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Abstract

We are concerned with time-dependent inverse source problems in elastodynamics. The source
term is supposed to be the product of a spatial function and a temporal function with compact sup-
port. We present frequency-domain and time-domain approaches to show uniqueness in determining
the spatial function from wave fields on a large sphere over a finite interval. Stability estimate of
the temporal function from the data of one receiver and uniqueness result using partial boundary
data are proved. Our arguments rely heavily on the use of the Fourier transform, which motivated
inversion schemes that can be easily implemented. A Landweber iterative algorithm for recovering
the spatial function and a non-iterative inversion scheme based on the uniqueness proof for recovering
the temporal function are proposed. Numerical examples are demonstrated in both two and three
dimensions.

Keywords: Inverse source problems, Lamé system, uniqueness, Landweber iteration, Fourier
transform.

1 Introduction
Consider the radiation of elastic (seismic) waves from a time-varying source term F (x, t), x ∈ R3,

embedded in an infinite and homogeneous elastic medium. The real-valued radiated field is governed by
the inhomogeneous Lamé system:

ρ∂ttU(x, t) = ∇ · σ(x, t) + F (x, t), x = (x1, x2, x3) ∈ R3, t > 0 (1.1)

together with the initial conditions

U(x, 0) = ∂tU(x, 0) = 0, x ∈ R3. (1.2)

Here, ρ > 0 denotes the density, U = (u1, u2, u3)> is the displacement vector, σ = σ(U) is the stress
tensor and F is the source term which causes the elastic vibration in R3. By Hooke’s law, the stress tensor
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relates to the stiffness tensor C̃ = (Cijkl)
3
i,j,k,l=1 via the identity σ(U) := C̃ : ∇U , where the action of C̃

on a matrix A = (aij)
3
i,j=1 is defined as

C̃ : A = (C̃ : A)ij =

3∑
k,l=1

Cijkl akl.

In an isotropic and homogeneous elastic medium, the stiffness tensor is characterized by

Cijkl(x) = λδi,jδk,l + µ(δi,kδj,l + δi,lδj,k). (1.3)

where the Lamé constants satisfy µ > 0, 3λ+ 2µ > 0, Hence, the Lamé system (1.1) can be rewritten as

ρ ∂tt U(x, t) = Lλ,µU(x, t) + F (x, t), (x, t) ∈ R3 × R+,

Lλ,µU := −µ∇×∇× U + (λ+ 2µ)∇∇ · U = µ∆U + (λ+ µ)∇∇ · U.

Note that the above equation has a more complex form than the scalar wave equation, because it accounts
for both longitudinal and transverse motions. Throughout this paper it is supposed that ρ, λ, µ are given
as a prior data and that the dependence of the source term on time and space variables are separated,
that is,

F (x, t) = f(x) g(t). (1.4)

In other words, the source term is a product of the spatial function f and the temporal function g.
Moreover, we suppose that f is compactly supported in the space region BR0

:= {x : |x| < R0} and
the source radiates only over a finite time period [0, T0] for some T0 > 0. This implies that g(t) = 0 for
t ≥ T0 and t ≤ 0. The source term (1.4) can be regarded as an approximation of the elastic pulse and
are commonly used in modeling vibration phenomena in seismology.

Inverse hyperbolic problems have attacted considerable attention over the last years. Most of the
eixsting works treated scalar acoustic wave equations. We refer to Bukhgaim & Klibanov [12], Klibanov
[24], Yamamoto [31, 32], Khǎıdarov [23], Isakov [19, 20], Imanuvilov & Yamamoto [17, 18], Choulli and
Yamamoto [14], Kian, Sambou & Soccorsi [22] and the recent work by Jiang, Liu & Yamamoto [21] for
uniqueness and stability of inverse source problems using Carleman estimates, and refer also to Fujishiro
& Kian [16] for results of recovery of a time-dependent source. In addition, it is worth to mention the
work of Rakesh & Symes [28], dealing with coefficient determination problems based on the construction
of appropriate geometric optic solutions. There are also rich references on inverse problems arising in the
context of linear elasticity. Many investigations are devoted to mathematical and numerical techniques for
the identification of elastic coefficients and buried objects of a geometrical nature (such as cracks, cavities
and inclusions) in the time-harmonic regime; see e.g., the review article [11] by Bonnet & Constantinescu
, the monograph [5] by Ammari et.al. and references therein. Due to our limited knowledge, we have
found only a few mathematical works on inverse source problems for the time-dependent Lamé system.
In [4], a time-reversal imaging algorithm based on a weighted Helmholtz decomposition was proposed for
reconstructing f in a homogeneous isotropic medium, where the temporal function takes the special form
g(t) = dδ(t)/dt.

This paper concerns uniqueness and numerical reconstructions of f or g from radiated elastodynamic
fields over a finite time interval. Such kind of inverse problems have many significant applications in
biomedical engineering (see, e.g., [5]) and geophysics (see, e.g., [2]). The Uniqueness issue is important
in inverse scattering theory, while it provides insight into whether the measurement data are sufficient
for recovering the unknowns and ensures uniqueness of global minimizers in iterative schemes. Being
different from previously mentioned existing works, our uniqueness proofs rely heavily on the use of
the Fourier transform, which motivated novel inversion schemes that can be easily implemented. Our
arguments carry over the scalar wave equations without any additional difficulties. We believe that the
Fourier-transform-based approach explored in this paper would also lead to stability estimates of our
inverse problems, which deserves to be further investigated in future. We shall address the following
inverse issues:
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(i) Uniqueness in recovering f from emitted waves on a closed surface surrounding the source. We present
frequency-domain and time-domain approaches for recovering the spatial function. The frequency-
domain approach is of independent interest, while it reduces the time-dependent inverse problem to
an inverse scattering problem in the Fourier domain with multi-frequency data. Our arguments are
motivated by recent studies on inverse source problems for the time-harmonic Helmholtz equation
with multi-frequency data (see e.g., [3, 8–10, 15]). The time-domain approach is inspired by the
Lipschitz stability estimate of source terms for the scalar acoustic wave equation with additional
a prior assumptions; see, e.g., [17, 18, 31, 32]. A Landweber iterative algorithm is proposed for
recovering f in 2D and numerical tests are presented to show validity and effectiveness of the
proposed inversion scheme; see Section 5.1.

(ii) Stability estimate of g from measured data of one receiver. Under the assumption that the spatial
function does not vanish at the position of the receiver, we estimate a vector-valued temporal
functions in Section 4. The stability estimate relies on an explicit expression of the solution in
terms of f and g. Such an idea seems well-known in the case of scalar acoustic wave equations, but
to the best of our knowledge not available for time-dependent Lamé systems.

(iii) Unique determination of g from partial boundary measurement data. If the spatial function f is
known to be not a non-radiating source (see Definition 4.3), we prove that the temporal function
g can be uniquely determined by the time-domain data on any subboundary of a large sphere; see
Theorem 4.4. The uniqueness proof is based on the Fourier transform and yields a non-iterative
inversion scheme in subsection 5.2. Numerical examples are demonstrated to verify our theory.

The remaining part is organized as following. In Section 2, preliminary studies of the time-dependent
Lamé system are carried out. Unique determination of spatial and temporal functions will be presented
in Sections 3 and 4, respectively. In particular, as a bi-product of the Fourier-domain approach presented
in subsection 3.1, we show uniqueness in recovering a source term of the time-dependent Schrödinger
equation. Finally, Numerical tests are reported in Section 5 and proofs of several lemmas are postponed
to the appendix in Section 6.

2 Preliminaries
For all r > 0, we denote by Br the open ball of R3 defined by Br := {x ∈ R3 : |x| < r}. By Helmholtz

decomposition, the function f ∈ (L2(R3))3 supported in BR0
admits a unique decomposition of the form

(see Lemma 6.1 in the Appendix)

f(x) = ∇fp(x) +∇× fs(x), ∇ · fs ≡ 0, (2.1)

where fp ∈ H1(BR0
), fs ∈ Hcurl (BR0

) := {u : u ∈ (L2(BR0
))3, curlu ∈ (L2(BR0

))3} also have compact
support in BR0

. We choose also g ∈ C(R) supported in [0, T0]. By the completeness theorem (see [1,
Theorem 3.3] or [2, Chapter 4.1.1]), there exist vector-valued functions Up(x, t) and Us(x, t) such that
U(x, t) can be expressed as

U = Up + Us, Up = ∇up, Us = ∇× us, ∇ · us = 0. (2.2)

Moreover, the scalar function up and the vector function us satisfy the inhomogeneous wave equations

1

c2α
∂tt uα −∆uα =

1

γα
fα(x)g(t) in R3 × (0,+∞), α = p, s, (2.3)

together with the initial conditions

uα|t=0 = ∂tuα|t=0 = 0 in R3.
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Note that

cp :=
√

(λ+ 2µ)/ρ, cs :=
√
µ/ρ, γp := λ+ 2µ, γs := µ, (2.4)

and that λ+ 2µ > 0 since µ > 0, 3λ+ 2µ > 0. This implies that Up and Us propagate at different wave
speeds, which will be referred to as compressional waves (or simply P-waves) and shear waves (or simply
S-waves), respectively.

It is well-known that the electrodynamic Green’s tensor G(x, t) = (Gij(x, t))
3
i,j=1 ∈ C3×3, which

satisfies

ρ∂ttG(x, t)ej −∇ · σ(x, t) = −δ(x)δ(t)ej , j = 1, 2, 3,

G(x, 0) = ∂tG(x, 0) = 0, x 6= y,

is given by (see e.g., [13])

Gi,j(x, t) =
1

4πρ|x|3

{
t2
(
xjxk
|x|2

δ(t− |x|/cp) + (δjk −
xjxk
|x|2

)δ(t− |x|/cs)
)}

+
1

4πρ|x|3

{
t

(
3
xjxk
|x|2

− δjk
)

(Θ(t− |x|/cp)−Θ(t− |x|/cs))
}
. (2.5)

Here, δij is the Kronecker symbol, δ is the Dirac distribution, Θ is the Heaviside function and ej (j =
1, 2, 3) are the unit vectors in R3. Physically, the Green’s tensor G(x, t) is the response of the Lamé
system to a point body force at the origin that emits an impulse at time t = 0. Using the above Green’s
tensor, the solution U to the inhomogeneous Lamé system (1.1) can be represented as

U(x, t) =

∫ ∞
0

∫
R3

G(x− y, t− s)f(y)g(s) dxds, x ∈ R3, t ∈ R. (2.6)

Note that, since supp(g) ⊂ [0,+∞), for every t ∈ (−∞, 0] and x ∈ R3, we have U(x, t) = 0. Throughout
the paper we define

Tp := T0 + (R+R0)/cp, Ts := T0 + (R+R0)/cs, (2.7)

for some R > R0. Obviously, it holds that Ts > Tp, since cp > cs by (2.4). The following lemma states
that the wave fields over BR must vanish after a finite time that depends on R and the support of f and
g.

Lemma 2.1. We have U(x, t) ≡ 0 for all x ∈ BR and t > Ts.

Proof. For x = (x1, x2, x3)>, y = (y1, y2, y3)> ∈ R3, write x ⊗ y = xy> ∈ R3×3 and x̂ = x/|x| for
simplicity. Introduce

V (x, t) = Θ(t− |x|/cp)−Θ(t− |x|/cs).

Combining (2.6) and (2.5), we have

U(x, t) =

∫ ∞
0

∫
R3

(t− s)2(x̂− ŷ)⊗ (x̂− ŷ)

4πρ|x− y|3
δ(t− s− |x− y|

cp
)f(y)g(s) dyds

+

∫ ∞
0

∫
R3

(t− s)2[I− (x̂− ŷ)⊗ (x̂− ŷ)]

4πρ|x− y|3
δ(t− s− |x− y|

cs
)f(y)g(s) dyds

+

∫ ∞
0

∫
R3

(t− s)[3(x̂− ŷ)⊗ (x̂− ŷ)− I ]

4πρ|x− y|3
V (x− y, t− s) f(y)g(s) dyds

=

∫
|y−x|≤cp(t+T0)

(x̂− ŷ)⊗ (x̂− ŷ)

4π(λ+ 2µ)|x− y|
g(t− |x− y|

cp
)f(y) dyds

+

∫
|y−x|<cs(t+T0)

I− (x̂− ŷ)⊗ (x̂− ŷ)

4πµ|x− y|
g(t− |x− y|

cs
)f(y) dyds

+

∫ T0

0

∫
BR

(t− s)[3(x̂− ŷ)⊗ (x̂− ŷ)− I ]

4πρ|x− y|3
V (x− y, t− s) f(y)g(s) dyds,
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where I denotes the 3-by-3 unit matrix. For t > T0 + (R+R0)/cs, one can readily observe that

g(t− |x− y|
cs

) = g(t− |x− y|
cp

) = 0, V (x− y, t− s) = 0

uniformly in all x ∈ BR, y ∈ BR0
and s ∈ (0, T0), which implies the desired result.

Denote by f̂ the Fourier transform of f with respect to t ∈ R, that is,

f̂(ω) = Ft→ω[f ] :=

∫
R
f(t) exp(iωt) dt, ω ∈ R.

Denote by Ĝ = Ĝ(x, ω) the Fourier transform of G(x, t) with respect to t, and define the compressional
and shear waves numbers kp and ks in the Fourier domain as

kp := ω
√
ρ/(λ+ 2µ), ks := ω

√
ρ/µ.

Then we find that

µ∆Ĝ(·, ω)ej + (λ+ µ)∇(∇ · Ĝ(·, ω)ej) + ω2ρĜ(·, ω)ej = −δ(·)ej , j = 1, 2, 3

and

Ĝ(x− y, ω) =
1

µ
Φks(x, y)I +

1

ρω2
grad x grad>x

[
Φks(x, y)− Φkp(x, y)

]
, x 6= y. (2.8)

Here Φk(x, y) = eik|x−y|/(4π|x − y|) (k = kp, ks) is the fundamental solution to the Helmholtz equation
(∆ + k2)u = 0 in R3. By Lemma 2.1, we may take the Fourier transform of U(x, t) with respect to t.
Consequently, it holds in the frequency domain that

µ∆Û(x, ω) + (λ+ µ)∇(∇ · Û(x, ω)) + ω2ρÛ(x, ω) = −f(x)ĝ(ω), ω ∈ R. (2.9)

Corresponding to the representation of U(x, t) in the time domain, we have in the Fourier domain that

Û(x, ω) =

∫
R3

F [G(x− y, ·) ∗ g(·)] f(y)dy = ĝ(ω)

∫
R3

Ĝ(x− y, ω)f(y) dy, x ∈ R3, ω ∈ R+. (2.10)

Here ∗ denotes the convolution product with respect to the time variable. Note that Û(x,−ω) = Û(x, ω),
since U(x, t) is real valued.

3 Unique determination of spatial functions
In this section we are interested in the inverse source problem of recovering f from the radiated

wave field {U(x, t) : |x| = R, t > T} for some R > R0 and T > T0 under the a prior assumption
that g is given. We suppose that f ∈ (L2(R3))3, supp(f) ⊂ BR0

, g ∈ C0([0, T0]). Since f and g have
compact support, the initial boundary value problem (1.1), (1.2) and (1.4) admits a unique solution
U ∈ C(R, H1(BR))3 ∩ C1(R, L2(BR))3 for any R > 0. Let fα and Uα (α = p, s) be specified as in (2.1)
and (2.2), respectively. Our uniqueness results are stated as following.

Theorem 3.1. (i) The data set {U(x, t) : |x| = R, t ∈ (0, Ts)} uniquely determines the spatial function
f . (ii) The data set of pure P- and S-waves, {Uα(x, t) : |x| = R, t ∈ (0, Tα)}, uniquely determines fα
(α = p, s).

We remark that, since the measurement surface is spherical, the compressional and shear components
Uα(x, t) (α = p, s) can be decoupled from the whole wave fields U(x, t) on |x| = R. In fact, in the
Fourier domain, Ûα(x, ω) can be decoupled from Û(x, ω) on |x| = R for every fixed ω ∈ R+; see e.g., [7]
or Section 5.1 in the 2D case. Hence the decoupling in the time domain can be achieved via Fourier
transform. Below we present a frequency-domain approach and a time-domain approach to the proof of
Theorem 3.1.
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3.1 Frequency-domain approach
Proof of Theorem 3.1. (i) Assuming that U(x, t)=0 for all |x| = R and t ∈ (0, Ts), we need to

prove that f ≡ 0 in BR0 . Recalling Lemma 2.1, we have Uα(x, t)=0 for all |x| = R, t ∈ R+. Combining
this with the fact that U(x, t) = 0, (x, t) ∈ R3 × (−∞, 0], we deduce that Uα(x, t) = 0 for all |x| = R,
t ∈ R. Then, applying the Fourier transform in time to Uα(x, ·) gives

Ûα(x, ω) =

∫
R
Uα(x, t)eiωtdt = 0, for all |x| = R, ω ∈ R+.

Introduce the functions

vp(x, ω) := d e−ikpd·x, vs(x, ω) := d⊥ e−iksd·x, d ∈ S2 := {x ∈ R3 : |x| = 1},

where kα = kα(ω) (α = p, s) are the compressional and shear wave numbers, respectively, and d⊥ ∈ S2
stands for a unit vector that orthogonal to d. Physically, vp and vs denote the compressional and
shear plane waves propagating along the direction d, respectively. They fulfill the time-harmonic Navier
equation as follows

µ∆vα + (λ+ µ)∇(∇ · vα) + ω2ρvα = 0, α = p, s.

Multiplying vα to (2.9) and applying Betti’s formula to Û and vα in BR, we obtain

−ĝ(ω)

∫
BR

f(x) · vα(x, ω) dx =

∫
|x|=R

[
TνÛ(x, ω) · vα(x, ω)− Tνvα(x, ω) · Û(x, ω)

]
ds,

where ν = (ν1, ν2, ν3)> ∈ S2 is the normal direction on |x| = R pointing into |x| > R and Tν = T
(λ,µ)
ν is

the traction operator defined by

TνÛ := 2µ∂νÛ + λ ν div Û + µν × curl Û . (3.1)

It follows from (2.10) that Û(x, ω) satisfies the Kupradze radiation when |x| → ∞. By well-posedness
of the Dirichlet boundary value problem for the time-harmonic Navier system in |x| > R, we obtain
TνÛ(x, ω) ≡ 0 for all |x| = R, ω ∈ R+. This also follows from the well-defined Dirichlet-to-Neumann
operator applied to Û ||x|=R for fixed ω ∈ R+; see e.g., [7]. Hence,

ĝ(ω)

∫
BR

f(x) · vα(x, ω) dx = 0, for all ω ∈ R+. (3.2)

On the other hand, applying integration by parts we get∫
R3

∇× fs(x) · de−ikpx·ddx = −
∫
R3

fs(x) · ∇ × (de−ikpx·d)dx = 0,

in which the boundary integral over ∂BR vanish due to the compact support of f in BR0
⊂ BR. It then

follows ∫
BR

f(x) · vp(x, ω) dx

=

∫
R3

∇fp(x) · d e−iksx·d dx+

∫
R3

∇× fs(x) · d e−iksx·d dx

= iks(2π)
3
2 f̂p(kpd).

Note that here f̂p refers to the Fourier transform of fp with respect to spatial variables, given by

f̂p(ξ) :=

∫
R3

f(x)eix·ξdx, ξ ∈ R3.
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In the same way, we have∫
R3

∇fp(x) · d⊥ e−iksx·d dx = −
∫
R3

fp(x) ∇ · (d⊥ e−iksx·d) dx = iks(d · d⊥)

∫
R3

fp(x) e−iksx·d dx = 0

and we find∫
BR

f(x) · vs(x, ω) dx =

∫
R3

∇× fs(x) · d⊥ e−iksx·d dx = iks(2π)
3
2 f̂s(ksd) · (d× d⊥).

Therefore, it follows from (3.2) that

f̂p(kpd) = f̂s(ksd) · (d× d⊥) = 0

for all d ∈ S2 and for all ω ∈ {ω ∈ R+ : ĝ(ω) 6= 0}. Since g 6= 0, one can always find an interval
(a, b) ⊂ R+ such that ĝ(ω) 6= 0 for ω ∈ (a, b). By the analyticity of f̂α (α = p, s) and the arbitrariness of
d ∈ S2, we finally obtain f̂α ≡ 0. Applying inverse Fourier transform we get fα ≡ 0, implying that f ≡ 0.

(ii) By (2.3), the P- and S-waves fulfill the wave equations

1

c2p
∂tt Up(x, t)−∆Up(x, t) =

1

γp
∇fp(x)g(t),

1

c2s
∂tt Us(x, t)−∆Us(x, t) =

1

γs
∇× fs(x) g(t),

in R3× (0,+∞) together with the zero initial conditions at t = 0, where cα and γα (α = p, s) are given in
(2.4). Applying Duhalme’s principle and Kirchhoff’s formula for wave equations, we can represent these
P and S-waves as

Up(x, t) =
1

4πγp

∫
|y−x|≤cp(t+T0)

∇fp(y)g(t− |y − x|/cp)
|y − x|

dy,

Us(x, t) =
1

4πγs

∫
|y−x|≤cs(t+T0)

∇× fs(y)g(t− |y − x|/cs)
|y − x|

dy,

for x ∈ R3, t > 0. As done for the Navier equation in the proof of Lemma 2.1, one can show that
Uα(x, t) = 0 for all x ∈ BR, t > Tα (α = p, s). Hence, the relation Uα(x, t) = 0 for x ∈ BR, t ∈ (0, Tα)
would imply the vanishing of Uα(x, t) over BR for all t ∈ R+. Now, repeating the argument in the proof
of the first assertion we deduce that

∇fp = 0, ∇× fs = 0, div fs = 0 in BR.

This implies that fp ≡ 0, since fp ∈ H1(BR) and fp = 0 in BR\BR0
. To prove the vanishing of

fs ∈ (L2(BR))3, we apply the Helmholtz decomposition to fs, i.e., fs = ∇hp+curl hs, where hp ∈ H1(BR)
and hs ∈ Hcurl (BR) are compactly supported in BR. Then it follows that hp = hs ≡ 0 in BR and thus
fs ≡ 0 in BR; see the proof of Lemma 6.1 in the Appendix. �

Remark 3.2. The above proof of Theorem 3.1 by using Fourier transform is valid in odd dimensions only.
The vanishing of the wavefields on |x| = R for t > Ts can be physically interpreted by Huygens’ Principle,
which however does not hold when the number of spatial dimensions is even. The frequency-domain
approach applies to two dimensions if we know the time-domain data for all 0 < t <∞.

As a bi-product of the frequency-domain approach to the proof of Theorem 3.1, we show uniqueness
in recovering the source term of the time-dependent Schrödinger equation:{

i~∂tW (x, t) = [− ~2

2µ∆ + q(x)]W (x, t) + f0(x)g0(t) in R3 × (0,+∞)

W (x, 0) = 0 on R3,
(3.3)
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where ~ is the reduced Planck constant, µ is the particle’s reduced mass and q is the particle’s potential
energy which is assumed to be time-independent. Similar to the Lamé system, we shall assume that
f0 ∈ L2(R3), supp(f0) ⊂ BR0

, g0 ∈ H1
0 (0, T0). The potential is supposed to be a real-valued nonnegative

function with compact support on BR for some R > R0. The number ω ∈ C is called a Dirichlet eigenvalue
of the operator Lq̃ := ∆− q̃ with q̃(x) := 2µ/~2q(x) if there exists a non-tirival function V ∈ (H1

0 (BR))2

such that

(Lq̃ + ω)V = 0 in BR.

It can be easily proved that the set of Dirichlet eigenvalues is discrete, which we donote by {ωn}∞n=1, and
that each eigenvalue is positive. According to [26, Theorem 10.1, Chapter 3] and [26, Remark 10.2, Chap-
ter 3], the initial problem (3.3) admits a unique solutionW ∈ C([0,+∞);H1(R3))∩C1([0,+∞);H−1(R3)).
Therefore, we can introduce the data {W (x, t) : |x| = R, t ∈ R+}, for W the unique solution of (3.3).
The following result extends the uniqueness proof of the inverse source problem for the Helmholtz equa-
tion [15] to the case of time-dependent Lamé system with an inhomogeneous time-independent potential
function.

Corollary 3.3. Assume that q ∈ C0(BR) is known and that ĝ0(ω′n) 6= 0, ω′n = ωn~/(2µ), for all n =
1, 2, · · · . Then the data set {W (x, t) : |x| = R, t ∈ R+} uniquely determines f0.

Proof. We assume that

W (x, t) = 0, |x| = R, t ∈ [0,+∞). (3.4)

Since g ∈ H1
0 (0, T ), the extension of W by 0 on R3 × (−∞, 0], is the unique solution of{

i~∂tW (x, t) = [− ~2

2µ∆ + q(x)]W (x, t) + f0(x)g0(t) in R3 × R
W (x, 0) = 0 on R3.

Thus, without lost of generality we can assume that the solution of (3.3) is the solution of the problem
on R3 × R. Then, condition (3.4) implies that

W (x, t) = 0, |x| = R, t ∈ R. (3.5)

According to the estimate (10.14) in the proof of [26, Theorem 10.1, Chapter 3] we have

‖W (·, t)‖2H1(R3) ≤ C

∫ +∞

0

(|g0(s)|2 + |dg0(s)/ds|2) ‖f0‖2L2(R3) ds

≤ C‖g0‖2H1(0,T0)
‖f0‖2L2(R3),

for t ∈ [0,+∞), where C > 0 is a constant independent of t. In particular, this estimate and the fact that
W (x, t) = 0 for (x, t) ∈ R3 × (−∞, 0], proves that W ∈ L∞(R;H1(R3)) ⊂ S ′(R;H1(R3)). Therefore, we
can apply the Fourier transform Ft→ω to W and deduce from (3.3) that Ŵ = Ft→ωW ∈ S ′(R;H1(R3))
satisfies

Lq̃Ŵ (x, ω) + η1ω Ŵ (x, ω) = η2 f0(x) ĝ0(ω), x ∈ R3, ω ∈ R+, (3.6)

with η1 = 2µ/~, η2 = 2µ/~2. Note that the identity (3.6) is considered in the sense of distribution
with respect to (x, ω) ∈ R3 × R+. In view of (3.6), we have ∆Ŵ ∈ S ′(R;L2(R3)) which implies that
Ŵ ∈ S ′(R;H2(R3)). The equation (3.6) can be rewritten as

∆Ŵ (x, ω) + k2 Ŵ (x, ω) = η2 f0(x) ĝ0(ω) + q̃(x) Ŵ (x, ω), k :=
√
η1ω.

Recalling Green’s formula, for any R1 > R we may represent Ŵ as the integral equation

Ŵ (x, ω) =

∫
∂BR1+1

[
∂νŴ (y, ω)Φk(x− y)− ∂νΦk(x− y) Ŵ (y, ω)

]
ds(y)

−
∫
R3

Φk(x− y) q̃(y) Ŵ (y, ω) dy − η2 ĝ0(ω)

∫
R3

Φk(x− y)f0(y)dy

8



for x ∈ BR1 , where Φk is the fundamental solution to the Helmholtz equation (∆ + k2)u = 0. On the
other hand, we have∣∣∣∫∂BR1+1

[
∂νŴ (y, ω)Φk(x− y)− ∂νΦk(x− y) Ŵ (y, ω)

]
ds
∣∣∣

≤ C(‖∂νŴ (y, ω)‖L2(∂BR1+1) + ‖Ŵ (y, ω)‖L2(∂BR1+1))
(∫

∂BR1+1
|x− y|−2ds(y)

) 1
2

≤ C(‖∂νŴ (y, ω)‖L2(∂BR1+1) + ‖Ŵ (y, ω)‖L2(∂BR1+1))

and, since Ŵ (·, ω) ∈ H2(R3), by density we deduce that

lim
R1→+∞

(‖∂νŴ (y, ω)‖L2(∂BR1+1) + ‖Ŵ (y, ω)‖L2(∂BR1+1)) = 0.

Therefore, sending R1 → +∞, we get

Ŵ (x, ω) = −
∫
R3

Φk(x− y) q̃(y) Ŵ (y, ω) dy − η2 ĝ0(ω)

∫
R3

Φk(x− y)f0(y)dy, x ∈ R3.

This implies that Ŵ (·, ω) is the unique solution of (3.6) satisfying the Sommerfeld radiation condition
when |x| → ∞. Let Vn ∈ (H1

0 (BR))2 be an eigenfunction that corresponds to the Dirichlet eigenvalue
ωn. Using the fact that Ŵ (·, ω) ∈ {S ∈ H1(BR) : ∆S ∈ L2(BR)} and multiplying Vn to both sides of
(3.6) with ω = ω′n and applying integral by parts, we obtain

η1 ĝ0(w′n)

∫
BR

f0(x)Vn(x)dx =
〈
∂νŴn(·;ω′n), Vn

〉
H−

1
2 (∂BR),H

1
2 (∂BR)

−
∫
∂BR

∂νVn(x) Ŵn(x;ω′n)ds(x)

=
〈
Tn[Ŵ (·;ω′n)], Vn

〉
H−

1
2 (∂BR),H

1
2 (∂BR)

−
∫
∂BR

∂νVn(x) Ŵn(x;ω′n)ds(x),

where Tn : H1/2(∂BR) → H−1/2(∂BR) is the Dirichlet-to-Neumann map for radiating solutions to the
Helmholtz equation (∆ + (ω′n)2)u = 0 which satisfies the Sommerfeld radiation condition at infinity. In
view of (3.5), the fact that ĝ0(w′n) 6= 0 and the fact that Tn is a linear bounded map, for every n = 1, 2, · · · ,
we deduce, from the previous identity that∫

BR

f0(x)Vn(x)dx = 0, n = 1, 2, · · · .

Since the set of the Dirichlet eigenfunctions is complete over (L2(BR))2, we conclude that the temporal
function f0 can be uniquely determined by the data. This finishes the uniqueness proof.

3.2 Time-domain approach
In this subsection we present a time-domain proof of Theorem 3.1. Note that this demonstration can

be extended to dimension two provided that we replace the data {U(x, t) : |x| = R, t ∈ (0, Ts)} by
{U(x, t) : |x| = R, t ∈ (0,+∞)}, since Lemma 2.1 does not hold in dimension two.

Proof of Theorem 3.1. (i) Again we assume that U(x, t) = 0 for all |x| = R, t ∈ (0, Ts) and, in
view of Lemma 2.1, this implies that U(x, t) = 0 for all |x| = R, t ∈ (0,+∞). Our aim is to deduce that
f ≡ 0. Since the temporal function g is known, we apply Duhalme’s principle to U by setting

U(x, t) =

∫ t

0

V (t− s, x)g(s) ds, x ∈ R3, t > 0. (3.7)

The function V then fulfills the homogeneous Lamé equation with non-zero initial conditions

∂ttV (x, t) = −c2p ∇×∇× V (x, t) + c2s ∇(∇ · V (x, t)),

V (x, 0) = 0, ∂tV (x, 0) = f(x).
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Further, we can continue V onto R3 × (−∞, 0) preserving the Lamé equation and the initial conditions.
Since g(t) = 0 for t < 0, the function t → U(t, x), given by (3.7), can be regarded as the convolution of
V (x, ·)χ(·) and g(·)χ(·), i.e.,

U(x, t) = [V (x, t)χ(t)] ∗ [g(t)χ(t)], (3.8)

where χ is the characteristic function of (0,∞). By Lemma 2.1, U(x, t) = 0 for |x| = R and t ∈ R. Taking
the Fourier transform to (3.8), we see

0 = Ft→ω[V (x, t)χ(t)]Ft→ω[g(t)χ(t)] = Ft→ω[V (x, t)χ(t)] ĝ(ω), |x| = R.

Making use of the analyticity of Ft→ω[V (x, t)χ(t)] with respect to ω and that the fact that g does not
vanish identically, we deduce that V (x, t) = 0 for |x| = R and t ∈ R.

We decouple V into the sum of the compressional part Vp and shear part Vs:

V = Vp + Vs, Vp = ∇vp +∇× vs, ∇ · vs = 0 in R3,

where Vα (α = p, s) fulfills the homogeneous wave equation

∂ttVα(x, t) = c2α ∆Vα in BR

and the initial conditions

Vα(x, 0) = 0, ∂tVp(x, 0) = ∇fp(x), ∂tVs(x, 0) = ∇× fs(x).

Since Supp(f) ⊂ BR0 ⊂ BR, V (x, t) has zero initial conditions in the unbounded domain |x| > R.
Consequently, we get V ≡ 0 for all |x| > R and t ∈ R, due to the unique solvability of the hyperbolic
system in |x| > R with the Dirichlet boundary condition at |x| = R for all t > 0. By uniqueness of
the Helmholtz decomposition, it follows that Vα = 0 in |x| > R for all t ∈ R. In view of the unique
continuation for the homogeneous wave equation (see e.g., [6,29,30]), it can be deduced that Vα(x, t) = 0
in BR × R, implying that V = 0 for x ∈ BR and t ∈ R. In particular, ∂tV (x, 0) = f(x) = 0 for x ∈ BR.

(ii) If Uα(x, t) = 0 for |x| = R, t ∈ (0, Tα), then we have Vα = 0 on {|x| = R} × R. Repeating the
arguments above, it follows that Vα(x, 0) = 0 in |x| > R for t ∈ R. As a consequence of the unique
continuation we get Vα(x, 0) = 0 in BR × R. Setting t = 0 we obtain fα = 0 for α = p, s. �

Remark 3.4. We think that the frequency-domain and time-domain approaches presented above could
also yield stability estimate of the spatial function in terms of the time-domain data {U(x, t) : |x| =
R, 0 < t < Ts}. The terminal time Tα (α = p, s) in Theorem 3.1 are optimal. Non-uniqueness examples
can be readily reconstructed if the terminal time is less than Tα.

4 Unique determination of temporal functions
Given some T > 0, we suppose that g ∈ (L2(0, T ))3 is an unknown vector-valued temporal function

and that the spatial function f is known to be compactly supported in BR0 for some R0 > 0. We consider
the inverse problem of determining g from observations of the solution of{

ρ∂ttU(x, t) = ∇ · σ(x, t) + f(x)g(t), (x, t) ∈ R3 × (0, T ),
U(x, 0) = ∂tU(x, 0) = 0, x ∈ R3,

(4.1)

at one fixed point x0 ∈ supp(f) (i.e., interior observations) or at the subbounary Γ ⊂ ∂BR (i.e., partial
boundary observations). In order to state rigorously our problem, we start by considering the regularity
of this initial value problem (4.1).

Lemma 4.1. Let g ∈ (L2(0, T ))3 and let f ∈ Hp(R3), with p > 5/2 be supported on BR for some
R > R0. Then problem (4.1) admits a unique solution U ∈ C([0, T ];Hp+1(R3))3 ∩H2((0, T );Hp−1(R3))3

satisfying
‖U‖C([0,T ];Hp+1(R3))3 + ‖U‖H2((0,T );Hp−1(R3))3 ≤ C‖g‖L2(0,T )3‖f‖Hp(R3), (4.2)

with C > 0 depending on ρ, λ, µ, R.
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Proof. Applying Fourier transform to U(·, t) with respect to spatial variables, denoted by Û , we find

∂ttÛ(ξ, t) +A(ξ)Û(ξ, t) =
g(t)f̂(ξ)

ρ
in R3 × (0, T ),

Û(ξ, 0) = 0, ∂tÛ(ξ, 0) = 0, ξ ∈ R3,

(4.3)

where the matrix A(ξ) ∈ R3×3 is defined by

A(ξ) :=
µ

ρ
|ξ|2 I +

(λ+ µ)

ρ
ξ ⊗ ξ, ξ = (ξ1, ξ2, ξ3) ∈ R3.

Evidently, A(ξ) is a real-valued symmetric matrix, with the eigenvalues given by (λ+2µ)|ξ|2
ρ , µ|ξ|

2

ρ , µ|ξ|
2

ρ ;
see Lemma 6.2 in the Appendix. Denote by A1/2(ξ) the square roof of A(ξ) and by A−1/2(ξ) the inverse
of A1/2(ξ). Then the unique solution to (4.3) takes the form

ÛT (ξ, t) =

∫ t

0

gT (s)A−1/2(ξ) sin
(
A1/2(ξ)(t− s)

) f̂(ξ)

ρ
ds. (4.4)

On the other hand, for all t ∈ [0, T ] and s ∈ [0, t], fixing

H(t− s, ·) := ξ 7→ A−1/2(ξ) sin
(
A1/2(ξ)(t− s)

) f̂(ξ)

ρ
,

we have

‖H(t− s, ·)‖2L2(R3)3×3 ≤ µ−1ρ−1‖f̂‖2L∞(R3)

∫
B1

|ξ|−2dξ + 4µ−1ρ−1
∫
R3\B1

(1 + |ξ|2)−1|f̂(ξ)|2dξ

≤ Cµ−1ρ−1|BR|‖f̂‖2L2(R3) + 4µ−1ρ−1‖f‖2L2(R3),

(4.5)

with C a constant. Note that here we use the fact that ξ 7→ |ξ|−2 ∈ L1(B1), since 2 < 3, and the fact that
supp(f) ⊂ BR. Moreover, we apply the fact that λ + µ > 0 to deduce that |A−1/2(ξ)| ≤ ρ

1
2µ−1/2|ξ|−1.

In the same way, we have

‖|ξ|p+1H(t− s, ·)‖2L2(R3)3×3 ≤ µ−1ρ−1
∫
R3

|ξ|2p|f̂(ξ)|2dξ ≤ µ−1ρ−1‖f‖2Hp(R3). (4.6)

Combining estimates (4.5)-(4.6), one can easily deduce that U ∈ C([0, T ];Hp+1(R3))3. In the same way,
we have

‖(1 + |ξ|2)
p−1
2 ∂tH(t− s, ·)‖L2(R3)3×3 + ‖(1 + |ξ|2)

p−1
2 ∂2tH(t− s, ·)‖L2(R3)3×3 ≤ C‖f‖Hp(R3), (4.7)

where C depends on ρ, λ, µ, R. Moreover, for almost every ξ ∈ R3, we have

ÛT (ξ, ·) : t 7→ ÛT (ξ, t) ∈ H2(0, T ),

with

∂tÛ
T (ξ, t) =

∫ t

0

g(s)T∂tH(t− s, ξ)ds, ∂ttÛ
T (ξ, t) =

g(t)T f̂(ξ)

ρ
+

∫ t

0

g(s)T∂ttH(t− s, ξ)ds.

Combining this with (4.7), we deduce that U ∈ H2((0, T );Hp−1(R3))3 and we deduce (4.2) from the
previous estimates.
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According to Lemma 4.1 and the Sobolev embedding theorem we have U ∈ C([0, T ]; C2(R3))3 ∩
H2((0, T ); C(R3))3 and the trace t 7→ U(x0, t), for some point x0 ∈ R3, is well defined as an element of
H2((0, T ))3. Below we consider the inverse problem of determining the evolution function g(t) from the
interior observation of the wave fields U(x0, t) for t ∈ (0, T ) and some x0 ∈ supp(f).

Theorem 4.2 (Uniqueness and stability with interior data). Let x0 ∈ BR, p > 5/2 and considerM, δ > 0
such that

Ax0,p,δ,M := {h ∈ Hp(R3) : ‖h‖Hp(R3) ≤M, |h(x0)| ≥ δ, supp(h) ⊂ BR} 6= ∅.

Then, for f ∈ Ax0,p,δ,M , it holds that

‖g‖L2(0,T )3 ≤ C ‖∂ttU(x0, ·)‖L2(0,T )3

where C depends on λ, µ, ρ, p, x0, M , R, δ and T . In particular, this estimate implies that the data
{U(x0, t) : t ∈ (0, T )} determines uniquely the temporal function g.

Proof. According to (4.4), the solution U of (4.1) is given by

U(x, t)T = (2π)−3
∫
R3

(∫ t

0

g(s)T A−1/2(ξ) sin
(
A1/2(ξ)(t− s)

) f̂(ξ)

ρ

)
eiξ·x dξ, (x, t) ∈ R3 × [0, T ]

and applying Fubini’s theorem we find

U(x, t)T = (2π)−3
∫ t

0

g(s)T

(∫
R3

A−1/2(ξ) sin
(
A1/2(ξ)(t− s)

) f̂(ξ)

ρ
eiξ·x dξ

)
ds, (x, t) ∈ R3 × [0, T ].

In particular, in view of Lemma 4.1, U ∈ C([0, T ];Hp+1(R3))3 ∩ H2((0, T );Hp−1(R3))3 satisfies (4.2).
Further, direct calculations show that

Lλ,µU(x, t)T = −(2π)−3
∫ t

0

g(s)T

(∫
R3

A1/2(ξ) sin
(
A1/2(ξ)(t− s)

) f̂(ξ)

ρ
eiξ·x dξ

)
ds.

Since |A1/2(ξ)a| ≤
√
λ+2µ√
ρ |ξ||a| for all a ∈ C3, the previous identity can be estimated by

|Lλ,µU(x, t)| ≤
√
λ+ 2µ
√
ρ

∫ t

0

|g(s)| ds
∫
R3

|f̂(ξ)| |ξ| dξ

≤
√
λ+ 2µ
√
ρ

∫ t

0

|g(s)| ds ||f̂(ξ)(1 + |ξ|2)p/2||L2(R3) ||(1 + |ξ|2)(1−p)/2||L2(R3)

≤ M0

√
λ+ 2µ
√
ρ

||f ||Hp(R3)

∫ t

0

|g(s)| ds (4.8)

where M0 = ||(1 + |ξ|2)(1−p)/2||L2(R3) < ∞. Since |f(x0)| ≥ δ, we derive from the governing equation of
U and (4.8) that

|g(t)| =
1

|f(x0)|
|ρ∂ttU(x0, t)− Lλ,µU(x0, t)|

≤ M1 |∂ttU(x0, t)|+M2

∫ t

0

|g(s)| ds

for all t ∈ (0, T ), where M1 = ρ/δ, M2 = M0

√
λ+2µ√
ρ M/δ. Applying the Grownwall inequality stated in

Lemma 6.3, for almost every t ∈ (0, T ), we find

|g(t)| ≤M1|∂ttU(x0, t)|+ M1M2

∫ t

0

|∂ttU(x0, s)| eM2(t−s) ds

≤M1 |∂ttU(x0, t)| +M1M2 T
1
2 eM2T ‖∂ttU(x0, ·)‖L2(0,T )3 .
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Therefore, taking the norm L2(0, T ) on both sides of the inequality, implies that

||g||L2(0,T )3 ≤ (M1 +M1M2 T e
M2T ) ‖∂ttU(x0, ·)‖L2(0,T )3 .

This completes the proof.

To state uniqueness with partial boundary measurement data, we need the concept of non-radiating
source.

Definition 4.3. The compactly supported function f is called a non-radiating source at the frequency
ω ∈ R+ to the Lamé system if the unique radiating solution to the inhomogeneous Lamé system

Lλ,µu(x) + ω2ρu(x) = f(x)P, j = 1, 2, 3, (4.9)

does not vanish identically in R3\supp(f) for any P ∈ C3.

Theorem 4.4 (Uniqueness with partial boundary data). Suppose that f ∈ L2(BR) is known to be a
compacted supported function over BR0 for some R0 < R and that f is not a non-radiating source for all
ω ∈ R+. Then the temporal function g ∈ C0([0, T0])3 can be uniquely determined by the partial boundary
measurement data {U(x, t) : x ∈ Γ, t ∈ (0, Ts)} where Γ ⊂ ∂BR is an arbitrary subboundary with positive
Lebesgue measure and Ts is defined in (2.7).

Proof. Let wj = wj(x, ω) (j = 1, 2, 3) be the unique radiating solution to the inhomogeneous Lamé
system

Lλ,µwj(x) + ω2ρwj(x) = f(x) ej , j = 1, 2, 3,

which does not vanish identically in |x| ≥ R by our assumption. Set the matrixW := (w1, w2, w3) ∈ C3×3.
Then W (·, ω) solves the matrix equation

Lλ,µW (x, ω) + ω2ρW (x, ω) = f(x) I in R3 × (0,∞).

Note that here the action of the differential operator is understood column-wisely, and W can be repre-
sented as

W (x, ω) =

∫
R3

Ĝ(x− y, ω)f(y) dy, x ∈ R3,

where Ĝ is the Green’s tensor to the time-harmonic Lamé system. In view of (2.10), the Fourier transform
Û(x, ω) of U(x, t) can be written as

Û(x, ω) = W (x, ω) ĝ(ω) for all ω ∈ R+, |x| = R. (4.10)

We claim that for each ω0 ∈ R+, there always exists x0 ∈ Γ ⊂ ∂BR such that Det(W (x0, ω0)) 6= 0.
Suppose on the contrary that Det(W (x, ω0)) = 0 for all x ∈ Γ. This implies that there exist cj ∈ C3 such
that

V (x) := c1w1(x, ω0) + c2w2(x, ω0) + c3w3(x, ω0) = 0 on Γ. (4.11)

By the analyticity of wj in a neighborhood of |x| = R and the analyticy of the surface Γ ⊂ ∂BR, we
conclude that (4.11) holds on |x| = R. By uniqueness of the exterior Dirichlet boundary value problem,
we have V (x) = 0 in |x| > R, and by unique continuation it holds that V (x) = 0 for all x lying outside of
the support of f . However, it is easy to observe that V satisfies the inhomogeneous equation (4.9) with
P = c1e1 + c2e2 + c3e3, which contradicts the fact that f is not a non-radiating source. Therefore, by
(4.10) we get

ĝ(ω0) = [W (x0, ω0)]−1 Û(x0, ω0) ∈ C3×1 for some x0 ∈ Γ.

Note that ω0 is arbitrary and the point x0 depends on ω0. Hence, if U(x, t) = 0 for all x ∈ Γ and
t ∈ (0, Ts), then Û(x, ω) = 0 for all x ∈ Γ and ω ∈ R+. This implies that ĝ(ω) = 0 for all ω ∈ R and thus
g ≡ 0.
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5 Numerical experiments
In this section, we propose a Landweber iterative method for reconstructing the spatial function f in

2D and a non-iterative inversion scheme based on the proof of Theorem 4.4 for recovering the temporal
function g in 3D. Several numerical examples will be illustrated to examine the effectiveness of the
proposed methods.

5.1 Reconstruction of spatial functions
We consider the inverse source problem presented in Section 3. Our aim is to reconstruct the spa-

cial function in two dimensions, relying on the Landweber iterative method for solving linear algebraic
equations. Assume that the time-dependent data U(x, t), x ∈ ∂BR (R > R0) is measured over the time
interval [0, T ] where T > 0 is sufficiently large such that the integral∫ T

0

U(x, t) exp(iωt) dt

can be used to approximate the Fourier transform Û(x, ω) for any ω ∈ R+. In the time-harmonic regime,
it is supposed that the multi-frequency data Û(x, ωk), x ∈ ∂BR for k = 1, · · · ,K are available. Hence,
the time-dependent inverse source problem can be transformed to a problem in the Fourier domain with
near-field data of multi frequencies. In 2D, the Helmhotz decomposition of Û takes the form Û = Ûp+Ûs,
where the compressional part Ûp and shear part Ûs are given by

Ûp = − 1

k2p
grad div Û , Ûs =

1

k2s

−−→
curl curl Û . (5.1)

Here the two-dimensional operators curl and
−−→
curl are defined respectively by

curl v = ∂1v2 − ∂2v1, v = (v1, v2)>,
−−→
curl h := (∂2h,−∂1h)>.

Writing ûp := −1/k2p div Û and ûs = 1/k2s curl Û , we have Û = grad ûp +
−−→
curl ûs and the scalar functions

ûα (α = p, s) satisfy the Sommerfeld radiation condition

lim
r→∞

√
r

(
∂ûα
∂r
− ikαûα

)
= 0, r = |x|, α = p, s

uniformly with respect to all x̂ = x/|x| ∈ S1.
For |x| ≥ R, the radiation solutions ûα can be expressed in terms of Hankel functions of the first kind,

ûα(|x|, θ) =
∑
n∈Z

ûα,nH
(1)
n (kα|x|) exp(inθ), x = |x|(cos θ, sin θ), |x| ≥ R. (5.2)

For every fixed ω ∈ R+, the coefficients ûα,n ∈ C are uniquely determined by Û(x, ω)||x|=R as follows
(see e.g., [7]) (

ûp,n
ûs,n

)
=

1

2πR
[An(R)]−1

∫ 2π

0

(
cos θ sin θ
− sin θ cos θ

)
Û(R, θ;ω)dθ, (5.3)

where

An(R) =

(
tpH

(1)
n

′
(tp) inH

(1)
n (ts)

inH
(1)
n (tp) −tsH(1)

n

′
(ts)

)
, tα = kαR, α = p, s. (5.4)

This means that, in the Fourier domain, the P and S-waves can be decoupled from the whole wave field
Û on |x| = R for every fixed frequency ω.
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Below we shall consider the inverse problems of reconstructing fp, fs and f from the wave fields
ûp(x, ω)|∂BR , ûs(x, ω)|∂BR and u(x, ω)|∂BR at a finite number of frequencies ω = ωk, k = 1, · · · ,K,
respectively. Recall from (2.10) that

Û(x, ω)/ĝ(ω) =

∫
BR

Ĝ(x− y) f(y)dy, |x| = R, ĝ(ω) 6= 0, (5.5)

where Ĝ is the fundamental displacement tensor of the Navier equation of the form (2.8) with the
fundamental solution of the two-dimensional Helmholtz equation given by

Φk(x, y) =
i

4
H

(1)
0 (k|x− y|), x 6= y, x, y ∈ R2.

Analogously, the compressional and shear components of Û can be represented by (cf. (2.3))

ûα(x, ω)/ĝ(ω) =
1

γα

∫
BR

Φkα(x, y) fα(y)dy, α = p, s. (5.6)

Our numerical scheme relies on solvability of the ill-posed integral equations (5.5) and (5.6) for finding
f and fα. Since f(x) is real-valued, it is more convenient to consider real-valued integral equations from
numerical point of view. Taking the real and imaginary parts of (5.5) gives

Re{Û(x, ω)/ĝ(ω)} =

∫
BR

Re{Ĝ(x− y, ω)} f(y)dy, |x| = R, (5.7)

Im{Û(x, ω)/ĝ(ω)} =

∫
BR

Im{Ĝ(x− y, ω)} f(y)dy, |x| = R. (5.8)

Furthermore, for the pressure part ûp and shear part ûs, we have

Re{ûα(x, ω)/ĝ(ω)} =
1

γα

∫
BR

Re{Φkα(x, y)}fα(y)dy, |x| = R, (5.9)

Im{uα(x, ω)/ĝ(ω)} =
1

γα

∫
BR

Im{Φkα(x, y)}fα(y)dy, |x| = R. (5.10)

The equations (5.7)-(5.10) are Fredholm integral equations of the first kind. These equations are ill-posed,
since the singular values of the matrix resulting from the discretized integral kernel are rapidly decaying.
Now, we describe a Landweber iterative method to solve the ill-posed integral equations (5.7)-(5.10).
Consider the linear operator equations

Vk (S) = vk, k = 1, · · · ,K, S = f, fp, fs, (5.11)

where vk = Û(x, ωk) or vk = ûα(x, ωk) denotes the measurement data at the frequency ωk. We denote
by Sl,k the inverse solution obtained at the l-th iteration step reconstructed from the data set at the
frequency ωk. Due to the linearity of (5.11), a straightforward Landweber iteration (see, e.g., [10]) can
be applied as a regularization scheme for solving (5.11). For clarity We summarize the inversion process
in Table 1.

Below we present several numerical examples to demonstrate the validity and effectiveness of the
proposed method. In the following we always choose

ĝ(ω) =

∫ T

0

g(t) exp(iωt)dt, g(t) =

{
cos(1.5π(t− t0)) exp(−π(t− t0)2), t ≤ T,
0, t > T,

where T = 5, t0 = 2. The functions ĝ and g are plotted in Figure 1, which shows that ĝ is nonzero in
(0, 20). The source function f in BR with R = 1 is defined by

f = (f1, f2)> = ∇ fp +
−−→
curl fs,
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Table 1: Landweber iterative method for reconstructing spatial functions.
Step 1 Set an initial guess S0,0

Step 2 Update the source function S by the iterative formula

Sl,k = Sl−1,k + εV ∗k (vk − Vk Sl−1,k), l = 1, · · · , L,

where ε and L are the step length and total number of iterations, respectively.

Step 3 Set S0,k+1 = SL,k and repeat Step 2 until the highest frequency ωK is reached.

(a) g(t) (b) ĝ(ω)

Figure 1: The exact pulse function g(t) and its Fourier transformation ĝ(ω).

where

fp(x) = 0.3(1− 3x1)2 exp(−9x21 − (3x2 + 1)2)− (0.6x1 − 27x31 − 35x52) exp(−9x21 − 9x22)

− 0.03 exp(−(3x1 + 1)2 − 9x22),

fs(x) = 135x21x2 exp(−9x21 − 9x22);

see Figure 2. We choose µ = 1, λ = 2, ρ = 1 and R = 2. The scattering data is collected at 64 uniformly
distributed points on the circle ∂BR. The total number of iterations is set to be L = 10.

In the static case, we simulate the data Û(x, ω) by solving the inhomogeneous time-harmonic Navier
equation using finite element method coupled with an exact transparent boundary condition. Then the
compressional and shear parts, ûp and ûs, are decoupled from Û(x, ω) via (5.2)-(5.4). The near-field data
of twenty equally spaced frequencies from 1 to 20 are calculated. Figure 3 shows the reconstructed S1

and S2 from {Û(x, ωk) : |x| = R, k = 1, 2, · · · , 20}, while Figure 4 presents the reconstructed fp and fs
from the counterpart of compressional and shear waves, respectively.

In the time-dependent case, we first consider the numerical solution of the acoustic wave equation

1

c2α
∂tt uα(x, t)−∆uα(x, t) = g(t) fα(x), in R2 × R+, (5.12)

uα|t=0 = ∂tuα|t=0 = 0 in R2, α = p, s. (5.13)

To reduce the unbounded solution domain to a bounded computational domain, we use the local absorbing
boundary condition

∂νuα +
1

cα
∂tuα +

1

2R
uα = 0 on ∂BR.

Then the solutions to the acoustic scattering problem (5.12)-(5.13) are computed over BR by using interior
penalty discontinuous Galerking method in space and Newmark method in time. Consequently, the data
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(a) f1 (b) f2

(c) fp (d) fs

Figure 2: The exact spatial source function f = (f1, f2) and its compressional component fp and shear
component fs.

U(x, t) of the Lamé system are obtained through

U(x, t) =
1

γp
gradup(x, t) +

1

γs

−−→
curlus(x, t).

In our numerical examples, we collect the scattering data U(x, t)|∂BR1
for t ∈ [0, T ] with T = 20 >

T0 + (R + R1)/cs = 8. In Figure 5, we compare the scattering data û(x, ω)|∂BR at frequencies ω = 3
and ω = 10 obtained by solving the time-harmonic Lamé system and that by applying Fourier transform
(denoted by û′(x, ω)|∂BR) to the time-dependent data U(x, t)|∂BR . It can be seen that the data set via
Fourier transformation slightly differs from those time-harmonic data, possibly due to numerical errors in
the Fourier transform and in the numerical scheme for solving time-dependent Lamé systems as well. To
Fourier transform the time domain data, we use fifteen equally spaced frequencies from 1 to 15. Numerical
solutions for reconstructing f and fα, α = p, s are presented in Figures 6 and 7, respectively. We conclude
from Figures 3-7 that satisfactory reconstructions are obtained through the proposed Landweber iterative
algorithm.

5.2 Reconstruction of temporal functions
We consider the inverse problem of reconstructing g from the wave fields {U(x, t) : x ∈ Γ ⊂ ∂BR, t ∈

(0, T ) for some T > 0 in three dimensions. For simplicity we choose the scalar spatial function to be the
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(b) Reconstructed f1 (c) Reconstructed f1

(e) Reconstructed f2 (f) Reconstructed f2

Figure 3: Reconstructions of f = (f1, f2) from time-harmonic data at multi frequencies. Figures (b) and
(e) are reconstructed from (5.7), whereas (c),(f) are from (5.8).

delta function, i.e., f(x) = δ(x). Then the function W (see the proof of Theorem 4.4) takes the form

W (x, ω) =

∫
R3

Ĝ(x− y, ω)f(y) dy

= Ĝ(x, ω)

=
1

µ
Φks(x)I +

1

ρω2
grad x grad>x

[
Φks(x)− Φkp(x)

]
,

where Φk(x) = eik|x|/(4π|x|)(k = kp, ks). Hence, f is indeed not a non-radiation source for all ω ∈ R+.
In our example, we set the vector temporal function g(t) to be

g(t) = (g1, g2, g3)>,

g1(t) =

{
cos(1.5π(t− t1)) exp(−π(t− t1)2), t ≤ T1,
0, t > T1,

g2(t) =

{
sin(2π(t− t2)) exp(−π(t− t2)2), t ≤ T2,
0, t > T2,

g3(t) =

{
sin(π(t− t3)) exp(−π(t− t3)2), t ≤ T3,
0, t > T3,

where T1 = 5, T2 = 4, T3 = 3, t1 = 2, t2 = 3 and t3 = 2. The function pairs (g1, ĝ1), (g2, ĝ2) and (g3, ĝ3)
are plotted in Figures 1, 8 and 9, respectively. Moreover, we set g(t) = 0 for t < 0. With the choice of f
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(b) Reconstructed fp (c) Reconstructed fp

(e) Reconstructed fs (f) Reconstructed fs

Figure 4: Reconstructions of the compressional and shear components of f . Figures (b) and (e) are
reconstructed from (5.9), whereas (c) and (f) are from (5.10).

(a) ω = 3 (b) ω = 10

Figure 5: Comparison of the scattering data û(x, ω)/ĝ(ω) and û′(x, ω)/ĝ(ω) at ω = 3, 10 obtained
respectively by solving the time-harmonic Navier equation (blue) and by applying Fourier transform
to the time-domain data (red).

and g, the forward time-domain scattering data can be expressed as U = (u1, u2, u3), where

ui(x, t) =

3∑
j=1

∫ ∞
0

∫
R3

Gi,j(x− y, t− s)f(y)gj(s) dxds

=

3∑
j=1

∫ ∞
0

Gi,j(x, t− s)gj(s) ds

=
1

4πρ|x|3
3∑
j=1

(
xixj
c2p

gj(t− |x|/cp) +
1

c2s
(δij |x|2 − xixj)gj(t− |x|/cs)

)

+
1

4πρ|x|3
3∑
j=1

(
3xixj − δij |x|2

) ∫ 1/cs

1/cp

sgj(t− s) ds.
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(b) Reconstructed f1 (c) Reconstructed f1

(e) Reconstructed f2 (f) Reconstructed f2

Figure 6: Reconstructions of f = (f1, f2) from Fourier-transformed time-domain scattering data. Figures
(b) and (e) are reconstructed from (5.7), whereas (c) and (f) are from (5.8).

Taking the Fourier transform gives the data Û(x, ωi) in the Fourier domain. The sampling frequencies
are chosen as

ωj = 1 + (j − 1)h, h = 19/49, j = 1, · · · ,K, K = 50.

Fixing ωi ∈ R+ (i = 1, 2, · · · ,K), we can always find x0,i ∈ Γ such that W (x0,i, ωi)
−1 exists and the

value of the indicator

I1(ωi) = [W (x0,i, ωi)]
−1Û(x0,i, ωi)

is identical to ĝ(ωi). Taking the inverse Fourier transform of the indicator function I1(ω) enables us
to plot the function t → gi(t) (i = 1, 2, 3). In our tests we choose x0,i = (1, 1, 0)> uniformly in all
i = 1, 2, · · · ,K. Numerical reconstructions of ĝi, i = 1, 2, 3 from the indicator I1 are presented in Figure
10.

One can readily observe that the choice of x0,i is not unique. Our numerics show that Det(W (x, ωi))
does not vainish for almost all x ∈ ∂BR. For ωi ∈ R+, we denote by {xj,i : j = 1, 2, · · ·M} a set of
points lying on |x| = R such that W (xj,i, ωi) is invertible for each j. To make our inversion scheme
computationally stable, we can calculate I1(ωi) using each xj,i (j = 1, 2, · · · ,M) and then take the
average as the value of ĝ(ωi). Hence, we propose another indicator function in the Fourier domain as
following

I2(ωi) :=
1

M

M∑
j=1

[W (xj,i, ωi)]
−1Û(xj,i, ωi), i = 1, 2, · · · ,K,

where the time domain data {U(xj,i, t) : j = 1, 2, · · · ,M, i = 1, 2, · · · ,K} are used. In our experiments,
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(b) Reconstructed fp (c) Reconstructed fp

(e) Reconstructed fs (f) Reconstructed fs

Figure 7: Reconstructions of the compressional and shear components of f from Fourier-transformed
time-domain scattering data. Figures (b) and (e) are reconstructed from (5.9), whereas (c) and (f) are
from (5.10).

we make use of the boundary data equivalently distributed on |x| = R and set

xj,i = xj = (cos((j − 1)dθ), 1, sin((j − 1)h))>, h = 2π/M, j = 1, 2, · · · ,M,

uniformly in all i = 1, 2, · · · ,K. Numerics show that such kind of boundary data are adequate for the
choice of f and g. Next we consider reconstructions from the noised data

Uδ(x, t) = (1 + δε(x, t))U(x, t)

where ε(x, t) is a function whose value is random between -1 and 1, and the noise level δ is set to be 30%.
We present the reconstructions of ĝj (j = 1, 2, 3) based on the indicators I1 and I2 in Figures 11 and
12, respectively. Reconstructions from the inverse Fourier transform of Ij (that is, the temporal function
g(t)) are illustrated in Figures 13 and 14, where the time-domain data with 30% noise are again used.
Comparing Figures 11, 12, 13 and 14, one may conclude that the inversion scheme using I2 is indeed
more computationally stable than I1.

6 Appendix
Lemma 6.1. Suppose that S ∈ (L2(R3))3 has a compact support in BR for some R > 0, then the
Helmholtz decomposition of S is unique.

Proof. Due to the Helmholtz decomposition, every S ∈ (L2(R3))3 admits a decomposition:

S = ∇Sp +∇× Ss, ∇ · Ss = 0,
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(a) g2(t) (b) ĝ2(ω)

Figure 8: The exact pulse function g2(t) and its Fourier transformation ĝ2(ω).

(a) g2(t) (b) ĝ2(ω)

Figure 9: The exact pulse function g3(t) and its Fourier transformation ĝ3(ω).

(a) ĝ1 (a) ĝ2 (a) ĝ3

Figure 10: Reconstruction of temporal functions from I1 without noise.

where

Sp ∈ H1(BR), Ss ∈ Hcurl (BR) := {U : U ∈ L2(BR)3, curlU ∈ L2(BR)3}

also have compact support in BR. Suppose that S admits another orthogonal decomposition S = ∇S′p +
∇× S′s,∇ · S′s = 0. Then we have

∇ (Sp − S′p) +∇× (Ss − S′s) = 0. (6.1)

Taking the divergence of both sides of (6.1) gives ∆(Sp − S′p) = 0 in BR, i.e., Sp − S′p is harmonic over
BR. Note that Sp − S′p = 0 on ∂BR. Applying the maximum principle for harmonic functions yields
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(a) ĝ1 (a) ĝ2 (a) ĝ3

Figure 11: Reconstruction of temporal functions from I1 with 30% noise.

(a) ĝ1 (a) ĝ2 (a) ĝ3

Figure 12: Reconstruction of temporal functions from I2 with 30% noise.

(a) g1 (a) g2 (a) g3

Figure 13: Reconstruction of temporal functions from Ĩ1 with 30% noise.

(a) g1 (a) g2 (a) g3

Figure 14: Reconstruction of temporal functions from Ĩ2 with 30% noise.

23



Sp = S′p in BR. On the other hand, applying ∇× to the both sides of (6.1) we obtain

0 = ∇× (∇× (Ss − S′s)) = ∇(∇ · (Ss − S′s))−∆ (Ss − S′s) = −∆ (Ss − S′s).

Then the relation Ss = S′s in BR can be proved analogously. This completes the proof.

In the following lemma, the notation In×n denotes the unit matrix in Rn×n for n ≥ 2.

Lemma 6.2. Let ξ = (ξ1, · · · , ξn)> ∈ Rn×1 and A(ξ) = µ|ξ|2In×n + (λ + µ)ξ ⊗ ξ ∈ Rn×n. Then the
eigenvalues τj (j = 1, 2, · · · , n) of A(ξ) are given by

τ1 = (λ+ 2µ)|ξ|2, τ2 = · · · = τn = µ |ξ|2.

Proof. Set Ã = A− τIn×n. We may rewrite Ã in the form Ã = B + V V >, where

B = (µ|ξ|2 − τ) In×n, V =
√
λ+ µ ξ.

Straightforward calculations show that

Det(Ã) = Det(B + V V >)

= (1 + V >B−1 V )Det(B)

=

(
1 +

(λ+ µ)|ξ|2

µ|ξ|2 − τ

)
(µ|ξ|2 − τ)n

= [(λ+ 2µ)|ξ|2 − τ ](µ|ξ|2 − τ)n−1,

which implies the eigenvalues of A.

Lemma 6.3. (Grownwall-type inequality) Let T > 0 and u ∈ L2(0, T ) be nonnegative and fulfill, for
almost every t ∈ (0, T ), the inequality

u(t) ≤ a(t) +

∫ t

0

b(s)u(s) ds, (6.2)

where a ∈ L2(0, T ) and b ∈ C([0, T ]) are two nonnegative functions. Then, for almost every t ∈ (0, T ),
we have

u(t) ≤ a(t) +

∫ t

0

a(s)b(s)e
∫ t
s
b(τ)dτds. (6.3)

Proof. We consider Y defined, for almost every t ∈ (0, T ), by

Y (t) := e−
∫ t
0
b(s)ds

∫ t

0

b(s)u(s)ds

and we remark that Y ∈ H1(0, T ) and satisfies Y (0) = 0. Then, for almost every t ∈ (0, T ), we find

Y ′(t) = b(t)u(t)e−
∫ t
0
b(s)ds − b(t)e−

∫ t
0
b(s)ds

∫ t

0

b(s)u(s)ds.

On the other hand, in view of (6.2), for almost every t ∈ (0, T ), we get∫ t

0

b(s)u(s)ds ≥ u(t)− a(t)

and we deduce that
Y ′(t) ≤ a(t)b(t)e−

∫ t
0
b(s)ds.
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Integrating on both side of this inequality we get∫ t

0

Y ′(s)ds ≤
∫ t

0

a(s)b(s)e−
∫ s
0
b(τ)dτds, t ∈ (0, T ).

On the other hand, since Y ∈ H1(0, T ) and satisfies Y (0) = 0, by density one can check that Y (t) =∫ t
0
Y ′(s)ds which implies that

e−
∫ t
0
b(s)ds

∫ t

0

b(s)u(s)ds ≤
∫ t

0

a(s)b(s)e−
∫ s
0
b(τ)dτds

and by the same way, for almost every t ∈ (0, T ), the following inequality∫ t

0

b(s)u(s)ds ≤ e
∫ t
0
b(s)ds

(∫ t

0

a(s)b(s)e−
∫ s
0
b(τ)dτds

)
=

∫ t

0

a(s)b(s)e
∫ t
s
b(τ)dτds.

Finally, applying again (6.2), for almost every t ∈ (0, T ), we find

u(t) ≤ a(t) +

∫ t

0

b(s)u(s)ds ≤ a(t) +

∫ t

0

a(s)b(s)e
∫ t
s
b(τ)dτds.

This proves (6.3).
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