is 150%

longer with cost minimization than without. As already

described, without the Host Cost view the problem to solve

is to find one valid solution of the placement problem. On

the other hand, when the Host Cost is activated, a function

has to be minimized which means that all solutions should

be processed to find the best one. For this reason, activating

the Host Cost view is more expensive and could lead to

very long time processing. Heuristics could be proposed to

improve this mechanism and will be the subject of future

work.

To illustrate the performance behavior of OptiPlace, we

have increased the number of virtual machines to place (FTP

VMs) while the number of nodes, externs and sites stay

constant (100 sites composed of two extern nodes each).

Results are shown in Figure 3. As expected the execution

time increase linearly with the number of VMs. Two reasons

are responsible for that: first, the number of variables in

the CSP increases, which results in a bigger CSP-tree to

entirely explore when HC is activated; second, the number

of solutions decreases (as the infrastructure stays the same),

thus it is longer to find one good solution, even when HC

is desactivated.

One can note that the execution time to place 100 virtual

machines onto an infrastcuture composed of 100 sites,

each of them containing 2 external nodes (top-right point

of Figure 3), does not exceed 60 ms which is a short

execution time to deploy TrustyDrive onto an hybrid Cloud.

Actually, TrustyDrive is an ever-running application which

will occasionnally need reconfigurations. Thus, spending 60

ms for its deployment seems satisfactory.

Finally, one can note that activating the HC view globally

results in a biger execution time. Actually, as the exact

solution is found by HC, all valid solutions should be found

before the cost minimization can be chosen.

VI. CONCLUSION

In this paper has been presented the new SkyPlace view of

the OptiPlace framework. This view is responsible for the

integration of federation and hybrid Cloud considerations
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Figure 3: Execution times when the number of VMs in-

crease. The infrastructure size stays constant.

into OptiPlace, thus solving new types of placement prob-

lems. After an introduction on the constraint solver Choco

and the OptiPlace framework, the new set of variables and

constraints introduced into SkyPlace has been presented.

The application TrustyDrive, i.e., a distributed reliable and

privacy-aware storage system, has been used to build two

use-cases. Those use-cases have shown that the constraints

proposed by SkyPlace are adapted to hybrid Clouds and

federation of Clouds. Moreover, a performance study has

been presented to show that the behavior of such placement

problem regarding the size of the problem is very complex.

It has been shown, though, that the execution times of

SkyPlace on both use-cases are satisfactory regarding the

nature of the application.

As already evocated in the paper, proposing heuristics to

improve the execution time of the HostCost view will be

the subject of future work. If the interest of such heuristics

is not obvious for the TrustyDrive use-case, highly dynamic

applications such as smart-* applications and real-time ap-

plications (virtual reality etc.) could be very sensitive to the

execution time needed to solve a placement problem. More-

over, future generations of utility computing such as Edge

or Fog computing could lead to very large infrastructures

for which SkyPlace should propose better scaling results

regarding the number of virtual machines to manage.
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