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Abstract In animals, it is now well established that forces
applied at the cell surface are propagated through the cytoskel-
eton to the nucleus, leading to deformations of the nuclear
structure and, potentially, to modification of gene expression.
Consistently, altered nuclear mechanics has been related to
many genetic disorders, such as muscular dystrophy, cardio-
myopathy and progeria. In plants, the integration of mechan-
ical signals in cell and developmental biology has also made
great progress. Yet, while the link between cell wall stresses
and cytoskeleton is consolidated, such cortical mechanical
cues have not been integrated with the nucleoskeleton. Here,
we propose to take inspiration from studies on animal nuclei
to identify relevant methods amenable to probing nucleus me-
chanics and deformation in plant cells, with a focus on
microrheology. To identify potential molecular targets, we al-
so compare the players at the nuclear envelope, namely lamina
and LINC complex, in both plant and animal nuclei.
Understanding how mechanical signals are transduced to the
nucleus across kingdoms will likely have essential implica-
tions in development (e.g. how mechanical cues add robust-
ness to gene expression patterns), in the nucleoskeleton–

cytoskeleton nexus (e.g. how stress is propagated in turgid/
walled cells), as well as in transcriptional control, chromatin
biology and epigenetics.

Keywords Nuclear envelope . Lamina . LINC complex .
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Introduction

Plants, like animals, respond to mechanical stimuli. This is
probably most obvious when looking at a section of a tree
branch: its anatomical asymmetry reveals the existence of
so-called Breaction wood^, the product of an active mechani-
cal reinforcement that matches the asymmetric load caused by
gravity. In recent years, plant mechanosensing research is
turning more and more towards cell and molecular aspects,
from cytoskeleton behaviour to the regulation of gene expres-
sion following mechanical perturbations (Braam 2005;
Hamant 2013; Monshausen and Haswell 2013; Coutand
et al. 2009; Geitmann 2010). Although plants exhibit specific
cell features, like a stiff cell wall (in the MPa range) and high
hydrostatic pressure (turgor pressure, also in the MPa range),
both kingdoms display a number of comparable responses to
mechanical cues.

Animal cells respond to their mechanical environment, no-
tably through interactions with their extracellular matrix (see
e.g. Vogel and Sheetz 2006, 2009; Discher et al. 2005, 2009).
Plant and animal extracellular matrices are structurally and
chemically very different. From the signalling point of view,
the quasi absence of true integrins in plant genomes (for an
exception, see Knepper et al. 2011) needs to be put in context
against the high number of receptor-like kinase in plants.
Several of these proteins can interact with wall components
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(e.g. the WAK receptor with the backbone of pectins;
Anderson et al. 2001; Wolf et al. 2012), a bit like integrin with
fibronectin, arguably. Interestingly, one such receptor-like ki-
nase, FERONIA, contributes to mechanoperception in
Arabidopsis roots (Shih et al. 2014).

At the plasma membrane, a role of tension in cell polarity
has been shown in both kingdoms, notably through the inhib-
itory role of membrane tension on endocytosis, that can trap
transporters (e.g. Heisler et al. 2010; Nakayama et al. 2012) or
receptors (e.g. Pouille et al. 2009) in polar domains (for a
comparative review between plants and animals, see
Asnacios and Hamant 2012). Similarly, in both kingdoms,
membrane tension should lead to membrane thinning, which,
in turn, changes the conformation of mechanosensitive chan-
nels, leading to their opening (Haswell et al. 2011).

Inside the cell, the cortical cytoskeleton is a focus of
mechanotransduction research in both plants and animals.
However, one must highlight here that most animal cells exhibit
an actomyosin-rich cortex, consistent with their contractility,
whereas plant cells have a microtubule-rich cortex: cortical mi-
crotubules (CMTs) guide the cellulose synthase complex at the
plasma membrane, thus channelling the production of cellulose
microfibrils in the wall (Green 1962; Paredez et al. 2006). Both
actomyosin and microtubules respond to mechanical cues. In an-
imal cells for instance,myosin is preferentially recruited on tensed
membrane, providing a positive feedback loop for cell contrac-
tion, amenable to generating tissue folding (Lecuit and Lenne
2007; Sherrard et al. 2010). In plants, cortical microtubules are
oriented in the direction of maximal tension, thereby controlling
the deposition of stiff cellulose microfibrils, through CMT–cellu-
lose synthase complex guidance, in the wall (Green and King
1966;Williamson 1990;Hejnowicz et al. 2000). Interestingly, this
mechanical feedback has also been proposed to enhance tissue
folding in plant tissues, through the local channelling of growth
direction (Hamant et al. 2008; Uyttewaal et al. 2012).

Mechanical stimuli at the extracellular matrix, membrane
and cytoskeleton may be transmitted to the cell nucleus, nota-
bly because the nuclear envelope is physically interacting with
the cytoskeleton (Ingber 2003; Wang et al. 2009; Dahl et al.
2010; Fedorchak et al. 2014). Yet, despite the established im-
pact of mechanical forces on gene expression in all kingdoms,
the nexus between mechanical stress and nucleus remains
largely unexplored in plants. Nonetheless, some recent results
may point in that direction, albeit quite indirectly. The chro-
matin modifying enzyme SDG8 is required for the control of
gene expression in response to touch (Cazzonelli et al. 2014).
More recently, in a screen for touch-insensitive mutants, the
transcriptional regulator VIP3, a member of the Paf1 complex,
was identified (Jensen et al. 2017), suggesting that nuclear
factors might have a stronger role in mechanotransduction
than anticipated. Here, we propose to investigate the possible
contribution of the nuclear envelope in that framework. To do
so, we discuss biophysical methods to probe plant nuclei and

the coupling between cytoskeleton and nucleoskeleton; we
also compare the putative pathways and molecular targets
involved in nuclear mechanotransduction in plant and animal
cells (Table 1).

The molecular players of mechanotransduction
at the nuclear envelope in animal cells

The structure of the nuclear envelope is stabilised by a net-
work of integral proteins, anchored to the inner nuclear mem-
brane (Zwerger and Medalia 2013; Gruenbaum and Foisner
2015). Among those, numerous proteins and protein com-
plexes ensure continuous selective transport of molecules be-
tween the cytoplasm and caryoplasm (Schirmer et al. 2003;
Korfali et al. 2012). Nuclear pore complexes prevent the free
diffusion of macromolecules (radius ≥ 2.5 nm, corresponding
to a protein of ca. 35–40 kDa in mass). They are composed of
multiple constituent proteins (nucleoporins or Nups), contain-
ing the phenylalanine-glycine (FG) repeats and anchored to a
membrane of the nuclear envelope (Field et al. 2014; Obado
et al. 2016; Mohr et al. 2009). The transport of large macro-
molecules through the nuclear envelope is supported by nu-
clear transport proteins (NTRs, importins/exportins) that bind
the target cargo molecules and assist their passage through the
FG repeat-rich nuclear pore complex core. One of the most
notable players in the asymmetric directional transport, Ran
GTPase, has its GTP-bound form in the nucleus opposing the
GDP-bound one in the cytoplasm (Schmidt and Görlich
2016). Disruption of nuclear pore complexes following an
oxidative stress had been shown to result in nuclear aggrega-
tion of cytosolic proteins, a phenotype associated with neuro-
degenerative disease (D’Angelo et al. 2009). Although nucle-
ar pore complexes may have an indirect role in shaping nuclei
and mechanosensing, here, we will focus on the two main
structural components of the nuclear envelope, namely the
LINC complex and the lamina (Fig. 1).

The LINC complex consists of SUN (homologous to
Sad1p and UNc-84) and Klarsicht/ANC-1/Syne-1 homology
(KASH) proteins, which span the nuclear envelope and con-
nect the nucleoskeleton with the cytoskeleton.

Mammalian nesprin belong to a large family of actin-
binding proteins, encoded by nesprin1 and 2 genes.
Containing the c-terminal KASH domain, they are homolo-
gous to Drosophila melanogaster protein Klarsicht and are
located at the outer nuclear membrane (Mosley-Bishop et al.
1999; Apel et al. 2000; Mislow et al. 2002; Zhen et al. 2002;
Padmakumar et al. 2004, 2005).

Several SUN homology domain proteins have been identi-
fied in mammalian cells (Hagan and Yanagida 1995). SUN1
and SUN2 have a considerable degree of functional redundan-
cy. They localise to the inner nuclear membrane and interact
with lamins (see below) by KASH domain proteins,
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connecting the inner nuclear envelope to the actin cytoskele-
ton (Crisp et al. 2006; Padmakumar et al. 2004, 2005; Hodzic
et al. 2004; Starr and Fridolfsson 2010). The localisation of
SUN1 near nuclear pore complexes at the inner nuclear mem-
brane may reflect a role of SUN1 for the recruitment of pre-
lamins for nuclear lamina assembly at NPCs (Liu et al. 2007).
On the contrary, SUN2 are located in NPC-free regions and
the nesprin2 Giant (NUANCE) and SUN2 have been shown
to colocalise with actin during the nuclear movement in
polarising fibroblasts (Lombardi et al. 2011; Arsenovic et al.
2016; Khatau et al. 2012; Lüke et al. 2008; Thorpe and Lee

2017) and nesprin3 was shown to be required for actin remod-
elling and cell polarisation in response to shear stress (Morgan
et al. 2011). The controlled migration of nuclei in the
C. elegans P cells (3–4 mm diameter moving over 150 nm
between the body wall muscle and the worm’s cuticle) is de-
pendent on interactions between canonical SUN and KASH
proteins, UNC-84 and UNC-83 (microtubule recruitment) or
ANC-1 (actin recruitment) (Stewart-Hutchinson et al. 2008).
Recently, humanmuscle cell precursors were shown to require
nesprin1 to sense the stiffness of the extracellular matrix,
highlighting the central role of the LINC complex and force

Fig. 1 Mechanosensing at the nuclear envelope in animals and
candidates in plants. The upper part of the figure illustrates the elements
involved in nucleus mechanosensing in animals; the lower part is
dedicated to the putative components of mechanosensing at the plant
nucleus. The nuclear pore complexes, anchored to nuclear envelope
(NE) ensure the selective transport of molecules through the inner and
outer nuclear membranes (INM and ONM, respectively). At the nuclear
pore complex, nucleoporins Nup153 (animals) and Nup136 (plants) have
been identified. LINC complexes are composed of KASH domain
nesprins and SUN domain-containing proteins in animals. In plants,
LINC complexes are represented by SUN proteins (animal homologues)
and KASH proteins (e.g. WIP,WIT), with no structural homology to their
functional equivalents in animals. The LINC complex couples the

cytoskeleton to the nucleoskeleton. The inner nuclear membrane of ani-
mal nuclei harbors the LEM domain family proteins (LEM2, MAN1,
emerin) that interact with lamins at the periphery of the nucleus. At the
inner membrane of the plant nucleus, the NEAP1–3 proteins interact with
bZIP18 and chromatin. The plant lamin-like nuclear matrix components
(NMCPs), also called crowded nuclei (CRWN), have several interactors
(KAKU4, ARP7, BIM1, MYB3 and SINAT1). Plant ion channel com-
plex comprising DMI1-CNGC15 is localised on both sides of the nuclear
envelope. GIP proteins, present on both sides of the nuclear envelope,
function as a component of microtubule nucleation complexes (at the
outer nuclear membrane), they are associated with the nuclear pore com-
plex and TSA1, and colocalise with centromeres and epigenetic regulator
MGO3/TSK

392 Biophys Rev (2017) 9:389–403



transmission through the nuclear membrane for the cell to
respond and adapt to its mechanical environment (Schwartz
et al. 2017).

The LINC complex is sensitive to low stress magnitude
(Chambliss et al. 2013). In particular, low shear stresses may
only activate the actin cap-based physical pathway (small sub-
set of actin fibres connected to the nuclear envelope through
the LINC complex, NUANCE and nesprin3 that form the
perinuclear actin cap), while high shear stresses would engage
both this LINC/actin cap-based physical pathway as well as
previously established biochemical pathways, such as the
integrin activation through the c-Src and phosphoinositide 3-
kinase cascade (Shyy and Chien 2002; Tzima et al. 2005),
NADPH oxidase inactivation (Godbole et al. 2008) and pros-
taglandins induction through the cyclooxygenase-2 (Di
Francesco et al. 2009) (also reviewed in Lu and Kassab 2011).

Inside the nucleus, the lamina is composed of helix-rich
fibrillar lamin proteins that form a structural network near
the inner nuclear membrane (Goldman et al. 2002;
Gruenbaum and Foisner 2015; Zwerger and Medalia 2013).
The lamina maintains the nuclear shape and size, and is indi-
rectly related to the cytosolic cytoskeleton via the LINC com-
plex (Crisp et al. 2006). Lamins assist the recruitment of the
LEM (LAP2, emerin and MAN1) family to the nuclear enve-
lope and take part in nuclear pore complex stabilisation
(Gesson et al. 2016; Margalit et al. 2005; Shaklai et al.
2007; Shimi et al. 2015; Xie et al. 2016). They are also in-
volved in chromatin organisation and gene regulation
(through heterochromatin-associated proteins and because
certain transcription factors can be harboured at the nuclear
envelope), as well as nuclear mechanical stability (Schirmer
et al. 2003; Shimi et al. 2015; Korfali et al. 2012; Gruenbaum
and Foisner 2015; Xie et al. 2016; Paddy et al. 1990; Solovei
et al. 2013; Margalit et al. 2005; Wilson and Foisner 2010).

In mammals, two types of lamins have been identi-
fied. Lamins A, C, AΔ10 and C2 belong to the A-type
and are the products of the alternative splicing of a
single gene, LMNA (Nakajima and Abe 1995; Peter
et al. 1989, reviewed in Dittmer and Misteli 2011).
They are expressed in differentiated and developmental-
ly regulated cells (Furukawa et al. 1994; Lin and
Worman 1993; Liu et al. 2000). Another group, the B-
type lamins, comprises B1 and B2/B3 proteins, are
encoded by two independent genes (LMNB1 and
LMNB2) and are constitutively expressed in all cell
types (Peter et al. 1989; Stewart and Burke 1987;
Höger et al. 1988; Lin and Worman 1995; Liu et al.
2000; Biamonti et al. 1992, reviewed in Dittmer and
Misteli 2011). In murine dermal fibroblasts, lamin A/C
is localised throughout the nucleus, associates with the
chromatin-binding protein lamina-associated polypeptide
(LAP) 2α and interacts with euchromatin (Gesson et al.
2016). In contrast, lamin B1 has been mainly detected

at the nuclear periphery and was only found to be as-
sociated with heterochromatin. In LAP2α-deficient cells,
loss of lamin A/C at heterochromatic regions is corre-
lated with increased gene expression, suggesting a role
of lamins A/C in euchromatin regulation (Gesson et al.
2016; Shaklai et al. 2007).

The amount of lamin A positively correlates with nu-
clear and tissue stiffness, and deficiency in lamins A/C
has been associated with distorted and fragile nuclei (Liu
et al. 2000; Vigouroux et al. 2001; Swift et al. 2013);
therefore, it has been suggested that lamins A/C play a
role in the nucleus response to mechanical strain. The
depletion of lamins A/C results in significant decrease of
nuclear stiffness, highlighting their primary role in nuclear
structure, while also indicating a contribution of other nu-
clear components to the remaining stiffness (Dahl et al.
2005; Pajerowski et al. 2007; Lammerding et al. 2006).
The loss of LINC complex or the actin bundles does not
rescue nuclear lamina defects; however, it leads to a de-
crease of size and quantity of chromatin hernias (i.e. chro-
matin exiting the nucleus upon nuclear envelope rupture)
(Hatch and Hetzer 2016). In contrast, the nucleus rupture
in cells treated with actin-depolymerising drugs could be
rescued by mechanically constraining the nucleus (Hatch
and Hetzer 2016). Although this is debated, the rupture of
nuclear envelope with defects in lamina organisation could
be caused by an increase in intranuclear pressure from
actin-based nucleus confinement (Furusawa et al. 2015;
Schreiner et al. 2015; Hatch and Hetzer 2016).
Interestingly, recent experiments demonstrated that the nu-
cleus exhibits two deformation regimes in response to me-
chanical strain. The main component that contributes to
maintenance of nuclear shape at small deformations was
identified to be the chromatin itself, while lamins A/C
play a role in the stiffening of nuclei when subjected to
larger deformations (Stephens et al. 2017).

Microrheometry to analyse nucleus mechanics
and the coupling between cytoskeleton
and nucleoskeleton

Beyond the identification of the molecular players at the nu-
clear envelope, their formal integration with mechanical cues
has been possible thanks to the development of
micromechanical methods and techniques. As shown above,
a key landmark in this endeavour was the identification of a
central role of the LINC complex in mechanotransduction
from cell surface to chromatin (Dahl and Kalinowski 2011).
Before investigating this question in plant nuclei, we review
here some of the methods that have been used to analyse the
nuclear mechanics of animal cells, focusing on the most direct
method, micrometry (Box 1, Fig. 2).

Biophys Rev (2017) 9:389–403 393



Box 1. Rheometry

Among micromechanical techniques, micropipette aspira-
tion is probably the one that was used most often for nuclear
mechanics characterisation. Rheometric measurements with
micropipettes were first done on single cells (Hochmuth
2000), but were rapidly extended to isolated nuclei since mi-
cropipettes constitute an Ball-in-one^ rheometer and microma-
nipulation tool (Guilak et al. 2000): by applying a pressure
drop on a micrometric pipette, one can easily aspirate a single
nucleus and monitor its elongation in the glass tube (e.g. with
fluorescence microscopy) and observe the relevant to con-
comitant deformat ion of a given element of the
nucleoskeleton. In particular, micropipette aspiration was suc-
cessfully used to define the role of lamins in nuclear mechan-
ics (Dahl et al. 2004, 2005), and their implication in differen-
tiation (Pajerowski et al. 2007; Shin et al. 2013), their adapta-
tion to the rigidity of the extracellular matrix and tissues (Swift
et al. 2013; Buxboim et al. 2014), as well as their involvement
in major diseases (e.g. Dahl et al. 2006).

Beyond the focus on lamins from the mechanics of isolated
nuclei, micropipettes were also used to deform nuclei inside
living cells, in order to determine the proteins involved in the
mechanical coupling between the cytoskeleton and the
nucleoskeleton. For instance, nuclei lacking emerin (linker
protein from the inner nuclear membrane) were shown to dis-
play altered elasticity (Rowat et al. 2006). More recently, the
ability of nuclei to recover from micropipette-imposed defor-
mations was shown to depend on intermediate filaments, SUN
proteins and lamins, but neither on microtubules nor actin
filaments (Neelam et al. 2015).

In parallel to micropipette measurements, different
cantilever-based techniques were used to compress (global
scale deformation: parallel microplates, compressive cell

device) or to indent (local deformation: atomic force micro-
scope) cells or isolated nuclei (Bao and Suresh 2003;
Thoumine et al. 1999; Broers et al. 2004; Schäpe et al.
2009). In these techniques, the cantilever (basically a spring
of calibrated stiffness) is deflected to apply a well-defined
stress on the sample, and the strain is determined through
image analysis, from cantilever deflection or/and displace-
ment, depending on the particular technique and protocol.
Parallel microplates measurements were among the first to
show mechanical continuity between cytoskeleton and
nucleoskeleton, and to quantitatively compare their elastic
moduli, the nucleus being about ten times stiffer than the cy-
tosol (Thoumine et al. 1999; Caille et al. 2002). As mentioned
above, the observation that cells lacking lamin A exhibit
lowered stiffness and bursting force than wild-type counter-
parts was notably shown using compressive cell device mea-
surements on mouse embryonic fibroblasts, indicating that the
nucleus contributes to the overall cell resistance to deforma-
tion, in line with clinical phenotypes observed in muscles
dystrophies due to mutation in the lamin A/C gene
(laminopathies) (Broers et al. 2004).

When used to measure the local rheological properties of
isolated nuclei, atomic force microscopy led to results compa-
rable to those retrieved from global probing with micropi-
pettes, with a prominent role of lamins in stiffening the nuclear
envelope and nucleus (Dahl et al. 2005; Schäpe et al. 2009).
Interestingly, by probing nuclei from Drosophila embryos, it
was shown that the inner nuclear membrane protein Kuk
stiffens the nuclear envelope and controls its shape through
coupling to polymerising microtubule bundles (Hampoelz
et al. 2011). Beyond these atomic force microscopy measure-
ments on isolated nuclei, a custom-made sharp-needle atomic
force microscopy probe has been recently introduced to mea-
sure nucleus modulus in situ, by penetrating the cell and nu-
clear membranes with minimal injury. The authors showed
that cell-embedded nuclei are stiffer than isolated ones, prob-
ably due to strain stiffening, i.e. tension transferred to the
nucleus from the cytoskeleton (Liu et al. 2014).

Among local rheometric measurements, magnetic twisting
cytometry is certainly one of the most popular in the field of
cell rheology (Fabry et al. 2001). A ferromagnetic bead bound
to cell-surface integrins is twisted thanks to a rotating magnet-
ic field, leading to bead displacement and cyclic deformation
of the cell cytoskeleton, which is anchored to surface adhesion
complexes. However, in the context of nuclear mechanics and
mechanosensing, magnetic twisting cytometry was mainly
used as a means to test the hypothesis of a directed force
transmission from cell-surface receptors to the nucleus
through the tensed cytoskeletal polymer network. Indeed,
while applying small cyclic bead displacements at the cell
surface (in the range of ~0.4 μm), stress was found to propa-
gate inside the nucleus, the nucleoli being deformed upon
external mechanical stimulation (Maniotis et al. 1997; Hu

Rheometry, from the Greek word “rheos” (flow), is the discipline
dedicated to the quantitative characterisation of the rheological
properties of materials, i.e. the way they deform and flow when
submitted to external forces. Rheometry techniques can essentially be
divided into two classes: active and passive rheometry. In active
rheometry, one applies a stress (force per unit area, dimension of a
pressure), either constant (static) or variable (dynamic rheometry), and
measures the induced sample strain (dimensionless deformation, i.e. as
a percentage of the initial sample size). Basically, the relationship be-
tween stress and strain defines the mechanical behaviour of the sample,
which is quantified by a modulus (elastic and/or viscous, with dimen-
sion of a pressure). Most studies on nuclear mechanics were carried out
with activemicrorheometry techniques. In passivemicrorheometry, the
spontaneous movement of nanoparticles inside the cytoplasm and/or
the nucleus (either injected synthetic ones or components of the nuclear
material) is tracked and viscoelastic moduli are calculated from the
mean square displacement (MSD, a measure of the mean distance
travelled by a particle after a given time).
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et al. 2005). Protein complexes from the Cajal body could also
undergo cyclic stretch until complete dissociation (Poh et al.
2012).

A slightly different version of magnetic bead-based
microrheometers, called magnetic tweezers, uses controlled
electric currents to create variable magnetic field gradients to
pull on magnetic beads bound to the cell surface (Bausch et al.
1998). Combining magnetic tweezers with cell culture on
stretchable membranes, mouse embryonic fibroblasts lacking
lamin A were shown to have softer nuclei, as well as overall
decreased cell stiffness (Lammerding et al. 2004), in line with
the results observed with compression experiments (Broers
et al. 2004), underlining, once again, the nuclear contribution
to whole-cell mechanics and its possible role in muscular

tissue weakness in laminopathies. More recently, magnetic
tweezer measurements were directly carried out on isolated
nuclei (Guilluy et al. 2014) to reveal a nucleus-specific
mechanotransduction pathway related to the LINC complex.
Indeed, beads bound to nesprin1 and subjected to repeated
magnetic pulses led to progressive stiffening of isolated nu-
clei. Moreover, this stiffening was independent of nuclear ac-
tin and chromatin, but required intact lamins and emrin, the
latter being phosphorylated in response to force (Guilluy et al.
2014).

Passive microrheometry, based on the analysis of the
movement of nanoparticles injected in the cytoplasm and/or
the nucleus, was extensively used to investigate nuclear struc-
ture and mechanics (Tseng et al. 2004), and the specific roles

Fig. 2 Mechanical measurements on whole cells (left) and on isolated
nuclei (right). a Cell/nucleus deformed by micropipette aspiration. b, c
Techniques based on cantilever (spring of calibrated stiffness) deflection.
b Compression between microplates, global deformation. Micropipettes
and parallel microplates allow direct comparison between cell and nucle-
usmechanics. cLocal probing of the nucleus. Left: in situ characterisation
of the nucleus mechanical properties using a custom-made sharp atomic
force microscope tip to penetrate cell and nucleus membranes. Right:
regular AFM tip used to probe the nucleus surface. d Magnetic bead-

based microrheometry. Left: a twisting magnetic field applies oscillations
on a bead bound to the cell surface and oscillations are transmitted to
nuclear components through the cytoskeleton, the LINC complex and the
lamina. Right: successive current pulses lead to repeated magnetic trac-
tion forces applied on a bead bound to the nucleus surface, causing nu-
cleus stiffening (mechanosensing). e Passive microrheology based on
nano-particle tracking. Comparison between particle movements in the
cytoplasm and the nucleus helps to characterise the link between the
cytoskeleton and nucleoskeleton
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of lamin A/C (Lee et al. 2007) and LINC complex (Hale et al.
2008) in the whole-cell mechanics, in particular adhesion,
polarisation and migration. These intracellular nanoscale mea-
surements confirmed the mechanical continuity of the cell
structure from cytoskeleton to nucleoskeleton, and the central
role of the LINC complex in mechanotransduction and global
cell coordination. Of note, internal active microrheometry was
also made possible by the injection of magnetic nanorods in
the nuclei of adherent cells and their manipulation at a dis-
tance with rotating magnetic fields (Celedon et al. 2011).

Whi le microrheology of the cel l /nuc leus and
mechanotransduction were extensively studied in the past
years in animal cells, no such effort has been invested for
walled cells, in particular in plants. This is quite surprising
since plants are obviously mechanosensitive. It has been even
shown, at the cell scale, that forces applied at the surface of
tobacco cells could induce migration of the nucleus (Qu and
Sun 2007). This could be due to the fact that some of the
micromechanical methods reviewed here would be inefficient
(too weak) to investigate plant cell structures that are mechan-
ically shielded by the huge turgor pressure and cell wall.
However, one could argue that measurements could be carried
out on wall-less plant protoplasts as well as on isolated nuclei.
In that respect, comparison between the mechanics of animal
and wall-less plant cells is instructive (Durand-Smet et al.
2014). It will also be of interest to mechanically characterise
isolated plant nuclei, as well as their interaction with cytoskel-
eton polymers in vitro (Stoppin et al. 1994). Such studies will
help define differences and putative conserved core
mechanosensing mechanisms between plants and animals
(Asnacios and Hamant 2012). A first step in this endeavour
might be the identification of some key players in plant nuclei
(Fig. 1).

Plant homologues in nuclear envelopes

As in animals, plant nuclei display nuclear pore complexes;
most of the nucleoporins are homologous to the vertebrate
ones and contribute to the nucleocytoplasmic transport. Note
that Nup136, which is unique to plants, dynamically interacts
with the nuclear pore complex and may be considered as the
functional homologue of the human Nup153 (Tamura et al.
2010).

Similarly, LINC complexes involving SUN–KASH pro-
teins exist in plants, bridging the cytoskeleton to
nucleoskeleton at the nuclear envelope. The SUN-interacting
KASH proteins, located at the outer nuclear membrane, were
mainly identified in Arabidopsis. They display a limited con-
servation with known opisthokont KASH proteins, except for
AtTIK, which harbours a more classical KASH tail
(Graumann et al. 2014). Specific SUN–KASH bridges were
shown between AtSUN1, 2 proteins and AtWIP1-3, as well as

between the mid-SUN AtSUN3-5 and AtTIK (Zhou et al.
2012; Graumann et al. 2014). Both AtWIPs and AtSINE1
are indirectly associated with actin filaments, notably through
the physical interactions between ATWIT2 and the plant-
specific Myosin XI-i (Tamura et al. 2013).

Although plant cells are devoid of a centrosome, the
nuclear envelope constitutes a site of microtubule nucle-
ation (Stoppin et al. 1994). γ-Tubulin complex proteins
were identified in plants, including GCP2 and GCP3 pro-
teins, which have nuclear targeting domains (Seltzer et al.
2007). GIPs (GCP3 interacting proteins) were first identi-
fied in plants as novel regulators of γ-tubulin complexes
(Janski et al. 2008, 2012). Two GIP proteins are present
in almost all plant genomes, whereas the GIP homologues
in animals and Schizosaccharomyces pombe, called
MOZART1 and MZT1, respectively, are single genes
(Hutchins et al. 2010; Dhani et al. 2013). Contrary to the
nuclear envelope functional components, GIPs are dynamic
proteins found on both sides of the nuclear envelope, as
well as at the nuclear pores (Batzenschlager et al. 2013).
They interact with TSA1, which is located at the nuclear
envelope and most probably the endoplasmic reticulum in
interphase cells (Suzuki et al. 2005). Near the inner nuclear
membrane, GIPs are located close to chromocentres and
colocalise with centromeres (Batzenschlager et al. 2015).
Because of the role of GIP in centromeric cohesion and in
CENH3 loading, GIPs also contribute to centromere functions
(Batzenschlager et al. 2013; Chabouté and Berr 2016).
Therefore, the GIPs seem to bridge nuclear regulation and cy-
toplasmic microtubules at the nuclear envelope (Fig. 1).

At the inner nuclear membrane, Arabidopsis and maize
SUN domain proteins exhibit the conserved features of their
eukaryotes counterparts, with the existence of SUN1, SUN2
and mid-SUN homologues 3 to 5 (Graumann et al. 2010,
2014; Murphy et al. 2010). Whereas SUN1 and SUN2 are
exclusively located at the nuclear envelope (Graumann et al.
2010), SUN3 and SUN4 share localisation between endoplas-
mic reticulum and nuclear envelope; SUN5 localisation has
not yet been analysed (Graumann et al. 2014). The plant-
specific NEAP1–3 proteins were also identified at the inner
nuclear membrane in Arabidopsis and NEAP1 may be con-
nected with chromatin through its interaction with a putative
transcription factor (bZIP18, Pawar et al. 2016).

Near the inner nuclear membrane, a fibrous meshwork sim-
ilar to the animal lamina was observed by field emission scan-
ning electron microscopy (FE-SEM) in tobacco BY2 cells and
was called Bplamina^ (Fiserova et al. 2009; Ciska andMoreno
Díaz de la Espina 2014).While no homologues of lamins have
been identified in plant genomes, functional candidates of the
nuclear matrix beneath the nuclear envelope were
characterised, such as the NMPC1 protein in carrot (Masuda
et al. 1997), CRWN1, 4 (Dittmer et al. 2007) and KAKU4
(Goto et al. 2014) in Arabidopsis.
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Mechanosensing through the nuclear envelope:
candidates in plants

Since structural changes of nuclear envelope proteins and
chromatin are important features in mechanotransduction in
animals and yeast (Dahl et al. 2008; Fedorchak et al. 2014),
the following features will be considered as potential candi-
dates in plant nuclear mechanosensing: nuclear deformability,
link to nuclear envelope and chromatin remodelling.

All the nuclear envelope, the actors cited above are in-
volved in shaping nuclei. In differentiated Arabidopsis cells,
most of the corresponding mutants display smaller and spher-
ical nuclei when compared to large elongated nuclei in the
wild type (for a review, see Tamura et al. 2015).
Interestingly, the gip1gip2 nucleus shape is affected in both
differentiated and undifferentiated cells, with enlarged nuclei
exhibiting shape distortions such as lobes and indentations
(Batzenschlager et al. 2013, 2014). Moreover gip mutants
are also impaired in nuclear pore complex distribution and
architecture. Interestingly, while some proteins, such as
GIP1–2, SUN1–2, SUN4–5 and WIP1–3, share functional
redundancy in shaping nuclei (Zhou et al. 2012; Graumann
et al. 2014; Batzenschlager et al. 2013), other nuclear enve-
lope proteins, such as SUN3, CRWN1, CRWN4, KAKU4,
MYOSINXI-I or Nup136, may have non-redundant functions
(Tamura et al. 2010, 2013;Wang et al. 2013; Goto et al. 2014).
More specifically, KAKU4-dependent nuclear deformation
can be uncoupled from CRWN1 or CRWN4 (Goto et al.
2014), as SUN-WIP-WIT2-MyosinXI-i-dependent nuclear
deformation can be uncoupled from CRWN1 (Zhou et al.
2015). Furthermore, CRWN1 and CRWN4may have additive
effects (Wang et al. 2013) since nuclear shape defects are
stronger in the double mutant than in single mutants. In addi-
tion, in either wit1wit2 or myosin XI-i mutants, root hair nu-
clear movement is impaired, suggesting that a nucleo-
cytoplasmic continuum SUN-WIT-Myosin XI-i may contrib-
ute to an actin-mediated nuclear movement (Tamura et al.
2013).

Altogether these data suggest that nuclear shaping may be
supported by both cytoplasmic forces transmitted to the nu-
clear envelope and by the plamina, KAKU4 and CRWN1may
maintain nuclear morphology through interactions with the
nucleocytoplasmic linker, while Nup136 may mechanically
support the nuclear envelope. Among these different actors,
some were shown to have a direct or indirect link with chro-
matin through functional and proteomic analyses. The triple
mutant sun1sun4sun5 exhibits defect in chromatin compac-
tion and up-regulation of heterochromatin silent information
such as TSI1 (Poulet et al. 2017). NEAP3 is less tightly an-
chored to the inner nuclear membrane than NEAP1, and may,
thus, contribute to its function in heterochromatin chromatin
organisation (e.g. size and number of chromocentres, Pawar
et al. 2016). CRWN4 controls higher order heterochromatin

organisation and, most notably, the proper localisation of 5S
RNA and centromeric repeats (Wang et al. 2013). More re-
cently, the carrot NMCP1 protein, equivalent to CRWN pro-
teins in Arabidopsis, was used as a bait to identify nuclear
candidates in Arabidopsis using the C-terminus part of the
protein involved in its nuclear periphery localisation. Four
proteins were identified: the nuclear localised actin-related
protein 7 (ARP7), as well as the transcription factors MYB-
type transcription factor 3 (MYB3), C3HC4 RING-finger pro-
teins (SINAT1) and BES1-INTERACTING MYC-LIKE 1
(BIM1) involved in brassinosteroid signalling (Mochizuki
et al. 2017). The identification of these interacting partners
may shed new light on the role of the nuclear envelope in
signalling, including mechanotransduction.

Because of their localisation on both sides of the nuclear
envelope, GIPs may have a unique role in this picture, notably
through their association with microtubule dynamics on the one
hand, and their association with centromere and chromocentres
in synergy with the epigenetic regulator MGO3/TSK
(Batzenschlager et al. 2017), another TSA1 partner (Takeda
et al. 2004), on the other hand. Consistently, GIPs could actively
contribute to heterochromatin organisation, as the gip1gip2mu-
tant displays heterogeneity in chromocentres size and number
(Batzenschlager et al. 2013). Interestingly, cortical microtubules
change their orientation in response tomechanical cues (Hamant
et al. 2008; Landrein and Hamant 2013). Although it is unclear
how plant cytoplasmic microtubules behave in response to
stress, this echoes the contribution of actin filaments in nuclear
mechanotransduction, through the indirect interactions between
actin and lamina (Enyedi and Niethammer 2016; Aureille et al.
2017). These features also do not preclude the existence of
cross-talks between microtubules and actin filaments in nuclear
mechanotransduction (see e.g. Sampathkumar et al. 2011 for an
analysis of structural dependencies between actin filaments and
microtubules in plants).

Conclusion: avenues for future research in plants

The homologies between plant and animal potential nuclear
mechanosensing pathways might echo conserved chromatin
regulators and functions in both kingdoms. At the molecular
level, a force in the cytoplasm will propagate to the nucleo-
plasm if it is not dissipated, i.e. if the LINC complex is suffi-
ciently stiff and there is no reason to think that plants would be
different from animals on that front; yet, this still needs to be
formally demonstrated. Interestingly, during differentiation, or
in the presence of stiffer mechanical environments, nuclear
stiffness is increasing in mammals (Hampoelz and Lecuit
2011; Swift et al. 2013). This is due, in part, to the accumula-
tion of lamins (Swift and Discher 2014) and the formation of a
peripheral heterochromatin (Hampoelz and Lecuit 2011). The
stiffness of the extracellular matrix has been thoroughly
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studied in plants, notably through decades of research on cell
walls. Because cell wall stiffness can vary greatly between
plant cell types or during differentiation, nuclear stiffening in
cells with stiffer cell walls may also be visible in plants and
help us understand how differentiation, in turn, affects gene
expression. The relation between nucleus and wall stiffness
has, however, not been assessed in plants so far.

Beyond the comparison between nuclear mechanosensing in
plants and animals, a prospect for the future would be to unravel
the actual mechanisms triggering gene expression changes.
Several models involving direct mechanical perturbations on
nucleus structure have been proposed: force-driven chromatin
decondensation that would unmask binding sites for transcrip-
tional regulators, force-induced chromatin detachment from the
nuclear (p)lamina, moving loci away from the transcriptionally
repressive nuclear periphery or force-driven conformation
changes of inner nuclear envelope proteins, affecting transcrip-
tional and chromatin regulators (Isermann and Lammerding
2013). Whether these mechanisms apply to plant nuclear
mechanosensing is another exciting avenue for future research
in both chromatin and mechanotransduction in plants.

Altogether, the accumulation of knowledge on the structur-
al effectors of nuclei across kingdoms support the tensegrity
concept, at least qualitatively (Ingber 2008). To demonstrate it
with quantitative data will require a more thorough analysis.
For instance, if microtubules, in parallel to actin, played a
major role in nuclear mechanotransduction in plants, knowing
that microtubules are roughly three orders of magnitude stiffer
than actin filaments, at least in vitro (e.g. Gittes et al. 1993),
this would inevitably affect the way forces are transduced to
the nucleus. Furthermore, the added complexity of
microtubule-associated proteins (and their impact on
microtubule stiffness, see e.g. Portran et al. 2013) makes this
endeavour both challenging and exciting.

Beyond the direct force propagation via the extracellular
matrix–cytoskeleton–nuclear envelope continuum,
mechanotransduction also occurs through more indirect ways.
For instance, nuclear pore size may be modified in response to
nuclear envelope stretching (Garcia et al. 2016). Alternatively,
nuclear membrane may convert tension into biochemical sig-
nals, notably by mediating store release of Ca2+ at the outer
nuclear membrane through mechanosensitive ion channels.
For instance, the nuclear membrane protein, emerin, was re-
cently shown to play a crucial role in nuclear structure and the
production of transient nuclear Ca2+ peaks in animals
(Shimojima et al. 2017). In that regard, nuclear pore com-
plexes may play a similar role in calcium signalling in plants
(Charpentier and Oldroyd 2013). Incidentally, a voltage-gated
Ca2+ channel (DMI1 and CNGC15 proteins) at the nuclear
envelope was recently shown to contribute to perinuclear cal-
cium oscillation to establish plant–symbiont interactions in
Medicago (Charpentier et al. 2016). Calcium signalling may
also affect chromatin remodelling (Thuleau et al. 2012). In

such a context, the role of Nup136 involved in nuclear shaping
has to be explored, as well as that of TSA1 displaying a Ca2+

binding activity (Suzuki et al. 2005). Other indirect roles may
involve the t rans loca t ion of major effec tors of
mechanotransduction, such as β-catenin and Yap/Taz in ani-
mals (Janmey et al. 2013). The interplay between nuclear
envelope mechanics and nuclear pore gating is, thus, another
exciting prospect for future studies in plant nuclear
mechanosensing.

Lastly, if gene expression is certainly a key aspect of
mechanotransduction in development, one must recall that
cells are, in principle, able to respond tomechanical cues, even
without a nucleus. This was nicely shown on (enucleated) fish
epidermal keratocytes, which became polar and even motile
upon mechanical stimulation (Verkhovsky et al. 1999). Given
the stereotypical cortical microtubule response to wall tension
in plants, one may infer that this response may also not require
transcriptional regulation, at least in the short term. The con-
tribution of nuclear mechanosensing to these cortical mechan-
ical responses, such as mechanotransduction buffering, ampli-
fication or robustness, is also likely to be a thriving field of
research in the future.
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