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Abstract

Hamiltonian Flow Monte Carlo(HFMC) methods have been implemented in engineering,
biology and chemistry. HFMC makes large gradient based steps to rapidly explore the state
space. The application of the Hamiltonian dynamics allows to estimate rare events and sample
from target distributions defined as the change of measures. The estimates demonstrated a
variance reduction of the presented algorithm and its efficiency with respect to a standard
Monte Carlo and interacting particle based system(IPS). We tested the algorithm on the case
of the barrier option pricing.
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1 Introduction

Hamiltonian flow based Monte Carlo simulations originates from physics have been used in
many applications in statistics, engineering for a number of years. However these methods are not
widely used in the estimation of rare events and in the financial option pricing practise.

This paper proposes Hamiltonian Flow Monte Carlo technique for an efficient estimation of
the rare event probability. Similarly to an importance sampling technique this method involves
a change of probability measure. The random variables are sampled according to a modified
probability measure that differs from a reference measure.

A rare event is the probability P(f(xt) > at) for large values of x. One way to deal with this
problem is to change an original measure, so that ak is not too large in the new measure. Define
the following set:

At = {x ∈ RM , f(xt) > at} (1)

EP[1At ] = EQ[1AtLt] (2)

where L = dP
dQ

is a Radon-Nykodim derivative.
The Hamiltonian approach in the Monte Carlo context was developed by Duane et al. [11],

R. Neal [15] where they proposed an algorithm for sampling probability distributions with con-
tinuous state spaces. The advantage of the Hamiltonian based Monte Carlo is in the fact that
we could extend the state space by including a momentum variable that will force in our context
to move long distances in the state space in a single update step. We use this property of the
Hamiltonian dynamics to explore rarely-visited areas of the state space and efficiently estimate
rare-event probability. Algorithm consists of two parts: simulation of the Hamiltonian dynamics
and Metropolis-Hastings test, that removes the bias and allows large jumps in the state space. We
will show the performance of the algorithm on the Down-Out Barrier option technique with low
level of a barrier.

HFMC could be considered within the optimal transportation problem, which was posed back in
the 18-th century. Like HFMC, other simulation based approaches such as particle methods [7],[8]
or the transportation using a homotopy [10] allow to move a set of particles from the measure P to
the measure Q, by minimizing the transportation cost. We will show how the rare events estimation
could be computed using interacting particle systems [9].

The paper is organized as follows. Section 2 introduces state of the art approach to estimate
rare events: MC and PMC and formulates the problem within the context of Barrier option pricing.
Section 3. describes the Hamiltonian Flow Monte Carlo Algorithm. Section 4 presents the law of
large numbers and convergence for HFMC. An adaptation of the Hamiltonian Flow Algorithm in
the case of a Barrier option, numerical results and discussion is presented in Section 5. Section 6
concludes.
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2 Monte Carlo and Interacting Particle System

2.1 Problem Formulation

Barrier option pricing is one of the cases when we encounter to the case of rare events. Consider
a sequence of random variables {Xn}n≥0, which in the financial context could be interpreted as
asset prices, which forms a Markov Chain on the space RnS . Given some stochastic process {Xt}t≥0,
for any test function f , we would like to compute the following expectation:

C = EP[f(XT )1Xt∈[0,T ]∈At ] (3)

One of the most popular ways to deal with this problem is importance sampling, when we replace
the original statistical measure P by an importance measure Pδ. Then for Xn = (X1, ..., Xn).:

C =

∫
f(Xnt)

dP

dPδ
(Xnt)dPδ(Xnt)

nt∏

n=1

1Xn∈An = EPδ

[
f(Xnt)

dP

dPδ

nt∏

n=1

1Xn∈An

]
(4)

where the rare event set An is given by:

An = {Xn ∈ RnS , f(Xn) > an} (5)

In practise we don’t have an explicit form of the likelihood ratio dP
dPδ , so it becomes unfeasable

unless one considers very simple toy examples. One of the solutions was interacting particle sys-
tem(IPS), which was proposed by Del Moral and Garnier [8], where they proposed to generate
particles(samples) in two steps, i.e. particle mutation and selection. The idea is to approximate
the ratio of P with respect to some importance measure Pδ by choosing a weight function ωn that
approximates the Radon-Nikodym derivative dP

dPδ . If we assume that P and Pδ have density function

p and p̃ respectively, for nS particles {X
(m)
n }nS

m=1 we could define the weight function iteratively by:

nt∏

n=1

ωn(X(m)
n ) ∝ dP

dPδ
(X(m)

nt
) =

nt∏

n=1

pn(X
(m)
n , X

(m)
n−1)

pδ
n(X

(m)
n , X

(m)
n−1)

(6)

Since two measures P and Pδ form a Markov chain, the Radon-Nykodim derivative could be

decomposed into the product of ratio of the transition density pn(·, X
(m)
n−1) to the transition density

with respect to the measure Pδ.
The normalized importance weight function is given by:

Wn(X(m)
n ) =

ωn(X(m)
n )

1
nS

∑nS
j=1 ωn(X(j)

n )
(7)

The IPS estimate of an expectation (3) will have the following form:

ĈIP S =
E
[
f(Xnt)

∏nt−1
n=1 ωn(Xn)1Xn∈An

]

E
[∏nt−1

n=1 ωn(Xn)1Xn∈An

] (8)

In our experiments we choose a potential function(an unnormalized importance weight) of the
form:

ωn(X(m)
nt

) =
nt∏

n=1

eδ(X
(m)
n −X

(m)
n−1) (9)

where δ is an exponential tilting parameter. One issue with this approach is in the fact that an
optimal choice of tilting parameter δ has to be judiciously chosen by running simulations and, in
fact, it is fixed across all time steps n = 1, ..., nt.
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2.2 Algorithm

The algorithm could be described by the following scheme, ∀m = 1, ..., nS :

X(m)
n

Sampling−−−−−−→ X̂
(m)
n+1

Selection−−−−−−→ Φ(X̂
(m)
n+1) = X

(m)
n+1 (10)

At each time step n = 1, ..., nt we draw nS independent random variables from the density

pδ
n(·, X

(m)
n−1) to construct nS particles, X̂

(m)

n = (X̂
(m)
n , X̂

(m)

n−1). Given generated particles, we select,

or draw independently nS particles X(m)
n = (X

(m)
0 , ..., X

(m)
n ) with replacement of rejected particles

according to their probability weights:

Wn(X̂
(m)

n ) =
ωn(X̂

(m)

n )

1
nS

∑nS
j=1 ωn(X̂

(j)

n )
(11)

And at time step nt, we get the following IPS estimator:

E[f(Xnt)
nt∏

n=1

1Xn∈An ] ≈ 1

nS

nS∑

m=1

(
f(X̂(m)

nt
)

nt∏

n=1

ωn−1(X
(m)
n−1)1

X̂
(m)

n ∈An

)

Algorithm 1: IPS algorithm

1 Initialization: nS - #(simulations), nt - #(time steps), X0 - initial value
2 for n = 1, ..., nt do

3 for m = 1, ...nS do

4 Generate X
(m)
n from p(·, X

(m)
n−1) and set X̂

(m)

n = (X̂
(m)
n , X

(m)
n−1);

5 if X̂
(m)

n ∈ A then

6 X̂
(m)
n = 0

7 else

8 Compute the weight: ωn(X̂
(m)

n ).
9 end

10 end

11 end

12 if n < N then

13 Resample using probability weight: Wn(X̂
(m)

n ) = ωn(X̂
(m)

n )

1
nS

∑nS
j=1

ωn(X̂
(j)

n )
to sample X(m)

n .

14 end

15 end

3 Hamiltonian Flow Monte Carlo

3.1 Markov Chains on a Phase Space

From section 2 we know that one of the ways to deal with rare event probabilities is to change
a measure:

EP[f(Xnt)
nt∏

n=1

1Xn∈An ] = EQ[f(Xnt)
dP

dQ

nt∏

n=1

1Xn∈An ] (12)
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To approximate Radon-Nikodym derivative dP
dQ

we will generate Markov Chain that will converge
to an ergodic distribtion. Let us introduce a random process Xu in a pseudo-time u and consider
the following SDE, which is a gradient flow distrubed by a noise:

dXu = −∇Ψ(Xu)du + 2
√

β−1dWu (13)

where Ψ(X) := − log(p(X)) is a potential. Under the assumption of ergodicity, the auto-
correlated path Xu asymptotically, i.e. u → ∞ draws samples from a stationary distribution:

π(X) =
1

Z exp(Ψ(X)) (14)

where a normalizing constant Z:

Z =

∫

Rn
e−βΨ(x)dx (15)

This can be seen as a unique solution of the following Fokker-Plank equation, given that Ψ
satisfies to some growth condition:

∂p(t, x)

∂t
= div(∇(Ψ(x)ρ)) + β−1∆p (16)

When we mentioned ergodicity, we meant, that for a class of regular functions φ : RX → R and
x0 a.s., the Markov Chain satisfies:

1

L

L∑

l=1

φ(xl) →
∫

RX

φ(x)π(dx) = Eπ[φ(X)] (17)

Observe that eq. (13) is a reversible process, which is interesting from theoretical point of view,
but in practise the speed of convergence is not optimal. One of the ways to improve the convergence
is to add a divergence-free drift b and consider the following modified SDE:

dXu = (−∇Ψ(Xu) + b(Xt))du + 2
√

β−1dWu (18)

in order to satisfy detailed balance condition, we assume that ∇(be−Φ) = 0.
Another way to improve the convergence is to consider a generalized Langevin SDE:

Ẍγ
u = −∇Ψ(Xγ

u ) − Ẋγ
u +

√
2β−1Ẇu (19)

We can rewrite it as:
{

dXu = Pudu

dPu = −∇Ψ(Xu)du − Pudu +
√

2
β

dWu
(20)

where the pair (X, P ) is a kinetic process with X is the position and P = dX
du

is the velocity,
that acts as an instantaneous memory.

The invariant function of the Markov process {x, P}, if it exists, is given by:

π0(x, P ) =
1

Z e−βH(x,P ), Z =

∫

R2
e−βH(x,P )dPdx (21)

where

H(x, P ) =
1

2
PM

−1P + Ψ(x) (22)
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is a Hamiltonian function on R2.
We will use the Hamiltonian system to generate The Markov Chain and approximate a Radon-

Nikodym derivative dP
dQ

. The Hamiltonian Flow Monte Carlo uses a physical simulation of moving
particles with momentum under the impact of the energy function to propose Markov chain tran-
sitions, that allows rapidly explore state space. Its fast exploration can be explained by the fact
that it extends the state space by an auxilliary momentum variables, P , and then runs a physical
simulation to move long distances along probability contours in the extended state space.

We remind that, given the Markov Chain {Xl}l≥0, Birkhoff theorem says that

1

nS

nS∑

l=1

f(Xl) −→
nS→∞

∫
f(x)dπ(dx) = ̺ a.s. (23)

where ̺ is the expectation of f(X) with respect to the unique invariant distribution π of the Markov
Chain.

3.2 Hamiltonian Flow’s Integrator and Properties

We will use a configuration space M with periodic boundary conditions. Each point on M will be
a set of nS particles: X(1), ..., X(nS ) and a generic momentum space RnS , in this case the cotangent
space is given by T ∗M = RnS × RnS .

Ξu : T ∗M → T ∗M

(X, P ) → Ξu(X, P )
(24)

Ξu(X0, P0) is the solution to the Hamilton’s equation:

{
dXu = M

−1Pudu
dPu = −∇Ψ(Xu)du

(25)

Hamiltonian system has three main properties: reversibility, conservation of energy and volume
preservation.

3.2.1 Sympletic Integration of Hamiltonian Equations

In most cases we can not compute the Hamiltonian flow in closed form and that is why we need
to discretize the system (25). To make sure that we can preserve symplecticness and reversibility,
we will discretize using leap-frog integrator, which is a symplectic integrator of the Hamiltonian
system.

Split the Hamiltonian (22) into 3 parts:

H1 =
1

2
Ψ(X), H2 =

1

2
〈P,M−1P 〉, H3 =

1

2
Ψ(X) (26)

Taking each of these terms separately to be the Hamiltonian function of a Hamiltonian system
gives rise to equations of motion with trivial dynamics.





Pn(u + ∆u
2 ) = Pn(u) − ∆u

2
∂Ψ
∂xn

(Xn(u))

Xn(u + ∆u) = Xn(u) + ∆uPn(u + ∆u
2 )M−1

Pn(u + ∆u
2 ) = Pn(u + ∆u

2 ) − ∆u
2

∂Ψ
∂xn

(Xn(u + ∆u))

(27)

where ∆u is the discretization size of the Hamiltonian.
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Consider a concatenation of three maps:

Ξn = Ξ∆u,H3
◦ Ξ∆u,H2

◦ Ξ∆u,H1
(28)

where Ξ∆u,H1
: (X(0), P (0)) → (X(∆u), P (∆u)). Similarily, Ξ∆u,H1

= Ξ∆u,H3
, and Ξ∆u,H2

is
calculated to be position update. Since the energy is preserved by the flow, the trajectories evolve
on the submanifold of constant energy:

T ∗M(E0) = {(X, P ) ∈ T ∗M; (H(X, P ) = E0)} (29)

where E0 = H(X0, P0) is the energy of the initilized data.

3.3 Hamiltonian Flow Monte Carlo on Rare Events Sets

Let H(X, P ) be the Hamiltonian function on R2nS , where X is a potential, and P is a momentum
variable of the Hamiltonian system. The algorithm consists of two steps, first sampling from prior
distribution values for potential and momentum and then a physical simulation of the Hamiltonian
dynamics. To make sure that at the end of each physical simulation of time step n + 1 we will
have a probability measure, i.e. values will not exceed 1, we will use a Metropolis-Hastings test
αn+1, by choosing the minimum between 1 and the ratio of generated values of potential at time
steps n + 1 and n, which is an acceptance probability of potential simulated by the Hamiltonian
dynamics. If we extend the state space X = {X1, ..., Xn} and denote the extended space as
X̃ = {X1, ..., Xn, P1, ..., Pn}, we can denote the acceptance probability as:

αn+1(X̃n, X̃n+1) = 1 ∧ e(−H(Xn+1,Pn+1)+H(Xn,Pn))∆t (30)

If we assume that the importance measure Q admits the following importance distribution with
a kernel K:

q(dX̃n+1) =

∫

R2M
p(X̃n)K(X̃n, dX̃n+1)dX̃n (31)

Then, the associated Radon-Nikodym derivative will have the following form:

dP

dQ
(X̃n+1) =

dP(X̃n+1)
∫
R2M p(X̃n)K(X̃n, dX̃n+1)dX̃n

(32)

Assume that at each times step n we have nS sample of r.v. {X
(m)
n }nS

m=1. Now we can define a
transition kernel K as follows.

Definition Consider a mapping Ξn : X̃
(m)
n → X̃

(m)
n+1, which is a transformation in R2nS , u ∼

Unif [0, 1]. Then a transition kernel K(·, dX̃
(m)
n+1) is given by:

K(X̃(m)
n , dX̃

(m)
n+1) = 1u≤αn+1Ξn(X̃(m)

n )dX̃
(m)
n+1 + 1u>αn+1X̃(m)

n δ
X̃

(m)
n

(dX̃
(m)
n+1) (33)

This kernel can be interpreted as the probability to move from the point X̃
(m)
n to a new proposed

point X̃
(m)
n+1, which is simulated through a discretized Hamiltonian flow Ξn(·) . If the proposed step

is not accepted, then next step is the same as the current step, i.e. X̃
(m)
n+1 = X̃

(m)
n . This procedure

allows as to leave the joint distribution of X
(m)
n and P

(m)
n invariant. Volume preservation means

that the determinant of the Jacobian matrix of a transformation Ξn is equal to one.
We will need basic property of symplectic integrators, i.e. reversibility.
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Lemma 3.1. The integrator Ξn is reversible.

We refer to [13] for the proof of this result.

Assumption 3.2. • The potential Ψ ∈ C1 is bounded from above;

• The gradient ∇Ψ is a globally Lipschitz function.

Lemma 3.3. If the potential Ψ satisfies to the assumption 3.2, then the kernel K is irreducible and
the Markov Chain satisfies

∀x ∈ M, ∀B ∈ B(M), µLeb(B) > 0, K(x, B) > 0 (34)

Proof. We refer to [2].

Proposition 3.4. Given that the assumption 3.2 holds, then for n = 1, ..., nS , the irreducible
Markov Chain defined by a transformation Ξn is reversable under the distribution π:

π(dX̃(m)
n )K(X̃(m)

n , dX̃
(m)
n+1) = π(dX̃

(m)
n+1)K(X̃

(m)
n+1, dX̃(m)

n ) (35)

Thus π(x) is the invariant distribution of the Markov Chain {X̃n}nS
n=1.

Proof. Rewrite the kernel K as:

K(x, dy) = α(x, y)Ξn(x)dy + a(x)δx(dy) (36)

where

a(x) = 1 −
∫

α(x, z)Ξn(x)dz (37)

∫
K(x, B)π(x)dx =

∫ [∫

B
α(x, y)Ξn(x)dy

]
π(x)dx +

∫
a(x)δx(B)π(x)dx =

=

∫

B

[∫
π(x)α(x, y)Ξn(x)dx

]
dy +

∫

B
a(x)π(x)dx =

=

∫

B

[∫
π(y)α(y, x)Ξn(y)dx

]
dy +

∫

B
a(x)π(x)dx

=

∫

B
π(y)(1 − a(y))dy +

∫

B
a(x)π(x)dx =

∫

B
π(y)dy (38)

Corollary 3.5. The kernel K satisfies reversibility condition with an indicator function of the rare
event set:

π(x)K(x, y)1x∈A = π(y)K(y, x)1y∈A (39)

Now we can define rare event transitions through the kernel M.

Definition Assume that the assumption 3.2 holds and consider a Markov Chain (X
(m)
n )n≥1 with an

initial prior p1(X1) and define the following transition kernel p(X̃
(m)
n+1 ∈ dX̃

(m)
n+1|X̃(m)

n ) = M(X̃
(m)
n , dX̃

(m)
n+1).

M(X̃(m)
n , dX̃

(m)
n+1) = K(X̃(m)

n , dX̃
(m)
n+1)1

K(X̃
(m)
n ,dX̃

(m)
n+1)∈An

+ X̃(m)
n 1

K(X̃
(m)
n ,dX̃

(m)
n+1)6∈An

(40)
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It means that the point X̃
(m)
n moves to a new point X̃

(m)
n+1 only if it is inside a rare event set

An, otherwise we stay at point X̃
(m)
n .

Proposition 3.6. Let n = 1, ..., nt. The Markov chain Xn is invariant under the kernel
M(·, dXn+1).

Proof.

∫
π(dx)M(x, dy)1x∈A =

∫
π(dx) [K(x, y)1x∈A + K(x, Ac)δx(dy)] 1x∈A =

=

∫ ∫
π(dx)K(x, dz) [1z∈Aδz(dy) + 1Ac(z)δx(dy)] 1x∈A =

=

∫
π(dx)K(x, dy)1y∈A1x∈A +

∫
π(dy)K(y, dz)1Ac (y)1x∈A = π(dy)1y∈A (41)

Invariance of X̃
(m)
n says that for any bounded and measurable function f , the distribution of

f(M(X̃
(m)
n , dX̃

(m)
n+1)) and f(X̃

(m)
n ) is the same.

E[f(M(X̃(m)
n , dX̃

(m)
n+1))] = E[f(X̃(m)

n )] (42)

Under the kernel M of X̃n, the final HFMC estimate is given by:

ĈHF MC =
1

nS

nS∑

m=1

f(X(m)
nt

)1
{X

(m)
n+1,X

(m)
n ∈An}

(43)

3.4 Algorithm

The Hamiltonian function is defined by H(X, P ) = Ψ(X) + 1
2P T

M
−1P , where Ψ(X) - is a

potential energy function, and the second term is a kinetic energy function with a momentum
variable P and mass matrix M. Usually one sets a mass matrix M to be an identity matrix I. The
proposed samples are obtained by a physical simulation of the Hamiltonian dynamics:

{
dXu = M

−1Pudu
dPu = −∇Ψ(Xu)du

(44)

We start by simulating M random variables from a prior X1 = p0(·, X
(m)
0 ), which is the density of

the underlying SDE and generating M random variables from gaussian distribution for momentum

{P
(m)
0 }M

m=1.

For each step n = 1, ..., N we set x
(m)
H = X

(m)
n , P

(m)
H = P

(m)
n . The proposed new candidates are

obtained after L-leapfrog steps of the simulation of the Hamiltonian dynamics and they are defined

by x∗ = x
(m)
H (L) and P ∗ = P

(m)
H (L). These new set of proposed candidates are then accepted

according to the following Metropolis-Hastings test. First generate uniformly distributed random
variable u ∼ Unif(0, 1), then compute α:

α = 1 ∧ e(−H(x∗,P ∗)+H(x
(m)
H

,P
(m)
H

))∆t; (45)

If proposed candidates (x∗, P ∗) are accepted, i.e. α > u we set X
(m)
n+1 = x∗, and if they are

rejected, i.e. α ≤ u, we set X
(m)
n+1 = x

(m)
H . At the end, calculate estimator in (43). The main steps

of the algorithm are summarized in Algorithm 2.
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The Metropolis-Hastings test insures a volume preservation. That explains the fact that we
don’t need to compute a normalizing constant in our algorithm. Volume preservation means that
the absolute value of the Jacobian matrix of the leapfrog integrator is equal to one, this is because
candidates are proposed though simulation of the Hamiltonian flow.

Algorithm 2: Hamiltonian Flow Monte Carlo in Rare event setting

1 Initialization: nS - #(simulations), nt - #(time steps)
2 for n = 1, ..., nt do

3 for m = 1, ...nS do

4 Generate X
(m)
n from prior p̃(X

(m)
0 , ·);

5 Simulate initial momentum P
(m)
1 ∼ N (0, IM ), set x

(m)
H = X

(m)
n and run the

Hamiltonian flow:
6 for lf = 1, ...L − 1 do

7

P
(m)
H ((lf + 1

2)δ) = P
(m)
H (lf ) − δ

2
∂Ψ

∂xH
(x

(m)
H (lf ))

x
(m)
H ((lf + 1)δ) = x

(m)
H (lf ) + δP

(m)
H ((lf + 1

2 )δ)I−1
M

P
(m)
H ((lf + 1)δ)) = P

(m)
H ((lf + 1

2)δ) − δ
2

∂Ψ
∂xH

(x
(m)
H ((lf + 1)δ))

8 end

9 Calculate acceptance probability and set x∗ = x
(m)
H (L), P ∗ = P

(m)
H (L):

a = 1 ∧ e(−H(x∗,P ∗)+H(x
(m)
H

,P
(m)
H

))∆t; (46)

Draw u ∼ Unif(0, 1);
10 if u < a then

11 Set X
(m)
n+1 = x∗;

12 else

13 Reject, and set X
(m)
n+1 = x

(m)
H

14 end

15 end

16 if Xm
n , Xm

n+1 ∈ A then

17 Set Xm
n = 0, Xm

n+1 = 0
18 end

19 end

20 end

21 Compute:

ĈHF MC =
1

nS

nS∑

m=1

(
f(X(m)

nt
)

nt∏

n=1

e(−H(X
(m)
n+1,P

(m)
n+1)+H(X

(m)
n ,P

(m)
n )∆t1

X
(m)
n ,X

(m)
n+1∈An

)

4 Convergence Analysis

4.1 IPS convergence

IPS convergence, and in particular the asymptotic behaviour as number of particles nS → ∞ was
thoroughly studied in [9].

The following result given in [5] allows a non asymptotic control of variance of the rare event

10



probability.

Assumption 4.1.

δ̃n := sup
x,y

ωn(x)

ωn(y)
< +∞ (47)

Theorem 4.2. When the assumption (4.1) is met for some δ̃n, we have the nonasymptotic esti-
mates:

E



∣∣∣∣∣
CIP C

C
− 1

∣∣∣∣∣

2

 ≤ 4

nS

nt∑

s=1

δ̂
(nt)
s

pk
(48)

where δ̂
(nt)
s =

∏
s≤k<s+nt

δ̃k

4.2 HFMC Convergence

4.2.1 LLN and Convergence Rate

Birkhoff ergodic theorem allows us have law of large numbers(LLN) like convergence. So, we
are interested in a sigma-algebra G of invariant events, in particular when G is trivial.

From lemma 3.3 we know that the Markov chain generated by HFMC is irreducible, and we
can see that the Markov Chain that we get from the rare event kernel M satisfies irreducibility
conditions due to the fact that the transition density is always positive. Applying the results by
[17], we have:

Proposition 4.3. [17] Suppose that M is a π-irreducible Metropolis kernel. Then M is a Harris
reccurent.

Proposition 4.4. [17] If M is positive Harris and aperiodic then for every initial distribution λ:

||
∫

λ(dx)(M)l(x, ·) − π||T V → 0, l → ∞ (49)

for π almost all x.

where || · ||T V is a total variation distance.

4.2.2 Geometric Ergodicity

To establish central limit theorem (CLT), we need a geometric ergodicity of the chain.

Definition A subset C of that state space (RnS , B(RnS )) is petite if there exists a non-zero positive
measure ν on the state space and subsampling distribution q such that

Kq(x, A) ≥ ν(A), ∀A ∈ B(RnS ) and x ∈ C (50)

Definition A subset C of that state space (RnS , B(RnS )) is small if there exists a non-zero positive
measure ν on the state space and real-valued number l ∈ R such that

Kl(x, A) ≥ ν(A), ∀A ∈ B(RnS ) and x ∈ C (51)

Observe, that every small set is petite.
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Theorem 4.5. Suppose for an irreducible, aperiodic Markov chain having transition probability
kernel K and a state space RnS , there exists a petite set C areal valued function V , satisfying v ≥ 1,
and constants b < ∞ and λ < 1 such that

KV (x) ≤ λV (x) + b1C(x), ∀x ∈ RnS (52)

holds. Then the chain is geometrically ergodic.

The function V is called a geometric drift. Take the expectation of the both sides of (52) and
using the invariance of measure π with respect to the kernel K:

Eπ[V (X)] ≤ bπ(C)

(1 − λ)
(53)

In other words, for λ ∈ (0, 1] a function satisfying (52) is always π-integrable.

Proposition 4.6. Assume that there exist λ ∈ [0, 1) and b ∈ R+ such that

KV ≤ λV + b (54)

and
lim sup K(x, R(x) ∩ B(x)) = 0 (55)

It was shown in [12] that under certain conditions, HFMC kernel is geometrically ergodic.

5 Applications and Numerical Results

We will test our algorithm on down-out(DOC) Barrier option pricing, and compare its estimate
with a standard Monte Carlo and Particle Monte Carlo methods. Lets consider a toy example and
assume that our asset follows the following SDE:

dXt = µXtdt + σXtdWt (56)

where µ is a drift, σ is a constant volatility parameter. European DOC call Barrier option is a
usual call option contract that pays a payoff max(ST − K, 0), provided that the asset price S has
not fallen below a barrier B during the lifetime of the option. If the pricing process ever reaches
the barrier B, then the option becomes worthless.

We use Euler-Muruyama disretization scheme and we use the following notation Xtn := Xn, so
for a time discretization: 0 = t0, t1, ..., tnt = T , the solution of the SDE in (56):

Xn = Xn−1e(µ−0.5σ2)∆t+σ∆tǫn (57)

The DOC barrier call option price of a discretely monitored barrier at maturity T is:

C = e−(r−q)T E[g(XnS
)

nt∏

n=1

1Xt∈[tn−1,tn]∈An ] (58)

where r, q are respectively an interest and a dividend rates, g(x) = (x−K)+ is a payoff function
and the set An in the case of a DOC barrier call option:

An = inf
tn−1≤t≤tn

{t : Xt > B}
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We use continuity correction that was proposed in [1]: B = B exp−0.5826σ∆t.
HFMC estimator to compute DOC call option is given by:

ĈHF MC = e−(r−q)T 1

nS

nS∑

m=1

(
g(X(m)

nt
)

nt∏

n=1

e(−H(X
(m)
n+1,P

(m)
n+1)+H(X

(m)
n ,P

(m)
n )∆t1

X
(m)
n ,X

(m)
n+1∈An

)
(59)

Monte Carlo estimate is given by:

ĈMC = e−(r−q)T 1

nS

nS∑

m=1

(
g(X(m)

nt
)

nt∏

n=1

1
X

(m)
n ∈An

)
(60)

The IPS estimator is given by:

ĈIP S = e−(r−q)T 1

nS

nS∑

m=1

(
g(X̂(m)

nt
)

nt∏

t=1

Wn−1(Xm
n−1)1

X̂n∈An

)

In the context of a rare event, we chose the barrier level at 65, with an initial price X0 = 100,
Strike K = 100, interest rate r = 0.1, volatility σ = 0.3, T = 0.5 and zero dividends q = 0. In the
table 1 and 2, the Hamiltonian Flow MC, MC and IPS are presented. We used 50000 and 75000
particles with 750 equally spaced time steps in Table 1 and Table 2.

It is very important to choose the number and the size of leapfrog steps. We chose them such
that the acceptance probability α is bigger than 0.8.

We compare each approach by estimating the standard deviations, root mean squared error
(RMSE), bias, relative mean squared error(RRMSE), time required to compute each estimate and
the figure of merit (FOM). We run 20 MC experiments. The RMSE estimator is given by:

RMSE =

√√√√ 1

Ms

Ms∑

l=1

||C − Ĉl||2 (61)

where C is price computed analytically, Ĉl are Monte Carlo estimates and Ms is the number of
Monte Carlo experiments.

The RRMSE is computed using the following formula:

RRMSE =
RMSE

Ĉ
(62)

To measure the efficiency of each method presented in the article, we will use the figure of
merit(FOM):

FOM =
1

R2 × CPUt
(63)

where CPUt is CPU time need to compute the estimator and R is a relative error, which is the
measure of a statistical precision:

R =
St.dev

C̄
∝ 1√

nS
(64)

where C̄ =
∑Ms

l=1 Ĉl .
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Table 1: DOC Barrier option estimates statistics. B = 65, X0 = 100, K = 100, r = 0.1, σ =
0.3, T = 1/2, and div = 0; δ = 0.0001, #(Leap frog step): 35. True price: 10.9064, nS = 50000,
nt = 750

Stat MC PMC HFMC

St. dev. 0.088518965 0.08562686 0.065318495
RMSE 0.007011127 0.008004332 0.0143

RRMSE 0.001298078 0.000292621 1.87148E-05
CPU time 3.7251 4.8432 5.90675

FOM 4097.9 3387.2 4737.6

Table 2: DOC Barrier option estimates statistics. B = 65, X0 = 100, K = 100, r = 0.1, σ =
0.3, T = 1/2, and div = 0; δ = 0.0009, #(Leap frog step): 40. True price: 10.9064, nS = 75000,
nt = 750

Stat MC PMC HFMC

St. dev. 0.062385996 0.044259477 0.038039517
RMSE 0.037561882 0.051285344 0.037561882

RRMSE 0.000355199 0.000240548 0.000129293
CPU time 2.2626 6.0322 7.6832

FOM 13475.2 10117.7 10711.0

We run 20 independent Monte Carlo experiments for each estimate. Since IPS and the simu-
lation of the Hamiltonian dynamics requires more time to compute an estimate, we use the figure
of merit to compare three approaches. From the table 1 and 2 we can observe that HFMC demon-
strates standard deviations, bias and relative RMSE.

6 Conclusion and Further Research

We proposed an importance sampling algorithm based on the simulation of the Hamiltonian
system, that generates a Markov Chain that follows along the gradient of the target distributions
over large distances of the state space, while producing low-variance samples.

From the simulated results we saw that HFMC allows efficiently estimate rare event probabil-
ities, which we tested on the case of DOC Barrier options. Its estimates show lower variance and
bias than that of MC and IPS.

It will interesting to adapt a stochastic gradient Hamiltonian Monte Carlo algorithm [6], when
one can avoid computing the gradient at each simulations. Taking into account the big data problem
and the necessity of online estimations, we can get sufficient improvements. Another extension is
the adaptation to the Riemann Manifold Hamiltonian Monte Carlo [14], when we can create a
statistical manifold and tune HFMC by computing explicitely the mass matrix M in the kinetic
energy of the algorithm.

In the next article we will show the performance of mixed IPS and the Hamiltonian Flow Monte
Carlo. It will allow faster explore the state space on the one hand, and push trajectories into rare
event area on the other hand. By resampling we can reduce the correlation between generated from
the Hamiltonian system Markov chains.
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