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Balanced Fair Resource Sharing in Computer Clusters

Thomas Bonalda, Céline Comteb,a,1,∗

aTélécom ParisTech, Université Paris-Saclay, France
bNokia Bell Labs, France

Abstract

We represent a computer cluster as a multi-server queue with some arbitrary
graph of compatibilities between jobs and servers. Each server processes its
jobs sequentially in FCFS order. The service rate of a job at any given time
is the sum of the service rates of all servers processing this job. We show that
the corresponding queue is quasi-reversible and use this property to design a
scheduling algorithm achieving balanced fair sharing of the computing resources.

Keywords: Parallel processing, multi-server queues, balanced fairness, order
independent queues, Whittle networks
2010 MSC: 60K25 Queueing theory, 68M20 Performance evaluation;
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1. Introduction

Load balancing is a critical component of large-scale computer clusters. The
flow of requests must be directed to the servers under various constraints like
data availability, state of the servers and service level agreements. In this paper,
we represent these constraints by an arbitrary graph of compatibilities between
jobs and servers. The computer cluster can then be viewed as a multi-server
queue where jobs are allocated to servers according to this graph. We assume
that each server processes its jobs sequentially in FCFS order. The service rate
of a job at any given time is the sum of the service rates of all servers processing
this job, which means that resource pooling does not induce any processing
overhead. We prove that, for Poisson job arrivals and exponential job sizes, this
multi-server queue is quasi-reversible [13]. Exploiting this property, we design
a novel scheduling algorithm achieving balanced fair sharing of the computing
resources. This makes the stationary distribution of the system state insensitive
to the job size distribution beyond the mean, a practically interesting property
leading to simple and robust engineering rules.
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Balanced fairness was introduced in the context of data networks as the
most efficient resource allocation having the insensitivity property, allowing the
service provider to develop dimensioning rules based on average traffic only, and
not on detailed traffic characteristics [5]. Formally, it is the only allocation such
that the underlying Markov process is reversible and at least one resource is
saturated in each state. Balanced fairness has later been used to evaluate the
performance of content-distribution networks [22, 23]. However, no scheduling
algorithm has been proved so far to achieve this allocation, except in some
specific cases where it coincides with proportional fairness [14, 27]. To the best of
our knowledge, our scheduling algorithm is the first practical implementation of
balanced fairness, just like the round-robin scheduling algorithm is a well-known
practical implementation of the ideal processor-sharing (PS) service discipline.

Multi-server queues with specialized servers have already been considered in
[1, 8, 25, 26] but these models assume that each job can be processed by only one
server at a time. Our model is closer to the multi-server queue with redundant
requests introduced by Gardner et al. [10, 11], where the class of a job defines
the set of servers on which it is replicated. When several replicas of the same
job are in service simultaneously on different servers, their service times are
independent and the first instance to be completed stops the others. It is easy
to see that, under the assumption of exponential service times, the two models
are in fact equivalent. In both cases, the FCFS policy makes the system very
sensitive to the job size distribution, so that the actual performance may vary
significantly when the job sizes are not exponentially distributed with the same
unit mean. Our objective in this paper is precisely to relax this assumption by
designing a scheduling policy which makes the system insensitive to the job size
distribution.

It turns out that our model belongs to the family of Order Independent
(OI) queues [3, 16]. As observed in [16], OI queues generalize a number of
queueing systems like BCMP networks under the FCFS or PS service discipline
[2], multiserver stations with concurrent classes of customers (MSCCC) and
multiserver stations with hierarchical concurrency constraints (MSHCC) [17,
18]. OI queues are known to be quasi-reversible [13]. In particular, the state of
the queue has an explicit stationary distribution under the usual assumptions
of Poisson arrivals and exponential service times. Moreover, the stationary
distribution remains explicit in the presence of random routing, where jobs can
leave or re-enter the queue upon service completion.

The first contribution of this paper is a scheduling algorithm which exploits
this last property to mitigate the sensitivity to the job size distribution. Just
like round-robin scheduling which implements the PS service discipline in the
single-server case, our mechanism enforces insensitivity by interrupting the jobs
frequently and moving them to the end of the queue. Routing is thus rein-
terpreted in terms of job interruptions and resumptions. The queue state is
updated in the course of the job shiftings and the exponentially distributed
sizes with unit mean in the multi-server queue now represent small fragments
of the jobs. When the interruptions are frequent, each job tends to go back
and forth in the queue and its average service rate is mainly determined by the
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number of jobs of each class which are present at the same time.
This last observation motivates us to adopt a higher viewpoint. Specifically,

we aggregate the state of the multi-server queue to only retain the number of
jobs of each class, but not their arrival order. This aggregate state turns out to
be an appropriate level of granularity to analyze the behavior of the queue. Its
stationary measure is exactly that of a Whittle network [21] containing as many
PS queues as there are classes in the original multi-server queue. This leads us
to our second contribution: a new theoretical understanding of the multi-server
queue. Using the state aggregation, we show in Theorem 1 that the queue is
stable under any vector of acceptable arrival rates. In practice, it suggests that
our algorithm will tend to stabilize the system whenever possible. Our second
theoretical result, stated in Theorem 2, concerns the service rate received on
average by each job as its position in the queue evolves. We show that the
average per-class service rates when the number of jobs of each class is given
are exactly those obtained by applying balanced fairness.

In addition to help us to understand the behavior of our algorithm, this
equivalence with balanced fairness allows us to derive explicit expressions for
the performance metrics of the multi-server queue with an arbitrary graph of
compatibilities. Indeed, the insensitivity property satisfied by balanced fairness
was used for instance in [6, 22, 23] to obtain simple and explicit recursion formu-
las for the performance metrics. Thanks to the aggregation we propose, these
formulas can be applied as they are in the multi-server queue. They predict
the exact performance of our algorithm when the job sizes are exponentially
distributed. For an arbitrary job size distribution, we show by simulation that
the system becomes approximately insensitive when the number of interrup-
tions per job increases, so that the performance tends to that obtained under
balanced fairness. We further observe that only a few interruptions per job
actually suffice to reach approximate insensitivity.

The rest of the paper is organized as follows. In Section 2, we introduce
the model and give the stability condition after recalling results on OI queues.
In Section 3, it is shown that the resource allocation is balanced fairness in
the presence of reentrant jobs. This result is used in Section 4 to design our
scheduling algorithm. Some numerical results are presented in Section 5. Section
6 concludes the paper.

2. A multi-server queue

We consider a multi-server queue with N job classes and S servers. The class
of a job may identify a client of the data center or a type of service; it defines the
set of servers that can process this job. For each i = 1, . . . , N , class-i jobs enter
the queue according to an independent Poisson process of intensity λi. The job
sizes are independent, exponentially distributed with mean 1. We assume for
now that each job leaves the queue immediately after service completion.

For each i = 1, . . . , N , we denote by Si ⊂ {1, . . . , S} the set of servers that
can process class-i jobs. Equivalently, these constraints can be represented as a
bipartite graph of compatibilities between the N job classes and the S servers,
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where there is an edge between class i and server s if and only if s ∈ Si. Each
job can be served in parallel by multiple servers and each server processes the
job sequentially in FCFS order. Hence, when there are several servers available
for a job at its arrival, all these servers process this job. When the service of
a job is complete, all the servers that were processing it are reallocated to the
next job they can serve in the queue. There is no service preemption, so that
at most one job of each class can be served at any given time.

We describe the evolution of the sequence of jobs in the queue, ordered by
their arrival times. Thus the queue state is some sequence c = (c1, . . . , cn) of
length n, where n is the number of jobs in the queue and ck ∈ {1, . . . , N} is the
class of job in position k, for each k = 1, . . . , n, starting from the head of the
queue. ∅ denotes the empty state, with n = 0.

When a job is in service on several servers, its service rate is the sum of the
capacities of the servers that are processing it. Denoting by µs > 0 the capacity
of server s for each s = 1, . . . , S, the total service rate in any state c is thus
given by

µ(c) =
∑

s∈
⋃n
k=1 Sck

µs.

For each k = 1, . . . , n, the job in position k receives service at rate

µ(c1, . . . , ck)− µ(c1, . . . , ck−1) =
∑

s∈Sck\
⋃k−1
`=1 Sc`

µs.

Observe that the total service rate in state c only depends on the set A(c) =
{ck : k = 1, . . . , n} of active classes in state c. Hence, for each A ⊂ {1, . . . , N},
we can denote by µ(A) the service rate in any state c whose set of active classes
is A. This is a submodular function, as a weighted cover set function [9, 20].

Order Independent queues. This multi-server queue turns out to be a special
case of Order Independent (OI) queues. These were introduced by Berezner
and Krzesinski [3, 16] as a new class of multi-class quasi-reversible queues. The
description of an OI queue is the same as for the multi-server queue except that
the total service rate µ can be any function of the queue state c which satisfies
the following properties:

• Monotonicity: µ(c1, . . . , cn) ≤ µ(c1, . . . , cn, i) for any state c and class i,

• Order-independence: µ(c1, . . . , cn) = µ
(
cσ(1), . . . , cσ(n)

)
for any state c

and permutation σ of 1, . . . , n.

Additionally, it is assumed that µ(∅) = 0 and µ(c) > 0 for all c 6= ∅. The total
service rate µ(c) is allocated to jobs in the order of their arrival in the sense
that the job in position k receives service at rate µ(c1, . . . , ck)−µ(c1, . . . , ck−1).
In particular, the service received by a job does not depend on the jobs arrived
later in the queue. One can easily verify that the service rate of our multi-server
queue satisfies these properties.
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Stationary measure. The queue state c defines a Markov process on {1, . . . , N}∗.
Since the multi-server queue is a special case of OI queues, it follows from [16,
Theorem 2.2] that this queue is quasi-reversible, with stationary measure

∀c ∈ {1, . . . , N}∗, π(c) = π(∅)
n∏
k=1

λck
µ(A(c1, . . . , ck))

. (1)

This formula was also derived in [11, Theorem 1] for multi-server queues with
redundant requests. However, the observation that the multi-server queue is
quasi-reversible is critical because it allows us to add random routing between
job classes [13]. As we will see in Sections 3 and 4, this result plays a key role
in the design of our algorithm.

Aggregate state. As in [16], we consider the number of jobs of each class in the
queue, independently of their arrival order. We denote by x = (x1, . . . , xN )
the corresponding aggregate state, where xi is the number of class-i jobs in the
queue. This defines a stochastic process on NN , which is not a Markov process
in general. We refer to the stationary measure of the aggregate state x as

π̄(x) =
∑
c:|c|=x

π(c), (2)

where |c| ∈ NN denotes the vector of the numbers of jobs of each class in state
c. We also denote the set of active classes in any state x by A(x) = {i : xi > 0}.

It was proved in [16] that the stationary measure of the aggregate state is
given by

π̄(x) = π̄(0)Φ(x)

N∏
i=1

λxii , (3)

where the function Φ satisfies the recursion Φ(0) = 1 and, for each x 6= 0,

Φ(x) =
1

µ(A(x))

∑
i∈A(x)

Φ(x− ei), (4)

ei being the N -dimensional vector with 1 in component i and 0 elsewhere, for
any i = 1, . . . , N .

Stability condition. The following key result is proved in the appendix.

Theorem 1. The multi-server queue is stable, in the sense that the underlying
Markov process is ergodic, if and only if

∀A ⊂ {1, . . . , N}, A 6= ∅,
∑
i∈A

λi < µ(A). (5)

In the rest of the paper, we assume that this condition is satisfied and we
denote by π the stationary distribution of the queue state.
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3. Average resource allocation

Re-entrant jobs. Since the multi-server queue is quasi-reversible, the stationary
distribution of the queue state is not modified by the addition of routing between
classes as long as the effective arrival rates remain constant [13]. Assume for
instance that each job leaves the queue with probability p and re-enters as a
job of the same class with probability 1 − p, for some p ∈ (0, 1]. The external
arrival rate of class-i jobs is taken equal to λip so that the effective arrival rate
of class-i jobs remains equal to λi. The stationary distribution of the queue
state c is still given by (1), independently of p. Each job re-enters the queue
1/p times on average, which tends to infinity when p→ 0.

In the limit, it is not relevant to consider the instantaneous service rate of
each job depending on its position in the queue; the metric of importance is the
service rate received on average by each job when the number of jobs of each
class in the queue is given, corresponding to the aggregate state x. The objective
of this section is precisely to gain insights into the steady-state behavior of the
multi-server queue viewed through its aggregate state.

Whittle network. As we will see in Theorem 2 below, the stationary distribution
(3) of the aggregate state x of the multi-server queue is that of the state of a
Whittle network [21] of N queues.

A Whittle network of N queues is a network of N processor-sharing queues
with state-dependent service rates. The network state is described by the vector
x = (x1, . . . , xN ) giving the number of jobs at each queue. The key feature of
a Whittle network is that the relative variations of the service rates φ1, . . . , φN
of the queues are constrained by the following balance property:

∀x ∈ NN , ∀i, j : xi > 0, xj > 0, φi(x)φj(x− ei) = φi(x− ej)φj(x). (6)

This balance property is equivalent to the insensitivity property, i.e., the fact
that the stationary distribution of the network state is independent of the job
size distribution beyond the mean [4].

The service rates φ1, . . . , φN satisfy the balance property (6) if and only if
there is a balance function Φ such that Φ(0) = 1 and

∀x ∈ NN , ∀i = 1, . . . , N, φi(x) =

{
Φ(x−ei)

Φ(x) if xi > 0,

0 otherwise.
(7)

From this it is easy to show that the steady-state distribution π̄ given by (3)
with the function Φ given by (7) satisfies the local balance equations of the
network.

Conversely, the balance function Φ uniquely defines the service rates of the
queues of a Whittle network through (7). In particular, there exists a unique
Whittle network of N queues with per-queue arrival rates λ1, . . . , λN whose
balance function is given by (4). The stationary distribution of this network
state is exactly the stationary distribution (3) of the aggregate state of the
multi-server queue.
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The following two key results specify the relation between the average per-
class service rates in the multi-server queue and the service rates of the queues
in this equivalent Whittle network.

Theorem 2. The stationary distribution of the aggregate state of the multi-
server queue is that of the state of a Whittle network of N queues, with arrival
rates λ1, . . . , λN and state-dependent service rates φ1, . . . , φN given by

φi(x) =
∑
c:|c|=x

π(c)

π̄(x)
µi(c), (8)

where µi(c) is the service rate of the first class-i job in state c of the multi-server
queue, for each c ∈ {1, . . . , N}∗ and i = 1, . . . , N .

Proof. As observed earlier, the stationary distribution (3) is exactly the station-
ary distribution of the state x of a Whittle network of N queues with arrival
rates λ1, . . . , λN and service rates φ1, . . . , φN given by (6), where Φ is the bal-
ance function given by (4). We just need to verify that these service rates satisfy
(8).

Let x ∈ NN and i = 1, . . . , N such that xi > 0. We have

φi(x) =
Φ(x− ei)

Φ(x)
=
π̄(x− ei)λi

π̄(x)
=

1

π̄(x)

∑
c:|c|=x−ei

π(c)λi.

The quasi-reversibility of the multi-server queue ensures that the following par-
tial balance equation is satisfied in any state c (see the proof of [16, Theorem
2.2] for more details):

π(c)λi =

n+1∑
k=1

π(c1, . . . , ck−1, i, ck, . . . , cn)

× (µ(A(c1, . . . , ck−1, i))− µ(A(c1, . . . , ck−1))) .

Letting n = x1 + . . .+ xN , we deduce that

∑
c:|c|=x−ei

π(c)λi =
∑

c:|c|=x−ei

n∑
k=1

π(c1, . . . , ck−1, i, ck, . . . , cn−1)

× (µ(A(c1, . . . , ck−1, i))− µ(A(c1, . . . , ck−1))) ,

=
∑
c:|c|=x

π(c)

n∑
k=1
ck=i

(µ(A(c1, . . . , ck−1, ck))− µ(A(c1, . . . , ck−1))) ,

=
∑
c:|c|=x

π(c)µi(c).

This equation remains valid for any state x and class i such that xi = 0.
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Corollary 1. For each x ∈ NN , the vector of service rates φ(x) = (φ1(x), . . . , φN (x))
belongs to the capacity set

C =

{
φ ∈ RN+ : ∀A ⊂ {1, . . . , N},

∑
i∈A

φi ≤ µ(A)

}
and satisfies ∑

i∈A(x)

φi(x) = µ(A(x)).

Proof. Let x ∈ NN . For all A ⊂ {1, . . . , N}, we have by (8),∑
i∈A

φi(x) =
∑
c:|c|=x

π(c)

π̄(x)

∑
i∈A

µi(c) ≤
∑
c:|c|=x

π(c)

π̄(x)
µ(A) = µ(A).

For A = A(x), we have ∑
i∈A(x)

µi(c) = µ(A(x))

for each c such that |c| = x, so that the above inequality is an equality.

Balanced fairness. By Theorem 2, the average service rates in the multi-server
queue satisfy the balance property (6). In view of Corollary 1, the resource
allocation is also Pareto-efficient in the sense that the server resources are always
maximally consumed. The unique resource allocation which satisfies these two
properties is known as balanced fairness [5].

Going back to the motivating example with re-entrant jobs, in the limit
where p → 0, the external arrivals and departures become rare and the jobs
tend to re-enter the queue several times. The detailed queue state evolves
with these frequent job shifts, while the aggregate state remains constant. On
average, all jobs of class i tend to be served at the same service rate in aggregate
state x, with total service rate φi(x). When the queue contains only one server,
it means that the capacity of this server is divided equally among all jobs in the
queue, similarly to round-robin scheduling. In general, this corresponds to the
above Whittle network where each of the N queues applies the processor-sharing
service discipline. Such a queueing system is known to have the insensitivity
property described above. This property will be exploited in the next section
to design a scheduling algorithm in computer clusters based on re-entrant jobs
after forced service interruptions.

Performance metrics. Several works have focused on predicting the perfor-
mance of systems under balanced fairness, see for instance [6, 22, 23]. Their
results can be reused as they are to predict the performance of the multi-server
queue. Indeed, the above aggregation results show that any performance met-
ric which can be expressed in terms of the aggregate state in the multi-server
queue is actually equal to the corresponding metric in the equivalent Whittle
network. This is stated more formally in the following corollary, which follows
from Theorem 2.
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Corollary 2. Consider a function f defined on {1, . . . , N}∗ which is order-
independent, in the sense that there exists a function g defined on NN such that
f(c) = g(|c|) for all c ∈ {1, . . . , N}∗. Then the expected value of f applied to
the state c of the multi-server queue is equal to the expected value of g applied
to the state x of the equivalent Whittle network.

Proof. Gathering the detailed queue states which correspond to the same ag-
gregate state, we obtain directly∑

c∈{1,...,N}∗
π(c)f(c) =

∑
c∈{1,...,N}∗

π(c)g(|c|),

=
∑
x∈NN

 ∑
c:|c|=x

π(c)

 g(x),

=
∑
x∈NN

π̄(x)g(x).

Note that this result holds for any stationary measure π. In particular,
taking the measure π such that π(∅) = 1 in the multi-server queue (that is,
π̄(0) = 1 in the equivalent Whittle network) and for f the constant function
equal to 1, we obtain that the normalization constants in the multi-server queue
and in the equivalent Whittle network are equal.

A metric of importance is the mean number of jobs of a given class in the
multi-server queue, from which we can deduce the mean delay (or equivalently
the mean service rate) perceived by the jobs of class i, for each i = 1, . . . , N .
Coming back to the stationary distribution π with the function f which counts
the number of jobs of a given class in the multi-server queue, we deduce from
Corollary 2 that the mean number of class-i jobs in the multi-server queue is
equal to the mean number of jobs at queue i in the equivalent Whittle network,
for each i = 1, . . . , N .

Hence, the recursive formulas of [22, Theorem 4] and [23, Theorem 1] give
directly the normalization constant of the stationary distribution, as well as the
mean number of jobs of each class in the multi-server queue. The numerical
results presented in Section 5 are based on this observation.

4. A scheduling algorithm for computer clusters

We apply the previous results to the problem of resource sharing in computer
clusters. Consider a cluster of S servers. For all s = 1, . . . , S, we denote by Cs
the service capacity of server s, in floating-point operations per second (flops).
Any incoming job consists of some random number of floating-point operations,
referred to as the job size, and is assigned some set of servers. This assignment,
possibly random, may depend on the type of the job but not on the system
state (e.g., the number of ongoing jobs). It is fixed for the entire life of the job
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in the system. The job can then be processed in parallel by any subset S of
the servers in its assignment, at rate

∑
s∈S Cs. Job sizes are assumed i.i.d. with

mean σ.

Balanced fairness. We aim at sharing the service capacity of the cluster accord-
ing to balanced fairness, so that the stationary distribution of the number of
jobs of each class is independent of the job size distribution beyond the mean
[5]. Applying the FCFS service discipline to each server is clearly not suitable.
For S = 1 for instance, the system reduces to a single-server FCFS queue, which
is known to be very sensitive to the job size distribution. For S ≥ 1, the system
corresponds to the multi-server queue described in Section 2, with service rates
µs = Cs/σ for all s = 1, . . . , S, provided job sizes are i.i.d. exponential with
mean σ.

We apply the idea of re-entrant jobs mentioned in Section 3. Specifically, we
interrupt each service after some exponential time and force the corresponding
job to re-enter the queue as a new job of the same type, with the same server
assignment, so that the service can be resumed later and the resources can be
reallocated. Observe that, when job sizes are i.i.d. exponential with mean σ,
the stationary distribution of the aggregate state remains unchanged by the
quasi-reversibility of the OI queue. When the frequency of service interruptions
increases, the resources tend to be shared fairly, in the sense of balanced fairness,
and the stationary distribution becomes insensitive to the job size distribution
beyond the mean. For S = 1 for instance, the system tends to a single-server
PS queue, which is known to have the insensitivity property. For S ≥ 1, the
system tends to a Whittle network of PS queues, which is also known to have
the insensitivity property [4].

Scheduling algorithm. A single virtual queue is used to allocate servers to jobs.
Any incoming job is put at the end of the queue. Each server s interrupts the
job in service, if any, after some exponential time with parameter Cs/θ, for
some θ > 0. Observe that θ can be interpreted as the mean number of floating-
point operations before service interruption. Any interrupted job releases all
servers that process this job and is moved to the end of the queue as a new job.
The released resources are reallocated according to the same service discipline,
accounting for the new order in the queue. Note that the interrupted service
may be resumed immediately or later, when some resources become available,
depending on the state of the queue.

The pseudo-code of the algorithm is given in Algorithm 1, where as ∈
{0, 1, . . . , N} denotes the activity state of server s (as = 0 if server s is idle
and as = i if server s is processing a job of class i) and ts ∈ {on, off} indicates
the state of the timer that triggers service interruption at server s (when set
on, the timer has an exponential distribution with parameter Cs/θ). The al-
gorithm depends on a single parameter θ, which determines the mean number
of service interruptions per job. This should be compared to the mean job size
σ. Specifically, the ratio m = σ/θ corresponds to the mean number of service
interruptions per job. When m → ∞, services are frequently interrupted and
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on job arrival
begin

i← job class
enqueue job
n← n+ 1
for all s ∈ Si do

if as = 0 then
as ← i
ts ← on

end

end

end

on job departure
begin

i← job class
k ← job position in the queue
dequeue job
n← n− 1
for all s ∈ Si do

if as = i then
as ← 0
ts ← off

end

end
while k ≤ n do

for all s ∈ Sck ∩ Si do
if as = 0 then

as ← ck
ts ← on

end

end
k ← k + 1

end

end

on timer expiration
begin

s← server
i← as
k ← job position in the queue
interrupt job service
move job to the end of the queue
for all s ∈ Si do

if as = i then
as ← 0
ts ← off

end

end
while k ≤ n do

for all s ∈ Sck ∩ Si do
if as = 0 then

as ← ck
ts ← on

end

end
k ← k + 1

end

end

Algorithm 1: Scheduling algorithm based on random service interruptions.
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the corresponding resource allocation tends to balanced fairness, as mentioned
in Section 3, an allocation that has the insensitivity property; when m → 0,
services are almost never interrupted and the service discipline is approximately
FCFS per server, which is highly sensitive to the job size distribution. We shall
see in the following section that, for large systems with random assignment,
setting m = 1 is in fact sufficient to get approximate insensitivity, i.e., it is
sufficient in practice to interrupt each job only once on average.

5. Numerical results

In this section, we provide numerical results showing the performance of
the algorithm described above. We are specifically interested in evaluating the
mean number m of interruptions per job which is sufficient in practice to obtain
approximate insensitivity to the job size distribution.

Job size distribution. As in Section 4, the job sizes are assumed i.i.d. To test
the sensitivity, we successively evaluate the performance of our algorithm under
three job size distributions.

We first consider job sizes with a bimodal number of exponentially dis-
tributed phases. More precisely, the size of any incoming job is a sum of in-
dependent random variables which are exponentially distributed with mean ς.
The number of these random variables follows a bimodal distribution: it is equal
to n1 with probability p1 and to n2 with probability p2, for some p1, p2 such
that p1 + p2 = 1. We let ς = 1/5, n1 = 25, n2 = 1, p1 = 1/6 and p2 = 5/6. The
mean job size is given by σ = (p1n1 + p2n2)ς = 1 while the standard deviation
is approximately equal to 1.84.

We consider a second alternative where the job size distribution is hyperex-
ponential: any incoming job has an exponential distribution with mean σ1 with
probability p1 and an exponential distribution with mean σ2 with probability
p2, for some p1, p2 such that p1 + p2 = 1. We let σ1 = 5, σ2 = 1/5, p1 = 1/6,
p2 = 5/6, corresponding to a mean job size σ = p1σ1 + p2σ2 = 1 and standard
deviation approximately equal to 2.05.

Finally, we consider job sizes with a heavy-tailed number of exponential
phases. Like for the bimodal case, the size of any incoming job is a sum of
independent random variables which are exponentially distributed with mean ς.
The number of these random variables follows a Zipf distribution with parame-
ters K ∈ N and α > 0: for each k = 1, . . . ,K, the probability that there are k
terms in the sum is proportional to 1/kα. We let ς = 1, K = 200 and α = 2.
The mean job size is then given by

σ =

∑K
k=1

1
kα−1∑K

k=1
1
kα

ς,

approximately equal to 3.58, while the standard deviation is approximately
equal to 10.61.
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Performance metrics. We measure the performance in terms of mean service
rate and mean delay. Let φi(x) be the service rate of class-i jobs in state x, as
defined by (8). The mean service rate of any class-i job is then given by:

γi =

∑
x π̄(x)φi(x)∑
x π̄(x)xi

.

By conservation, we have:

γi =
λiσ∑
x π̄(x)xi

.

Observe that γi cannot exceed the maximum service rate of class-i jobs, given by∑
s∈Si Cs. The mean delay δi of any class-i job follows from the mean number

of class-i jobs by Little’s law, and is inversely proportional to the mean service
rate:

δi =

∑
x π̄(x)xi
λi

=
σ

γi
. (9)

Performance evaluation. There are S servers and N job classes. Class-i jobs
arrive according to a Poisson process with intensity λi. The mean number of
interruptions per job is given by m = σ/θ, where σ is the mean job size and θ
is the parameter of the algorithm used to set the random timers. We compare
the results for m = 1 and m = 5 with those obtained under FCFS policy (that
is, without service interruption) and balanced fairness.

The performance metrics under balanced fairness will be given in closed
form for the configurations considered below. They give the performance of
our algorithm and of FCFS policy when the job size distribution is exponential.
We resort to simulations to assess the performance under the three job size
distributions listed earlier. Each simulation point follows from the average of
100 independent runs, each corresponding to 106 jumps of the corresponding
Markov process, after a warm-up period of 106 points; the corresponding 95%
confidence intervals are drawn in semitransparent on the figures.

Three servers. We first consider a toy example with S = 3 servers and N = 2
job classes. Servers 1 and 2 are dedicated to job classes 1 and 2, respectively,
while server 3 is shared by all jobs. In view of Theorem 1, the stability condition
is:

λ1 < µ1 + µ3, λ2 < µ2 + µ3, λ1 + λ2 < µ1 + µ2 + µ3.

Define the corresponding loads:

ρ1 =
λ1

µ1 + µ3
, ρ2 =

λ2

µ2 + µ3
, ρ =

λ1 + λ2

µ1 + µ2 + µ3
.
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Observing that the capacity set is that of a tree network [6], we deduce the
mean service rates under balanced fairness:

γ1 =

(
1

µ(1− ρ)
+

µ2

µ1+µ3

1−ρ2
1−ρ1

µ− (µ1 + µ3)ρ1 − (µ2 + µ3)ρ2 + µ3ρ1ρ2

)−1

, (10)

γ2 =

(
1

µ(1− ρ)
+

µ1

µ2+µ3

1−ρ1
1−ρ2

µ− (µ1 + µ3)ρ1 − (µ2 + µ3)ρ2 + µ3ρ1ρ2

)−1

(11)

with µ = µ1 +µ2 +µ3. The mean delays follow by (9). Explicit formulas for the
performance metrics under this assignment graph were also derived in [11] in the
context of multi-server queues with redundant requests. Recall that these are
the exact performance metrics when the job size distribution is exponential. The
results are shown in Figures 1 and 2 with respect to the load ρ, for λ1 = λ2. In
Figure 1, the system is symmetric and the maximum service rate is 2 for both
classes. In Figure 2, the system is asymmetric: class-1 jobs (in blue) can be
served by servers 1,3 and thus have a maximum service rate of 2; class-2 jobs
(in red) can be served by server 3 only and thus have a maximum service rate
of 1.

Applying our scheduling algorithm with only m = 1 (that is, 1 service in-
terruption per job on average) brings a significant improvement compared to
FCFS policy. For m = 5, performance is very close to that of balanced fairness
and approximately insensitive (i.e., very close to that obtained for an exponen-
tial job size distribution) even for job sizes with a Zipf number of exponential
phases.

Large system with random assignment. We now consider a large system of S =
100 servers, each with unit service rate. Each incoming job is assigned d servers
chosen uniformly at random, corresponding toN =

(
S
d

)
job classes, as considered

in [10]. The mean service rate and the mean delay follow from an explicit formula
for the mean number of jobs in the queue derived in [10]. The simulation results
are obtained in the conditions described above. The results for d = 2 and d = 3
are shown in Figures 3 and 4, respectively. We observe that performance is very
close to that of balanced fairness, even for low values of m. It is sufficient in
practice to set m = 1, corresponding to only one service interruption per job on
average.

6. Conclusion

We have introduced a new scheduling algorithm to allocate the resources
of a computer cluster according to balanced fairness. This algorithm, which is
based on service interruptions and resumptions, can be viewed as an extension
of round-robin scheduling algorithm in the context of resource pooling. Its per-
formance was studied by considering a new queueing model where jobs can be
processed in parallel by several servers. We have observed in particular that
the aggregate state of the queue is that of a Whittle network, and deduced the
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insensitivity property in the limit of an infinite number of service interruptions
per job. This has in turn allowed us to derive explicit expressions for the per-
formance metrics with an arbitrary graph of compatibilities. The performance
of the system when the number of service interruptions per job is finite was
assessed by simulation. We observed that only a few interruptions per job are
sufficient in practice to obtain approximate insensitivity.

Our objectives for the future work are twofold. First, we aim at refining
our understanding of the system presented in this paper. This notably involves
assessing analytically the impact of the mean number of service interruptions
on the sensitivity of the resulting resource allocation. We would also like to
perform more simulations to compare the performance of our algorithm with
that of other existing scheduling policies, regarding both the insensitivity to the
job size distribution and the efficiency of the resource utilization.

A second step would be to extend the current model and algorithm and in-
clude practical constraints which are inherent to parallel computing. We can
notably mention the cost of coordination between servers, not only during the
service but also upon service interruption. Besides it would be interesting to
consider alternative ways of enforcing frequent service interruptions, which do
not rely on exponentially distributed timers but instead utilize the structure of
the real system considered. Depending on the application, it may be possible
for instance to pre-cut the jobs into smaller tasks of comparable size. Finally,
we would like to explore other variants of the queueing model, including the
representation of fork-join tasks using stochastic Petri networks [19], the pres-
ence of negative customers [12, 24] and batch services [7] and the case of loss
networks [15].
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Appendix

We prove Theorem 1 which states that the multi-server queue is stable if
and only if

∀A ⊂ {1, . . . , N}, A 6= ∅,
∑
i∈A

λi < µ(A). (5)

Necessary condition. Assume that µ(A) ≤
∑
i∈A λi for some non-empty set

A ⊂ {1, . . . , N}. For any x ∈ NN \ {0} such that A(x) ⊂ A, we also have
µ(A(x)) ≤ µ(A) since µ is non-decreasing, so that

Φ(x) =
1

µ(A(x))

∑
i∈A(x)

Φ(x− ei) ≥
1∑
i∈A λi

∑
i∈A(x)

Φ(x− ei),

and by induction,

Φ(x) ≥ n!∏
i∈A xi!

(
1∑
i∈A λi

)n
,

17



where n =
∑
i∈A xi. Hence we obtain

∑
x∈NN

Φ(x)

N∏
i=1

λi
xi ≥

∑
x∈NN :
A(x)⊂A

Φ(x)

N∏
i=1

λi
xi =

∑
n≥0

∑
x∈NN :
A(x)⊂A,∑
i∈A xi=n

Φ(x)

N∏
i=1

λi
xi ,

≥
∑
n≥0

∑
x∈NN :
A(x)⊂A,∑
i∈A xi=n

n!∏
i∈A xi!

∏
i∈A

(
λi∑
i∈A λi

)xi
,

= +∞.

Sufficient condition. We first prove the following lemma.

Lemma 1. Let Ψ be such that Ψ(0) = 1 and for all x 6= 0,∑
i∈A(x)

Ψ(x− ei)
Ψ(x)

≤ µ(A(x)). (A.1)

Then Φ(x) ≤ Ψ(x) for all x ∈ NN .

Proof. The proof is by induction on n =
∑N
i=1 xi. The condition is true for

n = 0 since Φ(0) = Ψ(0) = 1. Now let n ≥ 1 and assume that Φ(x) ≤ Ψ(x)

for all x ∈ NN with
∑N
i=1 xi ≤ n − 1. For each x ∈ NN with

∑N
i=1 xi = n, we

obtain

Ψ(x) ≥
∑
i∈A(x) Ψ(x− ei)
µ(A(x))

≥
∑
i∈A(x) Φ(x− ei)
µ(A(x))

= Φ(x),

where the first inequality holds because Ψ satisfies (A.1) and the second holds
by the induction assumption. �

Assume that the stability condition (5) is satisfied. The proof consists in
choosing a function Ψ that satisfies the assumptions of Lemma 1 and such that

∑
x∈NN

Ψ(x)

N∏
i=1

λi
xi < +∞.

In view of (5), there exists η ∈ RN+ such that

∀i = 1, . . . , N, λi < ηi and ∀A ⊂ {1, . . . , N},
∑
i∈A

ηi < µ(A).

We can choose for instance

∀i = 1, . . . , N, ηi = λi +
1

2
min

A⊂{1,...,N}:i∈A

(
µ(A)−

∑
j∈A λj

|A|

)
.
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Now consider the balance function Ψ defined by

∀x ∈ NN , Ψ(x) =

N∏
i=1

1

ηixi
.

We have Ψ(0) = 1 and, for each x ∈ NN \ {0},∑
i∈A(x)

Ψ(x− ei)
Ψ(x)

=
∑
i∈A(x)

ηi < µ(A).

We can thus apply Lemma 1 to Ψ and we deduce that Φ(x) ≤ Ψ(x) for all
x ∈ NN . It follows that

∑
x∈NN

Φ(x)

N∏
i=1

λi
xi ≤

∑
x∈NN

Ψ(x)

N∏
i=1

λi
xi =

∑
x∈NN

N∏
i=1

(
λi
ηi

)xi
< +∞,

which concludes the proof.
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Figure 1: Performance metrics for N = 2 job classes sharing S = 3 servers (µ1 = µ2 = µ3 = 1).
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Figure 2: Performance metrics for N = 2 job classes sharing S = 2 servers (µ1 = µ3 = 1,
µ2 = 0). The performance of class-1 jobs, which have access to both servers, appears in blue
on the figure (top plot for the mean service rate and bottom plot for the mean delay). The
performance of class-2 jobs, which have access to only one server, appears in red on the figure
(bottom plot for the mean service rate and top plot for the mean delay).
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Figure 3: Performance metrics for random assignment of d = 2 servers among S = 100.
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Figure 4: Performance metrics for random assignment of d = 3 servers among S = 100.
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