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COMBINING SHORT AND LONG TERM RESERVOIR1

OPERATION USING INFINITE HORIZON MODEL2

PREDICTIVE CONTROL3

Luciano Raso1, Pierre-Olivier Malaterre 2
4

ABSTRACT5

Model Predictive Control (MPC) can be employed for optimal operation of adjustable6

hydraulic structures. MPC selects the control to apply to the system by solving in real-7

time an optimal control problem over a finite horizon. The finiteness of the horizon is both8

the reason of MPC’s success and its main limitation. MPC has been in fact successfully9

employed for short-term reservoir management. Short-term reservoir management deals10

effectively with fast processes, such as floods, but it is not capable of looking sufficiently11

ahead to handle long-term issues, such as drought.12

We propose an Infinite Horizon MPC solution, tailored for reservoir management, where13

input signal is structured by use of basis functions. Basis functions reduce the optimization14

argument to a small number of variables, making the control problem solvable in a reasonable15

time. We tested this solution on a test case adapted from Manantali Reservoir, on the16

Senegal River. The long-term horizon offered by IH-MPC is necessary to deal with the17

strongly seasonal climate of the region for both flood and drought prevention.18

Keywords: Model Predictive Control, Reservoir Operation, Infinite Horizon, Manantali19

INTRODUCTION20

Optimal reservoir operation can be framed as a control problem (Soncini-Sessa et al.21

2007), which, for reservoir operation, has been typically solved using methods from the22
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dynamic programming family. Stochastic Dynamic Programming (SDP) (Stedinger et al.23

1984; Trezos and Yeh 1987) solve a control problem that is markov. SDP, however, suffers24

from the so-called “curse of dimensionality,, (Bellman and Dreyfus 1966) and “curse of25

modelling,, (Tsitsiklis and Van Roy 1996; Bertsekas and Tsitsiklis 1995). The curse of26

dimensionality limits SDP application to simple systems, made of few variables. Curse of27

modeling implies the demand of modeling the inflow to the reservoir as a stochastic dynamic28

system.29

Model Predictive Control (MPC) is a real-time control technique (Morari et al. 1999;30

Mayne et al. 2000) suffering neither the curse of dimensionality nor the curse of modelling,31

as intended for SDP. MPC has been extensively applied on water systems (van Overloop32

2006), mostly for canals (Malaterre et al. 1998; Malaterre and Rodellar 1997; van Overloop33

et al. 2014; Horváth et al. 2014), river delta (Dekens et al. 2014; Tian et al. 2015b), also34

considering quality (Xu et al. 2013; Xu et al. 2010), transport of water and over water (Tian35

et al. 2013; Tian et al. 2015a) and reservoir operation (Raso et al. 2014b; Schwanenberg36

et al. 2015; Ficch̀ı et al. 2015; Galelli et al. 2012; Schwanenberg et al. 2014).37

In reservoir operation, MPC proved to be effective for short-term objectives, such as38

flood prevention. Short term objectives, however, must be balanced with long-term ones, as39

drought prevention, among others. MPC, in fact, finds a control action optimal for a finite40

horizon, but large reservoirs have often a slow dynamic, and effect of control actions are41

mutually interdependent on a long period. In this case, classic MPC can be employed for42

short-term optimal control method, but it does not ensure long-term optimality, as effects43

after the optimization horizon are not included.44

Methods to integrate the long-term effects within the MPC optimal control problem refer45

to as Infinite Horizon MPC (Maciejowski 2002). Among these, a suitable approach is input46

structuring by use of basis function (Wang 2001). We propose here an innovative use of47

input structuring for Infinite Horizon MPC applied to reservoir operation, and we tested48

some triangular basis functions. This work extends and generalizes some initial results49
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initially presented in (Raso et al. 2014a). Constraints on inputs can be easily included. We50

show an application on a test case adapted from Manantali Reservoir, on the Senegal River.51

METHOD52

Consider a water system composed of Nx reservoirs that is operated by Nu discharge53

decisions. Discharge decisions are diversions from rivers and releases from reservoirs. A54

reservoir may have multiple releases (by different structures or for different users). The55

system is influenced by Nd streamflows.56

We start from framing the reservoir operation problem in control terms. Problem (1)57

define the optimal control problem for a reservoir system.58

min
{πt}Ht=1

H+1∑
t=1

E
dt

[
gt(xt,ut,dt)

]
(1a)

Subject to:

xt = xt−1 + ∆t · (I · [ut,dt]−O · [ut,dt]) (1b)

0 ≤ ut ≤ umax (1c)

xmin ≤ xt ≤ xmax (1d)

ct(xt,ut,dt) ≤ 0 (1e)

dt ∈ Dt (1f)

xt=0 given (1g)

In problem (1), vectors xt ∈ RNx ,ut ∈ RNu ,dt ∈ RNd , represent reservoir volumes,59

discharge decisions, stochastic streamflow scenarios at instant t for stocks and in the period60

[t −∆t, t) for flows; gt(·) is a RN to R function, representing the system step-cost function61

at t, and N = Nx + Nu + Nd; E[·] is the average operator. In some cases different criteria62

other than the average may be used, such as the max operator. In Expression (1a), πt63

is the release policy, which gives the optimal release decision in function of to the system64
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state, such that u∗t = πt(xt). Equation (1b) is the continuity equation, represented by the65

reservoirs mass balance, where ∆t is the time-step length, I and O are the input and output66

matrix, of dimension Nx × (Nu + Nd), associating at each scenario and discharge decision67

to its reservoir. O(i, j) and I(i, j) is 1 if the i variable is input or output of reservoir j, 068

elsewhere. Hydrological inflow are hydrological scenarios extracted from Dt, as in Expression69

(1f), where Dt is a stochastic variable representing all possible future discharge scenarios.70

In Inequality (1e), ct defines other constraints that apply to the system, such as physical71

constraints, or other legal or environmental requirements treated as constraints. For example,72

discharge decision can be limited by water availability within the reservoir. H is the length73

of simulation, or closed-loop, horizon, on which the system is tested.74

Solving problem (1) is finding the control strategy πt, be either a function mapping ob-75

served state to optimal control, or a tree of decisions according to the observed discharge76

(Shapiro and Andrzej 2003). Different methodologies try to tackle the optimal release policy77

identification problem for reservoir operation. Simulation-based methods (Sulis and Sechi78

2013), known in the operational research community as policy function approximations (Pow-79

ell and Meisel 2015), are often used by analysts having their main expertise in hydrology,80

where the class of functions, or set of rules, is defined a priori, and some parameters are81

adjusted according to simulation results. Apart from simulation-based rules, methods from82

the dynamic programming family, typically Stochastic Dynamic Programming (SDP) (Ste-83

dinger et al. 1984), has been extensively employed to solve Problem (1) by taking advantage84

of its markov structure. SDP, however, suffers from the curse of dimensionality and the curse85

of modelling: the SDP functional optimization is particularly complex to solve numerically,86

therefore application are limited to systems made of few variables, and state transitions must87

be defined explicitly, requiring a stochastic representation of the inflow process. Stochas-88

tic Dual Dynamic Programming (Pereira and Pinto 1991; Tilmant et al. 2008) attenuates89

the curse of dimensionality (Shapiro 2011), and Sampling Stochastic dynamic Program-90

ming (Kelman et al. 1990; Faber and Stedinger 2001) tackles the curse of modelling, but91
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no methods from the dynamic programming family overcomes effectively both limitations.92

Evolutionary algorithms for reservoir operation are methods for non-linear optimization used93

to optimise some parameters that define the release policies (Nicklow et al. 2009; Reed et al.94

2013), but their application to large systems has been little tested.95

Model Predictive Control (MPC) is an alternative control method to tackle Problem (1).96

In MPC, at each control instant t, the control actions are obtained by solving on-line, i.e.97

at each control time-step, the following optimal control problem.98

min
U

[
h∑
k=1

gk(xk,uk,dk) + gh+1(xh)

]
(2a)

Subject to:

xk = xk−1 + ∆t ·
(
I · [uk,dk]−O · [uk,dk]

)
(2b)

0 ≤ uk ≤ umax (2c)

xmin ≤ xk ≤ xmax (2d)

ck(xk,uk,dk) ≤ 0 (2e)

xk=0 = xt, {dk}hk=1 given (2f)

In Equations (2), U = {uk}hk=1, where k is the time index, going from 1 to the final99

time-step of the optimization, or open-loop, horizon, h� H; gh the final penalty that sums100

up all the future costs beyond the control horizon.101

MPC uses the system model in Equations (2b-2e) to predict the system behavior in102

response to the control actions over a finite future horizon. The model takes the current state103

of the system as initial state, and a deterministic forecasts of disturbances as uncontrolled104

input, as in Equations (2f). Once system model, cost function, initial state and forecasted105

disturbance are given, MPC solves problem (2) and finds the optimal control trajectory for106

the future prediction horizon. At each time-step, only the first value of the optimal control107
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trajectory is applied to the real system, i.e. u∗t = uk=1; then the horizon is shifted ahead108

and the procedure is repeated at the next controlling instant using the latest up-to-date109

information.110

MPC is an on-line, or “real-time”, technique, meaning that Problem (2) is solved contem-111

poraneously to the system operation. At every control instant, MPC uses the most up-to-date112

system state and disturbance forecast. In MPC, a control policy u∗t = π(xt, {dk}hk=1) is found113

on-line by solving a deterministic optimization problem as defined in Equations (2), which is114

much easier to solve than its stochastic equivalent. MPC is not affected by the limitations of115

SDP, and it can be applied to much larger systems, using discharge forecasts not influenced116

by release decisions as input to MPC.117

Robustness to uncertainty is a key question in MPC research literature (Morari et al.118

1999). At each decision instant, MPC uses the most up-to-date information. This feedback119

mechanism due to the continuous system update gives to MPC a form of ‘inherent robust-120

ness” (Mayne et al. 2000), which may be sufficient to produce satisfactory results in the face121

of the present uncertainty. If this is not the case, synthetic robust MPC (Bemporad and122

Morari 1999) methods can augment the system robustness to the desired level, generally at123

the cost of additional computational complexity (Muñoz de la Peña et al. 2005).124

In MPC, the cost-to-go function gh should theoretically sum up all the costs, from instant125

h to infinite, for having left the system in xh at the end of the control horizon. In practice,126

however, this function is difficult to obtain. If gt is a Lyapunov function, and the control127

horizon is sufficiently long, MPC ensures stability (Maciejowski 2002), even without gh. An128

example of Lyapunov function widely used in MPC for trajectory following problems is a129

quadratic penalty on the state deviance from the optimal trajectory (van Overloop 2006; Xu130

et al. 2010; Negenborn et al. 2009; van Overloop et al. 2008). This property is extensively131

used in MPC applications for canal control, where the objective is trajectory tracking, but132

reservoir objectives are rarely well represented by Lyapunov functions.133

An alternative way to guarantee stability is adding a constraint on the final state (De Nicolao134
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et al. 1996). However, this solution requires the identification of a desired final state, which135

can be unknown. This is often the case in reservoir operation, where MPC applications use136

historical final penalties (Ficch̀ı et al. 2015) which does not guarantee optimality. Moreover,137

if the horizon is too short, this MPC configuration runs the risk of having an infeasible138

problem.139

Infinite horizon MPC is a family of solutions dealing with the finiteness of the optimiza-140

tion horizon. Within this family, input structuring (Wang 2001) seems to be particularly141

suited for reservoir operation. In input structuring, the control are not optimized directly,142

but they are arranged according to a convenient form. Among the different forms of input143

structuring we selected basis functions. Heuberger et al. (2005) offers a clear and accurate144

description of basis functions and their use for system identification.145

Equation (3) shows input structuring using basis function.146

uk =
N∑
i=1

λi · fi(k) (3)147

where fi(k) are fixed time-variant functions and λi ∈ RNu are their weights, selected with148

an optimization procedure.149

Basis functions can represent a smooth signal using few parameters λi, being therefore150

a potential appropriate approach for input structuring in reservoir operation. Reservoirs,151

in fact, filter out the high frequency variability of inflow. Consequently, the control signal152

(i.e. the releases) varies slowly too. Moreover, periodic basis functions can follow the yearly153

periodicity of natural systems.154

If input structuring is to be used in optimization, optimizing λi instead of uk reduces155

the degrees of freedom from h×Nu to N ×Nu. In a rolling horizon optimization problem,156

reducing the degrees of freedom allows the use of a much larger h, i.e. extending the control157

horizon without having an explosive growth in computational complexity. Input structuring158

reduces the computational complexity related to the horizon length, not affecting or being159

affected by other sources of complexity related to the system size or the number of objectives.160
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For this reason the proposed methodology is applicable to large systems in the same way as161

MPC when applied for short-term operation.162

Using input structuring in MPC, it is particularly important that the optimal control163

sequence is well represented in proximity of the first control value, which will be eventually164

applied to the system. Therefore, basis functions must be selected such that the control165

signal at the initial part of the horizon is regulated by a larger degree of freedom, i.e. a166

larger number of bases. Control values far ahead in the horizon have less influence on the167

first control value and can be represented by relatively less basis. Influences of control at168

instant k on first control value shades as k get larger with no clear boundary. Selection of169

basis functions shapes must follow this regression.170

Basis functions have been extensively used for system identification (Van Den Hof et al.171

1995; Van den Hof and Ninness 2005; Heuberger et al. 1995). However, in MPC, constraints172

on uk imply constraint on λi. In Equations (4) we define the infinite horizon MPC problem173

with input structuring by basis functions.174

min
Λ

h−1∑
k=1

e−r·k
[
· gk(xk,uk,dk) + ck(xk)

]
(4a)

Subject to:

xk = xk−1 + ∆t · (I · [uk,dk]−O · [uk,dk]) (4b)

U = M · Λ (4c)

0 ≤M · Λ ≤ umax (4d)

xk=0 = xt, {dk}ht=1 given (4e)

In Equation (4), Λ = [λ1}, . . . ,λN ], r is the discount rate, M is a N × h vector defined175

by the basis functions, such that M(k, i) = fi(k). Note that Equation (4c) is a linear176

transformation, implying that the problem stays linear in Λ, no matter whether the basis177
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functions are linear or not.178

State constraints, as in inequalities (1d) are integrated as soft constraints, such that179

ck(xk) = max{0, wx · (xk − xmax), wx · (xmin − xk)} (5)180

where wx � 0.181

Extending the long term far beyond the horizon where forecast are reliable requires the182

inclusion of climatic information and add large uncertainty (Zhao et al. 2011). Uncertainty183

that jeopardizes MPC robustness can be dealt with method for synthetic robust methods,184

such as Multiple MPC (van Overloop et al. 2008), Tree-Based MPC (Raso et al. 2014b;185

Maestre et al. 2012a; Maestre et al. 2012b) or others (Bemporad and Morari 1999; Muñoz186

de la Peña et al. 2005; Muñoz de la Peña 2005).187

Triangular basis function and triangles selection188

We use triangular basis function because of their simplicity to be communicated and to189

be defined from few parameters. Equations (6) define a generic triangular basis function i.190

fi(k) =


1− Ti+k

Li
if Ti + Li < k ≤ Ti

1 + Ti+k
Ri

if Ti < k ≤ Ti +Ri

0 otherwise

(6)191

Each triangle i is determined by its peak instant, Ti, its left base, Li, and its right base192

Ri. Figure 1 shows a graphical visualization of the triangles and their parameters. An193

alternative family of basis function could be a combination of exponential functions with194

different decay rate, and a sum of sines and cosines with difference frequency.195

Basis function accuracy must be progressive going ahead on time, this progression de-196

pending on the system characteristics. We give here some general indications for triangular197

functions, highlighting the advantages of some specific shapes.198

We suggest selecting progressive triangles, i.e. Li < Ri, Li + 1 > Li, in the early stage of the199
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horizon. In MPC in fact, only the first control value will be applied to the systems. The200

first control is more sensitive to controls that are closer in time; therefore it is better to have201

a higher degree of freedom in the initial part of the horizon. The first triangle should have202

its peak T at the initial time-step.203

Sufficiently far from present condition, periodicity becomes dominating. For t > P , where204

P is the system periodicity, triangles having Li and Ri equal to P/2 are able to follow the205

periodic trend. In this part of the horizon, T should be equal to P × j and multiple of206

P × (j + 1/2), where j is an integer going from zero to the number of years contained in the207

control horizon. Selection of independent triangles, such that Li+1 = Ri, and Ti+1 = Ti +Li,208

makes constraints independent.209

TEST CASE210

The method is tested on a system adapted from Manantali reservoir case. Manantali211

is located in Mali, on the Senegal River, presently used mainly for electricity production.212

Plans for agro-business on the Senegal River valley could change the management in the213

short future (Fraval et al. 2002). In this case, the objective of energy production must be214

balanced with flood and drought prevention. The hydrology on the Senegal River is strongly215

seasonal, influenced by the tropical rainy season in the upper basin.216

The reservoir is modeled by the continuity equation as in Equation (4b). The system217

disturbance is the uncontrolled inflow, dt, which is the observed discharge at Soukoutali.218

The system controls are the release through the turbines, urt , and the release trough the219

spillages, ust . Controls are constrained between zero and maximum release through turbines,220

urmax, and maximum release through spillages, usmax. The operational volume is constrained221

between xmin and xmax. In this experiment, the operational volume is reduced to increase222

the difficulty of the reservoir operation. Evaporation from the reservoir and other losses are223

neglected.224

The hydrological input dt uses both real-time forecast and climatic information, gliding225

from the real-time information into the climatic one going ahead on time: dt is the Bayesian226
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Model Averaging (Raftery et al. 2005) of the forecasted inflow, dfr, and the climatic one,227

dcl, weighted by their reliability.228

dk = Bk · dt+k + (1−Bk) ·D (7)229

Where Bt, representing the forecast reliability, is the product of the inflow autocorre-230

lation lag 1 φτ , from t to t + k, such that Bk =
∏t+k

t φτ . This is equivalent to use a231

Periodic Autoregressive lag 1 model (Bartolini et al. 1988) as forecast model. Using of an232

average climatic year as climatic disturbance would filter out extremes; we use instead an ob-233

served inflow at each control time-step, randomly extracted from the observed inflow data,234

{dcl}hk=1 ∈ Dcl = {dobs}k+h
τ=k. When the reservoir residence time is large enough, its slow235

dynamic will serve as low pass filter, which will average out the effects of different inflow236

scenarios used at each time-step. This is expected to have little effect on the reservoir vol-237

ume signal. In this experiment, we consider reservoir management having three objectives:238

flood and drought prevention, and energy production. Flood and drought prevention are239

represented by the cost function, gttg , in Equation (8b): keeping the total discharge as close240

as possible to the target flow, qtg = 200m3/s, attains both flood and drought prevention.241

The electricity production is proportional to the product of hydraulic head into discharge242

through the turbines, ∝ ∆ht · urt . This Equation is a convex function that must be maxi-243

mized. We cannot use this function directly as objective within the optimization problem244

because we use a convex optimization method, namely the interior-point method, which does245

not guarantee, in this case, the convergence to the global optimum (Boyd and Vandenberghe246

2004). The Objective function for energy production will be, instead, Equation (8a), which247

is the function for energy production linearized as in (Raso et al. 2015). In Equation (8a),248

∆h0 = 52.5 m is the nominal hydraulic head, ur0 = 500 m3/s the nominal release trough249

turbines, and A0 = 4.6e8 m2 the nominal reservoir surface. The negative sign means that250

its value must be maximized.251
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get = −(∆h0 · urt + ur0/A0 · vt) (8a)

gtgt = (urt + ust − qtg)2 (8b)

gt = we · get + wtg · gtgt (8c)

The aggregated objective function gt, in Equation (8c), is the weighted sum of get and252

get . Flood and drought prevention objectives have higher priority on energy production,253

therefore wtg is larger than we, being 0.8 and 0.2, respectively; the decaying factor r in254

Equation (4a) is set to 0.973, selected to be close to zero at the end of the 3 year horizon.255

The reservoir average residence time is in fact about one year. The system state, at the end256

of the 3 year optimization horizon, contains a negligible trace of the initial system state.257

The final state, having little influence on the first release decision, can be weighted much258

less in the optimization. Other values may be tested to analyse the results sensitivity to259

this parameter. We use 10 independent triangles, defined by Ti, Si, and Li as in Table260

1. Triangles are selected so that the resulting composition has a higher degree of freedom,261

therefore a higher accuracy, at beginning of the control horizon. In this case we selected262

five asymmetric triangles with increasing left and right base length as the peak time T gets263

larger. Other symmetric triangles with a larger base length are used to catch the system264

periodicity.265

Results266

To evaluate the proposed method, we analyze both the role of input structuring and that267

of uncertainty, isolating their effects in departing from the optimal solution. We consider268

three solutions: i) Infinite Horizon MPC using triangular input structuring and realistic fore-269

cast, ii) Infinite Horizon MPC using triangular input structuring and perfect forecast, iii)270

Infinite Horizon MPC with no input structuring and perfect forecast. Comparing first and271

second case shows the loss due to uncertainty; comparing second and third shows the loss272
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due to input structuring. In the third case, solving the optimal control problem requires a273

large computation time, and it is not applicable in reality. This experiment serves, however,274

as upper boundary of system performance. We use some indicators to measure performance:275

i) Average yearly energy production, for electricity production, ii) days per year when flow is276

lower than 100 m3/s, for drought prevention, iii) days per year when flow is larger than 800277

m3/s, for flood prevention, and iv) the quadratic distance from the target discharge, as used278

within the objective function, for both drought and flood prevention. The first indicator is279

to be maximized, the others to be reduced. We run a four-year simulation, from the 1st280

January 2005 to the 31st December 2008.281

282

Table 2 presents a summary of simulation results for the three cases under evaluation, for283

the considered indicators. This table shows that both uncertainty and input structuring leads284

to a reduction of system performance. Performance loss is relatively small if compared to285

the loss due to the presence of a relevant uncertainty for energy production, and comparable286

for flood and drought prevention indicator. Simulation using input structuring and realistic287

forecast, if compared to simulation using input structuring and perfect forecast, shows a288

small deterioration on drought prevention, which is a slow, predictable process. On the289

other hand energy production, which is a combination of short-long term goals decreases290

moderately. Flood prevention, being the effect of a faster and less predictable process, shows291

a major worsening. Results from simulation using structured and un-structured inputs, both292

using perfect forecast, are nearly equivalent, suggesting that input structuring can be applied293

with little effect on results. The performance loss can be reduced by increasing the number294

of basis function (i.e. triangles), even if this will lead to an increase of computational time.295

Using the interior point method in a Matlabr optimizer, on a processor 2,9 GHz Intel Core296

i7, the computation time required to find a solution was 12-20 seconds for the case using297

input structuring, and about 4 hours for the case without input structuring. The latter is298

patently unacceptable for practical application.299
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Figure 3 shows discharge decisions and reservoir volume for the first year of closed-loop300

simulation. Discharge decision on simulation using real forecast is noisy: decision is influ-301

enced by the random extraction of a future discharge scenario. Discharge increases in early302

august, as precautionary measure, in anticipation to an high flow which eventually does not303

occurs. The reservoir filter out the high frequency variability of release decisions and inflow.304

Reservoir volume on simulation using real forecast is, on the rising part, lower than volume305

on simulation using perfect forecast, using less efficiently the reservoir capacity. Figure 3306

shows the presence of few small violations on volume constraint, due to the implementation307

of volume constraints as soft ones. In this system, in fact, constraints on the reservoir volume308

represent a legal, rather than a physical condition, therefore small violations are acceptable.309

Figure 4 shows open-loop optimization results at a specific decision instant: plot (a)310

shows the input and output discharges, and plot (b) the resulting reservoir volume. For311

both plots we show the nominal inflow, for which the release decisions are optimised, and312

the observed inflow, that will actually happen, for the first year of open-loop simulation.313

The controller tries to balance the hydrological variability to keep the total discharge as314

close as possible to the target discharge. In the dry season the outflow is higher than the315

inflow, and the reservoir is drawn down, keeping a low water volume until the rising part of316

the hydrograph, in preparation of the peak. The reservoir is eventually filled, and spillages317

are minimized. The plot below shows state constraints violation, at around t = 150 and318

t = 220. These constraints violation are small, being about 1% of the reservoir volume, and319

sufficiently far in time from the initial release decision. Their influence on the latter is very320

likely to be minimal, and therefore they do not affect the control quality. If this is not the321

case, weight wx in Expression (5) can be increased. For wx →∞, in fact, the soft constraint322

ck(xk) “approaches,, the behavior of a hard constraint.323

Effects of input structuring are evident in plot (a), where a single triangle take into324

account the entire high flow period. Plot (b) shows a large divergence between the effects on325

reservoir volume of observed and nominal discharge, which adds evidence that robustness to326
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uncertainty is a relevant issue for the proposed method.327

CONCLUSIONS328

This paper presented an Infinite Horizon Model Predictive Control method specifically329

designed for reservoir operations. Input structuring can be employed thanks to smoothness330

of the control signal. The control smoothness is related to the slow dynamic of reservoir331

systems: the reservoir filter out the high variability of inflow, therefore the control signal332

(i.e. the releases) varies slowly too. Basis functions, often employed in system identification,333

were used here for control. Input structuring reduces the computational complexity related334

to the horizon length, and not to other sources of complexity, such as the system size or335

the number of objectives. For this reason the proposed methodology is applicable to large336

systems as MPC when applied for short-term operation.337

We selected triangular basis function for their simplicity to be communicated and defined.338

Triangular basis function can handle hypercube constraints on inputs, and we gave some339

indication on how to select these triangles. Alternative families of basis function that could340

have been employed are, among others, a combination of sines and cosines with different341

frequencies, or a combination of exponential functions with different decay rates. We leave342

to further research the exploration of effective basis functions.343

We suggested selecting progressive independent triangles in the early stage, and periodic344

ahead on time. In water systems, in fact, both water demand and hydrological processes345

are periodic. The proposed method largely reduces the number of variables to be optimized,346

reducing the optimization problem complexity. We tested the proposed method for the347

operational management of Manantali reservoir, on the Senegal River, with the objective of348

flood and drought prevention, and energy production. Analysis shows that input structuring349

may have a negative effect on the system performance, mostly related to fast, uncertain350

processes. The extent of performance loss depends on which indicator is considered, being351

small or, for some indicator, equivalent to the performance loss due to the presence of inflow352

uncertainty.353
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Selecting the proper number of basis functions is the result of a trade-off between system354

performance and computation time. A larger number of triangles would increase both the355

computation time and the performance. The latter, however, will saturate. Further research356

could explore how performance and computation time change in function of number of basis357

functions.358

The question on how to deal with forecast uncertainty is still open in Infinite Horizon359

MPC using input structuring. We suggest using the proposed method in combination with360

a compatible synthetic robust MPC algorithm, selected from the vast control literature on361

the topic. Notwithstanding this limitation, the method we propose can potentially handle362

large systems, made of multiple reservoirs or routing downstream of the reservoir, offering363

an optimal compromise between short and long term objectives.364
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TABLE 1. Triangular function specification: Peak time (T), Left base (L), and right
side (R) defining the 10 triangles.

i 1 2 3 4 5 6 7 8 9 10

T 1 7 18 41 87 178 269 360 543 726

L 0 6 11 23 46 91 91 91 182 182

R 6 11 23 46 91 91 91 182 182 182
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TABLE 2. Results for the analyzed configurations

Indicator Electricity Drought Flood Quadratic cost
production prevention prevention (Flood and Drought)

↑ max / ↓ min [Unit] ↑ [×10e5MWh/year] ↓ [d/year] ↓ [d/year] ↓ [(m3/s)2]× 10e7
Basis functions, real forecast 9.1 65 7 6.3

Basis function, perfect forecast 9.5 75 0 5.5
No structuring, perfect forecast 9.6 71 0 4.3
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FIG. 2. Inflow at Soukoutali, from 1 January 1950 to 31 December 2013, daily time-
step.
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