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Abstract  

1. Although a key demographic trait determining the spatial dynamics of wild populations, 

dispersal is notoriously difficult to estimate in the field. Indeed, dispersal distances obtained 25 

from the monitoring of marked individuals typically lead to biased estimations of dispersal 

kernels as a consequence of i) restricted spatial scale of the study areas compared to species 

potential dispersal and ii) heterogeneity in marking and observation efforts and therefore in 

detection probability across space. 

2. Here we propose a novel method to circumvent these issues that does not require data on 30 

observation effort per se, to correct for the variability in detection of marked individuals 

across space. Observed dispersal events were weighted by the distribution of departure points 

and an eroded spatial window approach was applied so as to deal with border effect. We 

conducted a set of simulations which indicated that our method was successful in correcting 

the effect of spatially heterogeneous detectability and produce unbiased dispersal kernels.  35 

3. We applied this method to a real dataset on Montagu’s harrier (>5000 chicks tagged), 

providing ca. 6000 resightings collected in entire France by a network of 1200 volunteers 

within a citizen-science program. The median dispersal distance observed was 32 km (range: 

0.1-627 km). Once corrected for spatial heterogeneity in marking and observation efforts and 

border effect, the modelled dispersal kernel indicated a median dispersal distance of 78-123 40 

km depending on the spatial scale considered (constrained within French borders or not, 

respectively).  

4. Synthesis and applications: The current rise of citizen-science programs is likely to stretch 

our estimate of the ecologically-relevant spatial scale at which dispersal takes place for many 

taxa. Our method is particularly suited for such large scale data that typically suffer from high 45 

spatial heterogeneity in marking and observation efforts and offers the possibility to derive 
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unbiased dispersal kernels, a key component for modelling population dynamics and species 

distribution in a context of environmental change. Currently, our method assumes 

homogeneity in both habitat and dispersal behaviour across individuals. We discuss however 

how to relax these hypotheses to further investigate the effect of e.g. local conspecific density 50 

or habitat quality on dispersal propensity. 
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INTRODUCTION 

Dispersal is defined either as the movement of an individual from its birthplace to the location 

where it will reproduce for the first time (natal dispersal), or the movement between 55 

successive reproduction events (adult dispersal). Dispersal is a pivotal process underpinning 

spatial population dynamics (review in Clobert et al. 2001). Indeed, movements of 

individuals, both within and among populations, sustain gene flow across space and time, thus 

driving genetic diversity as well as adaptation to local conditions (Cain, Milligan & Strand 

2000; Postma & van Noordwijk 2005). Dispersal is a spatial demographic trait that affects 60 

extinction and colonisation rates of habitat patches in a metapopulation context (Hanski 1999; 

Sutherland, Elston & Lambin 2012), and also the size of more continuously spread 

populations (Doncaster et al. 1997; Schaub, Jakober & Stauber 2013; Lieury et al. 2016). 

Ignoring spatial demographic processes when investigating population dynamics may indeed 

lead to spurious interpretations regarding e.g. the conservation status of a population (Schaub 65 

et al. 2010), the efficiency of management actions (Lieury et al. 2015), the estimation of 

fitness (Dhondt 1979; Tinbergen 2005; Doligez & Pärt 2008) and more generally the 

evolution of populations in response to environmental changes (Kokko & López-Sepulcre 

2006; Ronce 2007). In addition, the way dispersal is accounted for greatly affects the results 

of species distribution models predicting range shifts in response to climate change (Guisan & 70 

Thuiller 2005; Bellard et al. 2012).  

However, estimating dispersal is notoriously difficult and has been the subject of intense 

methodological developments over the last two decades (van Noordwijk 1995, 2011; Koenig, 

Van Vuren & Hooge 1996; Paradis, Baillie & Sutherland 2002; Schaub & Royle 2014). The 

classical way for investigating the dispersal process involves the longitudinal monitoring of 75 

marked individuals over space. A major issue of such studies, however, arises from the finite 

nature of the study area, as the closer a departure point is from the border, the higher the 
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probability of the corresponding arrival point to fall outside the study area. This results in the 

so-called border effect, which produces an inevitable reduction in the detectability of long-

distance dispersal (Barrowclough 1978). Indeed, in most instances, the spatial scale of the 80 

study area is defined according to logistical constraints so as to ensure an exhaustive marking 

of offspring and maximising recapture/resighting probability of previously marked 

individuals. However, there is growing evidence for the dispersal ability of individuals to 

largely overcome the limits of ‘standard’ study areas (Van Houtan et al. 2007). In birds 

particularly, data collected from individuals fitted with VHF, Argos or GPS devices have 85 

revealed much larger dispersal distances than those previously estimated using passive marks 

(Van Vuren & Armitage 1994; Koenig, Van Vuren & Hooge 1996; Hénaux et al. 2011). 

Weight and economic costs of such electronic devices currently limit the number of species 

on which such equipment can be deployed and the number of equipped individuals, therefore 

limiting the scope for evaluating population-level dispersal kernels (Murray & Fuller 2000; 90 

Wikelski et al. 2007). There is therefore a pressing need to improve our ability to derive 

unbiased dispersal kernels from ‘classically marked’ individuals and beyond the scale of a 

single study area. 

The rise of citizen-based science offers a unique opportunity to take up this challenge by 

providing observations over a large spatial scale, typically nation-wide scale. In birds, large 95 

spatial scale monitoring programs dedicated to the study of dispersal have started to emerge, 

such as in seabirds, waders or raptors (Etheridge, Summers & Green 1997; Gill, Norris & 

Sutherland 2001; Barlow et al. 2013). Yet, increasing the spatial scale of the study inevitably 

comes at the expense of high spatial heterogeneity in marking effort and in the probability of 

detecting returning individuals, representing the second major issue when studying dispersal. 100 

Indeed, over large spatial scales, the probability of detecting a marked animal is typically low 
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and cannot be considered constant across space. Data on distribution of the observation effort, 

that could help estimating this bias, are however usually missing in a citizen-science context.  

Different statistical methods have been proposed for estimating the bias in the observation 

process when investigating dispersal. Multi-states models within the Capture-Mark-Recapture 105 

framework (CMR) provide a way to estimate dispersal probability among a set of discrete and 

finite number of study areas (Spendelow et al. 1995; Schwarz & Arnason 1996). This 

approach is appropriate for species with highly patchy and restricted distributions such as rare 

colonial seabirds. However the number of parameters exponentially increases with the 

number of sites included, and moreover, this framework provides movement probabilities, not 110 

dispersal kernel (e.g. Lagrange et al. 2014). For more continuously distributed species, the 

method classically used consists in increasing the scale of the sampling area and weighting 

the number of observed dispersal events (i.e. recruitments of individuals previously marked) 

by the total number of individuals caught or recruited (i.e. individuals not previously marked) 

at different distance classes. Obtaining such information on unmarked individuals entails 115 

substantial additional costs and thus reduces the scope of this method otherwise efficient in 

providing unbiased dispersal kernels (Baker, Nur & Geupel 1995; van Noordwijk 1995; 

Winkler et al. 2005; Van Houtan et al. 2007). Van Noordwijk (2011) proposed the use of 

distance-dependent recruitment rates to test whether the dispersal rule exhibited by the species 

differs from a uniform law, when the observation process is incomplete across space. 120 

However, this method does not provide an estimation of dispersal kernels (see Appendix A 

where we demonstrate that the form of the distance-dependent recruitment rates depends on 

the spatial distribution of the observation effort). A promising method recently proposed is the 

development of a spatial extension of the Cormack-Jolly-Seber CMR model that allows one 

to jointly estimate true instead of apparent survival, dispersal and observation processes 125 

(Schaub & Royle 2014). However, a critical assumption of this model (primarily dedicated to 
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the estimation of true instead of apparent survival) is that recapture probability is 

homogeneous across the study area, a clearly unrealistic assumption in nation-wide citizen-

based programs. Therefore to date, there is no satisfactory methods producing unbiased 

dispersal kernels for species widely distributed over continuous space. 130 

Here we developed such a method to estimate unbiased dispersal kernels at any spatial 

scale (including large nation-wide scale) and for any species distribution type (patchy or 

continuous), relying on three successive steps: 1) we minimised the bias induced by the 

border effect by considering the set of resighted individuals whose departure point lies within 

an eroded spatial window; 2) we estimated dispersal kernel parameters using a contrast 135 

function (i.e. an estimation function whose expectation is minimum at the true parameter set; 

Dacunha-Castelle & Duflo 1983) which converges to a weighted likelihood, up to a 

multiplicative constant proportional to the average recapture rate. We accounted for spatial 

heterogeneity in observation effort by weighting each dispersal event by the inverse of the 

density of departure points (i.e. marking effort). By doing this, we avoided the direct 140 

modelling of observation effort, typically intractable when dealing with citizen-science data; 

3) finally, we provided an unbiased dispersal kernel by estimating the residual bias in 

dispersal parameters using a simulation and extrapolation method (Cook & Stefanski 1994). 

As a first approach, we assumed that habitat quality was homogeneous across space and that 

all individuals had a similar average dispersal behaviour (but see Discussion for the 145 

possibility to relax these hypotheses). 

The objectives of this paper are twofold. After elaborating on the method, its assumptions 

and mathematical developments, we checked for its robustness (validity, properties) with a 

simulation study based on a heavy-tailed distribution of dispersal events (log-sech) and 

spatially heterogeneous marking and observation efforts. Thereafter, we applied this method 150 

to a dataset gathered by a large-scale citizen-based science program conducted in France and 
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designed to estimate the dispersal kernel of the Montagu’s harrier Circus pygargus, a 

widespread species breeding in cereal intensive farming landscapes of Western Europe and 

expected to disperse over several hundreds of kilometres.   

 155 

METHODS 

DISPERSAL KERNEL ESTIMATION 

Modelling dispersal data accounting for observation effort 

Let consider � individuals located at their departure points (e.g. birth nests) � = (��, … , �	) in 

an observation area � ∈ �. We suppose that � follows a spatial Poisson process described 160 

by its intensity �(�). The individual	� located at �� undergoes a single dispersal event to the 

arrival point �� with respect to a dispersal kernel ���such that �(�|�) = ���(� − �), where �� 

is the set of parameters of the dispersal model �. The dispersal kernel is thus supposed to be 

stationary over W. The individual � is observed at its arrival point when �� ∈ � and when an 

observer detects it (either by direct capture or observation at distance) with a probability 165 

�(��), or the detection probability linked to observation effort. We define �(�) = 1 if the 

individual � is ‘captured’ by an observer in �, �(�) = 0 if not. Let  J = ∑ �(�)	�  the number of 

individuals observed at their arrival points. The probability to observe an individual at � is 

therefore: 

�(�) = �(�) " �(�)���(� − �)#�	
$∈% " �(�)#�	

$∈%
 

with the set of arrival points in � following a spatial Poisson process of intensity: 170 

&(�) = �(�) ' �(�)���(� − �)#�	
$∈%
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Maximum Likelihood method (ML) leads to a biased estimation of dispersal kernel due to 

spatial heterogeneity in observation effort 

A classical way of estimating the dispersal kernel is through the maximisation of the log-

likelihood (( = ∑ log	�/-(�).� / 01(234$3)
" 01(24$3)52	6∈7

8 (Clark, Lewis & Horvath 2001; Gerber et al. 175 

2014). The law of large numbers implies that, when J → ∞, 
;;
<  tends towards: 

" " �(�)�(�) ��=(� − �)
" �(>)��=(> − �)#>	
?∊%

log	( ��(� − �)
" ��(> − �)#>	
?∊%

)#�#�	
2∊%

	
$∊%

" " �(�)�(�)��=(� − �)#�#�	
2∊%

	
$∊%

 

However, because of the weightings by �(�)�(�), the ratio 
;;
<  does not converge to a 

Kullback-Leibler divergence (up to an additive constant) and asymptotic unbiasedness is 

therefore not ensured (Dacunha-Castelle & Duflo 1983). Note that if � is constant, that is to 

say when the observation process is spatially homogeneous (i.e. all individuals are detected 180 

with equal probability in any location of �), then 
;;
A  tends towards a weighted Kullback-

Leibler divergence (up to an additive constant) of the form: 	

((
J →

" �(�) " ��=(� − �)
" ��=(> − �)#>	
?∊%

log	( ��(� − �)
" ��(> − �)#>	
?∊%

)#�#�	
2∊%

	
$∊%

B " " �(�)��=(� − �)#�#�	
2∊%

	
$∊%

 

Thus, maximizing 
;;
A  leads to asymptotically biased estimators of dispersal parameters 

unless observation process or departure point process is homogeneous. 

Estimation of dispersal kernel using weighted Maximum Likelihood method (wML) 185 
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Below are the three successive steps we propose to account for the sources of bias identified 

above: the border effect and imperfect detection due to spatial heterogeneity in observation 

and marking efforts. 

Step 1- Eroding the spatial window to minimise the bias induced by the border effect.  

Let assume that the majority of dispersal distances are small relatively to the size of the 190 

spatial area � considered, i.e. in a context of large-scale citizen science program. Let 

�� ∈ � be the result of an erosion of � by a distance # so that the probability of an 

individual � coming from �� and dispersing outside �� is small. We considered the subset of 

birds whose departure point lies in �� and arrival point in � (we show in step 3 below how 

to correct for this potential bias). 195 

Step 2- Estimating dispersal kernel parameters using weighted likelihood and accounting for 

local density of departure points.  

The observation process � cannot be considered as constant across space. To circumvent this 

issue, we weighted each dispersal event by the inverse of the density of departure points �(�). 

By doing this, all points � in �� have now a density probability proportional to ��=(� − �) to 200 

be the departure point of the bird captured at �. Let C�(�) = ∑ DEF	(01(234$3))
G($3)

	�/-(�).� 	be the log-

likelihood of observed dispersal distances weighted by the densities of departure points. Then 

C(�) = �
	 C�(�) tends towards:  

" 		
$∈%� " �(�)��=(� − �) logH��(� − �)I #�#�	

2∈%
" �(�)#�	
$∈%

 

≈ " �(�)#�	
2∊%
" �(�)#�	
$∈%

' ��=(K) logH��(K)I #K	
L∈MN  
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which is a Kullback-Leibler divergence (up to a multiplicative constant 
" O(2)52	6∊7
" G($)5$	P∈7

 and an 

additive one " ��=(K) log Q��=(K)R #K	
L∈MN ). The minimum of this divergence is obtained for 205 

� = �� which ensures asymptotic unbiasedness, with K a generic point anywhere across �. 

Here we want to estimate the parameter set � by maximising	C(�). 

Random variables S� = �(�) DEF	(T1(234$3))
G($3)  are independent and identically distributed. Let 

�U be the value maximizing C(�)/�. Using a development similar to the ML method, one 

obtains ��(�) = VW�X�Y " �(�) " ��0(� − �)log(��(y − x))#�#�	
�∈�0

	
�∊�  and √�H�U − ��(�)I 210 

asymptotically converging towards a Gaussian distribution  ]	(0, ^4�_`^′4�) where ^ is the 

second derivative of b(S�) such as: 

^c,d = ' ' �(�)
e��(� − �)e�c

e��(� − �)ef
��(� − �)

	
2∈%�

#�	
$∈%

#� 

with _, the variance matrix of the S� gradient with respect to �, such as: 

_c,d = ' ' �(�)
�(�)

e��(� − �)e�c
e��(� − �)ef

��(� − �)
	

2∈%�
#�	

$∈%
#� 

Step 3- Correcting dispersal kernel parameters for the bias due to border effect 

Finally, ��(�) → �� when � → �. In practice, the confidence interval around ��(�) is 215 

computed by bootstrapping the dispersal data set, whereas the bias b(�)g − ��(�) is 

estimated as the difference between ��(�) and the mean bootstrap parameter value (Cook & 

Stefanski 1994). 

 

SIMULATING DISPERSAL DATA 220 
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We simulated a set of 5000 departure points by drawing coordinates from a non-stationary 

Poisson process including a gradient with densities declining eastward, within a 100×100 unit 

area. The detection probability was also spatially heterogeneous and set proportionally to the 

y-coordinates, therefore also producing a gradient with declining effort from north to south. 

The combination of these two gradients (density of departure points, detection probability) 225 

created four distinct conditions spread over four quarters (starting from the north-west 

quarter, clockwise): 1. high nest density/high detection probability, 2. low nest-density/high 

detection probability, 3. low nest density/low detection probability, 4. high nest density/low 

detection probability (Fig. 1). These four conditions encompass the full range of spatial 

heterogeneity in data collection typically observed in large-scale monitoring schemes of 230 

animals. Dispersal distances were generated using a log-sech distribution (a = 0.75, b = 1; 

generating a median of 8.3 units). Dispersal events occurring outside the observation square 

were not considered. This simulation process was repeated 200 times to analyse the stability 

of parameter estimates. 

 235 

A REAL CASE STUDY: DISPERSAL OF MONTAGU’S HARRIERS ACROSS FRANCE USING CITIZEN-SCIENCE 

DATA 

The Montagu’s harrier and its monitoring in France 

The Montagu’s harrier Circus pygargus is a medium-sized (ca. 300 g) ground-nesting raptor 

inhabiting open farming landscapes, within the Western Palearctic, and wintering in the Sahel 240 

region in Africa. About 3900-5100 breeding pairs are found in France (Millon, Bretagnolle & 

Leroux 2004), essentially nesting in winter-sown cereal fields (wheat and barley). A 

substantial proportion of the broods (typically 2-5 chicks) does not fledge before crop 

harvesting takes place (20-50%; Millon et al., 2002). In response to this conservation issue, an 
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extensive network of amateur ornithologists emerged from 1975, which undertakes the 245 

protection of the nests in close collaboration with farmers (Santangeli et al. 2015). Between 

2008 and 2015, an average of 1083 ± 191 nests were monitored annually (range: 681-1287).  

Data from several small-scale ringing schemes suggested that if most birds tended to return 

in the vicinity of their natal nests, both natal and breeding dispersal can incur distances of 

several hundreds of kilometres. In 2007 was launched a wing-tagging program across the 250 

whole country, with the objective of unravelling the demography of the species at large 

spatial scale, including the estimation of dispersal kernels. Building upon the existing network 

of volunteers, a total of 5129 chicks have been wing-tagged from 1778 nests, between 2007 

and 2010, using coloured plastic tags attached to the patagium of each wing (see 

www.busards.com for a complete description of the scheme & Appendix B).  255 

Dispersal data 

A dedicated website, including a Google© map interface with automatic recording of the 

geographical coordinates, has been launched so as to ensure an efficient collection of 

resightings across France and more widely across Europe and Africa (www.busards.com). We 

filtered the >6000 resightings recorded in the database between 2008 and 2013 so as to retain 260 

a single resighting per year (excluding the year of birth) for each bird observed during the 

breeding season (15 April-15 July, i.e. excluding movements during the migration period). In 

the case of multiple resightings of a same bird during the same breeding season, we selected 

the first occurrence, so that each bird can only produce one dispersal distance per year, but up 

to six dispersal distances over the study period. Birds from a same nest were considered as 265 

independent in regard to dispersal event. The actual reproductive status and sex of the birds 

when resighted were not considered. Our observation area was defined as France, thus 
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observations made outside France were excluded from the dataset (5%, N = 68), and we 

ended up with a dataset gathering 1215 dispersal events.  

We applied the aforementioned method to the harrier dispersal data. � was defined as the 270 

minimum convex polygon containing all harrier nests. �� ∈ � was an eroded area including 

nests located at ≥ 150 km from the border of �. The threshold of 150 km was chosen from 

the dispersal distribution, so as to include ca. 80% of the observed dispersal events. We chose 

a heavy-tailed distribution, namely the log-hyperbolic secant, or log-sech distribution, to 

describe harrier dispersal distribution (Van Houtan et al. 2007). We assumed that dispersal 275 

distances # ≥ 0 follow a log-sech distribution such that: 

�(#) = 2 (jkW)⁄
(W/V)�/m + (W/V)4�/m 

where V > 0 is the scale parameter (expressed in distance units), and k > 0 sets the shape of 

the kernel (no dimension). We excluded the locations at sea from the area �. Local nest 

density was calculated by a two-dimensional kernel density estimator (Venables & Ripley 

2002). Simulations and analyses were performed in R 3.1.3 (R Development Core Team 280 

2015). Descriptive statistics (mean or median) are given together with their 95% confidence 

intervals. The code for conducting such analyses is fully available upon request. 

 

RESULTS 

ASSESSING THE PERFORMANCE OF THE METHOD USING SIMULATED DATA 285 

As expected, spatial heterogeneity in marking and observation efforts (Fig. 1) led to a biased 

dispersal kernel, with relatively long dispersal events being under-represented (Fig. 2). The 

two parameters of the estimated log-sech distribution were biased (scale: a = 0.85, shape: b = 

0.88) compared to the parameters used to simulate the data (a = 0.75, b = 1). Application of 
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our method accounting for spatially heterogeneous marking and observation efforts did 290 

largely correct for this bias (mean value with 95% CI: a = 0.69 [0.49-0.93], b = 0.99 [0.94-

1.05]). If the scale parameter a appeared as slightly underestimated, this had only little 

consequences in terms of departure from the simulated data (Fig. 2). 

 

DISPERSAL OF MONTAGU’S HARRIERS ACROSS FRANCE 295 

Considering the whole dataset of dispersal events occurring within France (N = 1215), 

Montagu’s harrier dispersed over relatively long distance with median dispersal distance of 32 

km and maximal dispersal distance reaching 627 km (Fig. 3). When spatially restricting the 

spatial scale of the dataset so as to limit the border effect (��, N = 557), the distribution of 

dispersal events remained largely unchanged with a median distance slightly increasing up to 300 

37 km (max. distance = 602 km; see Appendix C comparing histograms and quantile 

distributions between the two datasets). Parameters of the log-sech distribution fitted to the 

observed dispersal data (��) were a = 11.5×10
2
 km and b = 0.66. 

Implementing our correction method however led to a strong increase of the shape 

parameter b = 0.95 [0.90-1.03], whereas the scale parameter a = 11.5×10
2
 km [10.0×10

2
-305 

12.7×10
2
] did not change. Corrected median dispersal distance was considerably increased 

and reached 123 km [105-160] (Fig. 4). The interquartile range lay between 34 and 473 km. 

Note that the cumulative frequency only reached 0.8 at 700 km, i.e. at roughly the maximal 

dispersal distance observed within France, suggesting that another 20% of dispersal events are 

likely to be recorded further away (maximum fixed at 2000 km). In order to more directly 310 

compare the corrected kernel with the dispersal events observed (Fig. 3), we restricted the 

analysis up to a distance of 700 km. At this reduced spatial scale, the corrected median 

dispersal distance was 78 km [70-101] (interquartile range: 27-227 km, Fig. 4).  
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DISCUSSION 315 

Here we proposed a method for deriving unbiased dispersal kernels over continuous space 

from data collected at large spatial scale. Such data typically suffer from high spatial 

heterogeneity in both marking and observation efforts, in addition to a border effect. Our 

method successfully corrected dispersal kernel parameters by accounting for heterogeneity in 

the distribution of departure points (i.e. local nest density) within an eroded spatial window. 320 

Using simulations, we checked that this method was indeed able to provide unbiased and 

precise estimates of a probability density function fitted to dispersal distances. We further 

applied it to data collected on Montagu’s harriers from a nation-wide citizen-science program 

and showed that corrected median dispersal distances were 2.4-3.8 larger than the median of 

observed dispersal distances. 325 

 

ACCOUNTING FOR SPATIAL HETEROGENEITY IN MARKING AND OBSERVATION EFFORTS, AND BORDER 

EFFECT WHEN FITTING DISPERSAL KERNELS 

From a technical viewpoint, the method we used is akin to a weighted likelihood method but 

present major improvements for dealing with the two classical issues encountered when 330 

modelling dispersal data: i) the finite nature of a study area (border effect) and ii) the spatial 

heterogeneity in detection probability of marked animals linked to marking and observation 

efforts. Indeed, all dispersal events within the study area cannot be observed. Therefore, in the 

contrast estimation function we used, the likelihood of each dispersal event was weighted by 

the inverse of the local nest density around the departure points, a critical advance since 335 

departure points (i.e. marking locations) are known while observation effort, the parameter 

necessary in alternative methods, is not.  
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The logic here was to account for the local nest density (i.e. potential departure points) 

when modelling the probability of birds to arrive at a given point. Indeed, by weighting the 

number of observed dispersal events by the number of departure points, and not the number of 340 

recruitments (see e.g. Baker, Nur & Geupel 1995), we avoid the need of collecting data on 

unmarked individuals and the direct modelling of observation effort, typically intractable 

using citizen-science data. Data on recruitment are particularly costly to collect, even for 

species nesting in a defined set of nestboxes (e.g. van Noordwijk 1995; Winkler et al. 2005). 

Our method does not require information on recruitment other than for marked individuals. 345 

Alternative methods such as the distance-dependent recruitment rate allow to test for 

departure of the dispersal rule from a uniform law (i.e. birds chose their breeding location at 

random), and is robust to spatial heterogeneity in observation effort (van Noordwijk 2011). 

However, this method cannot be used to derive dispersal kernels (Appendix A).  

Second, the bias due to the finite nature of the observed area was corrected by a bootstrap 350 

procedure so as to get the unobserved tail of the distribution, assuming the form of the 

distribution was scale-independent. The advantage of this approach is that inference can be 

made on the frequency of dispersal occurring outside the study area. This however comes at 

the expense of relying on a particular statistical distribution. We used the log-sech distribution 

for its ability to fit heavy-tailed dispersal kernels (Van Houtan et al. 2007). Note however that 355 

our method can be fitted with alternative distributions (e.g. negative exponential, gamma, log-

normal), and that a procedure can be performed to select the most appropriate distribution.  

 

LIMITATIONS AND POSSIBLE EXTENSIONS OF THE METHOD 

Our method relies on a non-stationary spatial Poisson distribution of departure points but can 360 

be extended to incorporate any point process distribution. However, the bootstrap step will be 
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more tedious as it will need the simulation of the chosen distribution of departure points. We 

also assumed that the rules governing dispersal processes are stationary, i.e. are constant 

across space or across ecological conditions encountered by individuals, and that all 

individuals have a similar average dispersal behaviour. If dispersal behaviour varies among 365 

individuals, for example according to age or density of conspecifics in the natal area, the 

model can then be extended to investigate the effect of a covariate on the kernel parameters. 

Let p(�) be this driving variable (continuous or categorical), the new kernel then becomes 

�qr (�, �) = ��Hq,s($)I(�, �) where t is the parameter set linking � to p(�). A comparison of 

dispersal kernels between birds born in low-density areas vs. birds born in high-density areas 370 

could then be made. Our method is also flexible enough to explore whether habitat selection, 

the final stage of the dispersal process (Clobert et al. 2001), depends on local environmental 

suitability. In this case, let ℎ(t, K(�)) be the probability to settle in site � with environmental 

suitability K(�). The model can then be extended by using: 

�qr (�, �) = 	 ��($,2)v(q,2)
" ��($,?)v(q,?)5?	
%

 

A LARGE-SCALE CASE STUDY USING CITIZEN-SCIENCE DATA: MONTAGU’S HARRIER DISPERSAL 375 

ACROSS FRANCE 

Accounting for spatial heterogeneity in both marking and observation efforts increased the 

median dispersal distance from 32-37 km (using observed data) to 78-123 km, depending on 

the chosen spatial scale. Whether considering France or Western Europe, the interquartile 

range of dispersal approximately doubled, illustrating the necessity to clearly specify the 380 

population of interest when summarising dispersal propensity. Actually, the cumulated 

frequency of dispersal distances derived from the corrected log-sech distribution did not reach 

one at the maximal observed dispersal distance and the corrected log-sech distribution 

predicted that roughly 10-20% of dispersal events may occur beyond this distance (Fig. 4). 
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This may appear as substantial but it is important to note here that a number of dispersal 385 

events have indeed been recorded in neighbouring countries during the breeding season 

(Netherlands, Belgium, Germany, Switzerland, Scotland, Ireland, Czech Republic, Hungary, 

Spain) and were excluded from our analysis. Fourty-eight dispersal events from 34 different 

individuals have been actually recorded in neighbouring countries (4% of the data; Appendix 

D). Twelve individuals dispersed at >700 km from their birth nest (median = 561) with a 390 

maximal distance recorded at 1366 km (a bird resighted in Scotland).  

 

ON THE USE OF PASSIVE MARKS TO STUDY DISPERSAL 

Estimating animal dispersal has been identified as a major methodological challenge in 

ecology for decades (Doligez & Pärt 2008; Schaub & Royle 2014). Capture-recapture 395 

estimates based on marked animals have been criticised because of spatial sampling bias. 

Alternative approaches have thus been proposed, but all have their limits. For instance, 

despite dispersal can be inferred from genetic data and provide insightful information about 

the spatial scale of gene flow, such methods cannot help to infer the shape of dispersal kernels 

and to assess the demographic contribution of dispersal, partly because they integrate 400 

dispersal events over several generations. Satellite tracking (Argos and GPS systems) has 

been presented as the panacea for the study of dispersal (Koenig et al. 1996). However, 

economic cost limits the ability to investigate juvenile dispersal (since young individuals 

suffer higher mortality rates compared to adults), and device weights further restrict the 

number of species that can afford to carry such material (Wikelski et al. 2007). Therefore we 405 

argue here that passive marks remain a major tool for studying dispersal, especially 

combining citizen-science program allowing studies to be conducted at very large spatial 
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together with the statistical method we propose here which correct for sample bias including 

heterogeneity in marking and observation efforts as well as for border effect.  

 410 
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Figure 1. Map of the simulated dispersal events (dark blue dots: departure points, light blue 

dots: arrival points). The simulations were generated so as to create spatial heterogeneity in 

the combination of nest density and detection probability, as typically observed in field data 

(see Methods). Note that many short-distance dispersal events are actually hidden by the dots.  550 
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Figure 2. Cumulated frequency of dispersal distances (in arbitrary unit) i) predicted from the 

log-sech distribution used for the simulation (a = 0.75, b = 1; dashed green line), ii) estimated 

from the observed data (i.e. through the filter of the observation process; black line) and iii) 

predicted from the log-sech distribution fitted to the observed data but accounting for spatially 555 

heterogeneous marking and observation efforts (a = 0.69, b = 0.99; red line). Grey envelops 

indicate 95% CI for black and red curves. 
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Figure 3. Observed dispersal events of Montagu’s harrier between natal nests (all nest 

locations; dark blue dots) and subsequent re-observations in France (≥1yr after birth, during 560 

the breeding season only, note that many short-distance dispersal events were actually hidden 

by the size of the dots), and the corresponding distribution histogram (all birth nests 

considered in �; N = 1215 individual×year). Median dispersal distance was 32 km.  
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Figure 4. Observed (black line) and modelled (red line, grey envelope for 95% CI) cumulated 

frequency of dispersal events of the Montagu’s harrier in France. Cumulated frequency of 

observed data reached one at 650 km, as dispersal events occurring <150 km from the French 

border were excluded. The median of observed dispersal distance was 32 km (black arrow). 570 

After correcting for spatial heterogeneity in marking and observation efforts, and the border 

effect, median dispersal distance (red arrow with dark grey rectangle showing the 95% CI 

around the median, the light grey rectangle indicates the interquartile range) reached 123 and 

78 km respectively according to whether maximal dispersal distance was set at a) 2000 km 

and b) 700 km (i.e. corresponding to the maximal dispersal distance possible within the 575 

French borders).   
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